Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14323, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37830457

RESUMO

Anthropogenic noise is ubiquitous globally. However, we know little about how the impacts of noise alter fundamental ecosystem properties, such as resource consumption by invertebrate consumers. Using experimental noise manipulation and faecal DNA metabarcoding, we assessed how the direct and cross-trophic indirect effects of noise altered the dietary richness and specializations of omnivorous grasshoppers in a grassland ecosystem. We found that the experimental noise treatment expanded grasshoppers' dietary richness and resulted in dietary generalizations in both noise-exposed and adjacent relatively quieter areas. Unexpectedly, however, these dietary changes were primarily explained by the direct effect of noise not only in the noise-exposed areas but also in the adjacent quieter areas and were relaxed by indirect effects of noise such as reduced birds and predation risk and increased grasshoppers. Our work suggests that noise pollution can be key in explaining the variation of invertebrate consumers' diets across a gradient of noise-exposed environments.


Assuntos
Ecossistema , Ruído , Animais , Ruído/efeitos adversos , Pradaria , Invertebrados , Dieta/veterinária , Comportamento Predatório
2.
Environ Sci Technol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259849

RESUMO

Drought induces dry hazards, including wildfire, and increased air pollution from wildfire may be a mechanism by which drought increases health risks. We examined whether the drought-wildfire pathway increases the risk of childhood stunting. We analyzed all geocoded children under five across 44 low- and middle-income countries (LMICs). We first conducted mixed-effect regressions to examine the three pairwise associations between standardized precipitation evapotranspiration index (SPEI), fire-sourced PM2.5, and childhood stunting. We then employed a causal mediation analysis to determine whether compounding drought-wildfire (cascading or co-occurring) events significantly impact the drought-stunting pathway. We found that each 1-unit decrease in SPEI exposure was associated with a 2.16% [95% confidence interval (CI): 0.79, 3.49%] increase in stunting risk and 0.57 (95% CI 0.55, 0.59%) µg/m3 increase in fire-sourced PM2.5. Additionally, each 1 µg/m3 increase in 24 month average fire-sourced PM2.5 was associated with an increased risk of 2.46% (95% CI: 2.16, 2.76%) in stunting. Drought-mediated fires accounted for 26.7% (95% CI: 14.5, 36.6%) of the linkage between SPEI and stunting. Our study revealed fire-sourced PM2.5 is a mediator in the drought-stunting pathway in LMICs. To protect child health under increasing drought conditions, personal interventions against wildfire should be considered to enhance climate resilience.

3.
Oecologia ; 192(3): 745-753, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016526

RESUMO

Biotic and abiotic factors may individually or interactively disrupt plant-pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant-pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness. Our findings indicate that predation risk and an increase in precipitation independently reduced plant fitness (i.e., seed set) by decreasing flower visitation. Predation risk reduced pollinator visitation and richness, and altered species composition of pollinators. Additionally, an increase in precipitation was associated with lower flower visitation and pollinator richness but did not alter pollinator species composition. However, maximum daily temperature did not affect any component of the pollinator assemblage or plant fitness. Our results indicate that biotic and abiotic drivers have different impacts on pollinator behavior and diversity with consequences for plant fitness components. Even small variation in precipitation conditions promotes complex and substantial cascading effects on plants by affecting both pollinator communities and the outcome of plant-pollinator interactions. Tropical communities are expected to be highly susceptible to climatic changes, and these changes may have drastic consequences for biotic interactions in the tropics.


Assuntos
Polinização , Comportamento Predatório , Animais , Flores , Insetos , Plantas
4.
Oecologia ; 191(1): 113-125, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31342255

RESUMO

Effects of plants on herbivores can cascade up the food web and modulate the abundance of higher trophic levels. In agro-ecosystems, plant viruses can affect the interactions between crops, crop pests, and natural enemies. Little is known, however, about the effects of viruses on higher trophic levels, including parasitoids and their ability for pest regulation. We tested the hypothesis that a plant virus affects parasitoid foraging behaviour through cascading effects on higher trophic levels. We predicted that the semi-persistent Beet yellows virus (BYV) would influence plant (Beta vulgaris) quality, as well as aphid host (Aphis fabae) quality for a parasitoid Lysiphlebus fabarum. We determined amino acid and sugar content in healthy and infected plants (first trophic level), lipid content and body size of aphids (second trophic level) fed on both plants, as well as foraging behaviour and body size of parasitoids (third trophic level) that developed on aphids fed on both plants. Our results showed that virus infection increased sugars and decreased total amino acid content in B. vulgaris. We further observed an increase in aphid size without modification in host aphid quality (i.e., lipid content), and a slight effect on parasitoid behaviour through an increased number of antennal contacts with host aphids. Although the BYV virus clearly affected the first two trophic levels, it did not affect development or emergence of parasitoids. As the parasitoid L. fabarum does not seem to be affected by the virus, we discuss the possibility of using it for the development of targeted biological control against aphids.


Assuntos
Afídeos , Beta vulgaris , Closterovirus , Vespas , Animais , Ecossistema , Interações Hospedeiro-Parasita , Regulação para Cima
5.
Ecology ; 99(7): 1602-1609, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29727477

RESUMO

The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on (1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on (2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree of plant specificity.


Assuntos
Ecossistema , Herbivoria , Animais , Cadeia Alimentar , Plantas , Comportamento Predatório , África do Sul
6.
Ecol Appl ; 27(8): 2458-2474, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28873278

RESUMO

Many large European rivers have undergone multiple pressures that have strongly impaired ecosystem functioning at different spatial and temporal scales. Global warming and other environmental changes have favored the success of invasive species, deeply modifying the structure of aquatic communities in large rivers. Some exogenous species could alter trophic interactions within assemblages by increasing the predation risk for potential prey species (top-down effect) and limiting the dynamics of others via resource availability limitation (bottom-up effect). Furthermore, large transboundary rivers are complex aquatic ecosystems that have often been poorly investigated so that data for assessing long-term ecological trends are missing. In this study, we propose an original approach for investigating long-term combined effects of global warming, trophic resource decrease, predation risk, and water quality variations on the trait-based structure of macroinvertebrate and fish assemblages over 26 yr (1985-2011) and 427-km stretch of the river Meuse (France and Belgium). The study of temporal variations in biological, physiological, and ecological traits of macroinvertebrate and fish allowed identifying community trends and distinguishing impacts of environmental perturbations from those induced by biological alterations. We provide evidence, for this large European river, of an increase in water temperature (close to 1°C) and a decrease in phytoplankton biomass (-85%), as well as independent effects of these changes on both invertebrate and fish communities. The reduction of trophic resources in the water column by invasive molluscs has dramatically affected the density of omnivorous fish in favor of invertebrate feeders, while scrapers became the major feeding guild among invertebrates. Macroinvertebrate and fish communities have shifted from large-sized organisms with low fecundity to prolific, small-sized organisms, with early maturity, as a response to increased predation pressure.


Assuntos
Peixes/fisiologia , Invertebrados/fisiologia , Características de História de Vida , Rios , Animais , Bélgica , Biota , Cadeia Alimentar , França
7.
Sci Total Environ ; 950: 175166, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39094639

RESUMO

The influence of ecosystem engineers on habitats and communities is commonly acknowledged in a site-bounded context, i.e. in places directly affected by the presence of the focal species. However, the spatial extent of the effects of such engineering is poorly understood, raising the question as to what impact they have on ecosystems situated beyond the species' direct influence. Beavers Castor spp., iconic ecosystem engineers, are capable of significantly transforming aquatic ecosystems. Their presence boosts biodiversity in adjacent aquatic and riparian habitats, but as a result of cascading processes, beavers may affect terrestrial habitats situated beyond the range of their immediate activity. Our study investigates the breeding bird assemblage along a spatial gradient from the water to the forest interior on central European watercourses modified and unmodified by beavers. The results show that beaver sites are characterized by a higher species richness and abundance of breeding birds than unmodified watercourses. Such sites also host a different species pool, as 27 % of the recorded bird species occurred exclusively on the beaver sites. The effect of the beaver's presence on the bird assemblage extended to adjacent terrestrial habitats located up to 100 m from the water's edge, where the species richness and abundance was higher and the species composition was substantially modified. We also found a positive correlation between the total area of beaver wetland and the numbers of bird species and individuals recorded. Our study adds to the general understanding of the spatial context of the ecosystem engineering concept, as the changes brought about by engineers have an influence beyond the area of their immediate occurrence. Our work also has implications for landscape planning and management, where existing beaver sites with terrestrial buffer zones may constitute a network of biodiversity hotspots.


Assuntos
Biodiversidade , Aves , Ecossistema , Áreas Alagadas , Animais , Conservação dos Recursos Naturais , Monitoramento Ambiental
8.
Front Psychol ; 14: 1239974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022951

RESUMO

Charisma, the captivating attribute that endows an individual with the power to inspire and influence others, is frequently associated with possessing an attractive personality, effective communication skills, and the capacity to draw people in and lead them. The concept of the trickle-down effect in leadership theory suggests that the characteristics of a leader's style including perceptions, emotions, attitudes, and behaviors, have the potential to be "contagious" and spread to their followers. Nevertheless, it is unclear whether and when a leader's charisma may be transferred to followers, as charisma is predominantly a trait associated with the leader. Integrating insights from the social learning, emotional contagion, and self-concept theories, we propose that charisma can cascade downward from the leader to followers and that this effect is contingent on the individual follower's level of self-monitoring. Measuring a sample of 127 followers and 15 leaders in a large organization at two time points, we found that throughout time the leader's charisma indeed cascaded down to followers, i.e., followers of a charismatic leader were perceived as more charismatic throughout time. However, this effect was prominent only for low-monitoring followers. Novel insights into the flow-down effect of charisma, avenues for future research, and practical implications are discussed.

9.
ACS Appl Mater Interfaces ; 15(23): 27658-27669, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37267068

RESUMO

Reprogramming tumor-associated macrophages (TAMs) has emerged as a promising strategy in cancer immunotherapy. Targeted therapeutics integrating multiple functions to fully leverage the antitumor immune functions of macrophages without affecting systemic or tissue-resident macrophages are crucial for TAM reprogramming. Herein, by integrating molecular imprinting and nanotechnology, we rationally designed and engineered an unprecedented nanocoordinator for targeted remolding of TAMs to fully leverage the antitumor efficacy of macrophages by inducing a cascade effect. The nanocoordinator features a magnetic iron oxide nanoinner core and sialic acid-imprinted shell. Intravenously administered into systemic circulation, the nanocoordinator can rapidly accumulate at the tumor site in response to an external magnet. Then, by specifically binding to sialic acid overexpressed on tumor cells, the nanocoordinator anchors at the tumor site with prolonged retention time. Via binding with the nanocoordinator, tumor cells are tagged with a foreign substance, which promotes the intrinsic phagocytosis of macrophages. Subsequently, the nanocoordinator taken up by macrophages effectively promotes the polarization of macrophages toward the M1 phenotype, thus activating the immunotherapeutic efficacy of macrophages. Synergized by the cascade effect, this nanocoordinator effectively harnesses TAMs for macrophage-mediated immunotherapy. This study offers new TAM-targeted therapeutics that allows us to fully leverage the antitumor immune functions of macrophages without affecting the normal tissue.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/metabolismo , Macrófagos , Neoplasias/tratamento farmacológico , Fagocitose , Imunoterapia , Microambiente Tumoral
10.
Environ Pollut ; 335: 122371, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37580005

RESUMO

Sound emissions from human activities represent a pervasive environmental stressor. Individual responses in terms of behaviour, physiology or anatomy are well documented but whether they propagate through nested ecological interactions to alter complex communities needs to be better understood. This is even more relevant for freshwater ecosystems that harbour a disproportionate fraction of biodiversity but receive less attention than marine and terrestrial systems. We conducted a mesocosm investigation to study the effect of chronic exposure to motorboat noise on the dynamics of a freshwater community including phytoplankton, zooplankton, and roach as a planktivorous fish. In addition, we performed a microcosm investigation to test whether roach's feeding behaviour was influenced by the noise condition they experienced in the mesocosms. Indeed, compared to other freshwater fish, the response of roach to motorboat noise apparently does not weaken with repeated exposure, suggesting the absence of habituation. As expected under the trophic cascade hypothesis, predation by roach induced structural changes in the planktonic communities with a decrease in the main grazing zooplankton that slightly benefited green algae. Surprisingly, although the microcosm investigation revealed persistent alterations in the feeding behaviour of the roach exposed to chronic noise, the dynamics of the roach-dominated planktonic communities did not differ between the noisy and noiseless mesocosms. It might be that roach's individual response to noise was not strong enough to cascade or that the biological cues coming from the conspecifics and the many planktonic organisms have diverted each fish's attention from noise. Our work suggests that the top-down structuring influence of roach on planktonic communities might be resilient to noise and highlights how extrapolating impacts from individual responses to complex communities can be tricky.


Assuntos
Cyprinidae , Ecossistema , Animais , Humanos , Cadeia Alimentar , Plâncton , Comportamento Alimentar , Cyprinidae/fisiologia , Zooplâncton , Fitoplâncton
11.
Ecology ; 102(5): e03339, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709414

RESUMO

Cascading effects are ubiquitous in nature and can modify ecological processes. Most plants have mutualistic associations with mycorrhizal fungi, and can be connected to neighboring plants through common mycorrhizal networks (CMNs). However, little is known about how the distribution of nutrients by CMNs to the interconnected plants is affected by higher trophic levels, such as parasitic plants. We hypothesized that parasitism would indirectly drive CMNs to allocate more nutrients to the nonparasitized neighboring plants rather than to the parasitized host plants, and that this would result in a negative-feedback effect on the growth of the parasitic plant. To test this, we conducted a container experiment, where each container housed two in-growth cores that isolated the root system of a single Trifolium pratense seedling. The formation of CMNs was either prevented or permitted using nylon fabric with a mesh width of 0.5 or 25 µm, respectively. In each container, either both T. pratense plants were not parasitized or only one was parasitized by the holoparasite Cuscuta australis. To quantify the nutrient distribution by CMNs to the host and neighboring plants, we used 15 N labeling. Growth and 15 N concentrations of C. australis and T. pratense were measured, as well the arbuscular mycorrhizal fungi-colonization rates of T. pratense. We found that parasitism by C. australis reduced the biomass of T. pratense. In the absence of the parasite, CMNs increased the 15 N concentration of both T. pratense plants, but did not affect their biomass. However, with the parasite, the difference between host and neighboring T. pratense plants in 15 N concentration and biomass were amplified by CMNs. Furthermore, CMNs decreased the negative effect of C. australis on growth of the host T. pratense plants. Finally, although CMNs did not influence the 15 N concentration of C. australis, they reduced its biomass. Our results indicate that when T. pratense was parasitized by C. australis, CMNs preferentially distributed more mineral nutrients to the nonparasitized neighboring T. pratense plant, and that this had a negative feedback on the growth of the parasite.


Assuntos
Micorrizas , Parasitos , Animais , Nutrientes , Raízes de Plantas , Plântula , Simbiose
12.
Environ Sci Pollut Res Int ; 27(14): 17138-17151, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146674

RESUMO

The emission of carbon dioxide (CO2) is a serious environmental issue, especially in Beijing-Tianjin-Hebei region. Unlike previous studies that mainly consider the bilateral and direct connection between two sectors, this study identifies path-based key sectors by considering the cascading effect of a sector on other sectors on paths of the entire economic system. We first construct an embodied CO2 emission flow network of Beijing-Tianjin-Hebei region, combining environmental input-output analysis and complex network theory. Then, the path-based key sectors are identified by traversing the path of each sector in the network based on cascading failure theory and hypothesis extraction method. On the one hand, the results show that a small number of sectors shoulder a large proportion of the embodied CO2 emission flows from both path and sector perspectives. On the other hand, we identify some path-based key sectors that did not receive enough attention from the sector perspective. Additionally, the sum of the embodied CO2 emission flows in about 30 steps accounts for 90% of the total embodied CO2 emission flows on its supply chain path. To more effectively reduce carbon emission, sectors that connect these 30 steps should be concerned in some policy recommendations. The method proposed in this paper can complement existing methods and contribute to further reducing CO2 emissions in the Beijing-Tianjin-Hebei region.


Assuntos
Dióxido de Carbono/análise , Pequim , China
13.
3 Biotech ; 10(8): 360, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832322

RESUMO

Plant-parasitic root-knot nematode Meloidogyne incognita uses an array of effector proteins to establish successful plant infections. Mi-msp-1 and Mi-msp-20 are two known effectors secreted from nematode subventral oesophageal glands; Mi-msp-1 being a putative secretory venom allergen AG5-like protein, whereas Mi-msp-20 is a pioneer gene with a coiled-coil motif. Expression of specific effector is known to cause disturbances in the expression of other effectors. Here, we used RNA-Seq to investigate the pleiotropic effects of silencing Mi-msp-1 and Mi-msp-20. A total of 25.1-51.9 million HQ reads generated from Mi-msp-1 and Mi-msp-20 silenced second-stage juveniles (J2s) along with freshly hatched J2s were mapped to an already annotated M. incognita proteome to understand the impact on various nematode pathways. As compared to control, silencing of Mi-msp-1 caused differential expression of 29 transcripts, while Mi-msp-20 silencing resulted in differential expression of a broader set of 409 transcripts. In the Mi-msp-1 silenced J2s, cytoplasm (GO:0005737) was the most enriched gene ontology (GO) term, whereas in the Mi-msp-20 silenced worms, embryo development (GO:0009792), reproduction (GO:0000003) and nematode larval development (GO:0002119) were the most enriched terms. Limited crosstalk was observed between these two effectors as a sheer 5.9% of the up-regulated transcripts were common between Mi-msp-1 and Mi-msp-20 silenced nematodes. Our results suggest that in addition to the direct knock-down caused by silencing of Mi-msp-1 and Mi-msp-20, the cascading effect on other genes might also be contributing to a reduction in nematode's parasitic abilities.

14.
Sci Total Environ ; 747: 142084, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33076212

RESUMO

Forest habitats change significantly under the influence of global warming. It is important to predict the effects of these changes, especially in primeval forests which currently represent a small percentage of temperate forests. Such changes often manifest themselves in an acceleration of the frequency of mass seeding of trees, which causes cascading effects in various organisms. We evaluated changes in: tree masts (oak Quercus robur and hornbeam Carpinus betulus), rodent abundance (yellow-necked mouse Apodemus flavicollis), folivorous caterpillar abundance (winter moth Operophtera brumata), and the breeding success of a cavity-nesting songbird (collared flycatcher Ficedula albicollis) in over a 30-year period in the Bialowieza Forest (E Poland). We also analysed temperature, precipitation and snow cover to determine the effects of weather on each trophic level. Previous studies have exposed the indirect effect of tree masting on songbirds breeding in open nests. Our study uniquely highlights the relationships between trees, rodents, caterpillars, and a cavity-nesting bird. Precipitation was positively correlated with the fructification of trees, abundance of caterpillars, and the breeding losses of flycatchers (in July, August, October in the previous year, in May in the current year, respectively). We found that along with the changing climate, the frequency of mast years of oak increased, which caused an increasing frequency of rodent outbreaks. The abundance of mice was positively correlated with the predation on flycatcher broods (current year) and negatively - with the abundance of caterpillars (following year). We predict that current global trends in climate change will have a negative impact on the flycatcher due to the cascading effects from the above species. Bearing in mind that F. albicollis is one of the most numerous bird species, it can be assumed that more frequent masting will result in substantial changes in the entire bird assemblage, and presumably also other groups of animals.


Assuntos
Aves Canoras , Árvores , Animais , Cruzamento , Mudança Climática , Florestas , Camundongos , Polônia
15.
ACS Appl Mater Interfaces ; 11(27): 23822-23831, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31250627

RESUMO

Design of nanoparticles (NPs) for biomedical applications requires a thorough understanding of cascades of nano-bio interactions at different interfaces. Here, we take into account the cascading effect of NP functionalization on interactions with target cell membranes by determining coatings of biomolecules in biological media. Cell culture experiments show that NPs with more hydrophobic surfaces are heavily ingested by cells in both the A549 and HEK293 cell lines. However, before reaching the target cell, both the identity and amount of recruited biomolecules can be influenced by the pristine NPs' hydrophobicity. Dissipative particle dynamics (DPD) simulations show that hydrophobic NPs acquire coatings of more biomolecules, which may conceal the properties of the as-engineered NPs and impact the targeting specificity. Based on these results, we propose an amphiphilic ligand coating on NPs. DPD simulations reveal the design principle, following which the amphiphilic ligands first curl in solvent to reduce the surface hydrophobicity, thus suppressing the assemblage of biomolecules. Upon attaching to the membrane, the curled ligands extend and rearrange to gain contacts with lipid tails, thus dragging NPs into the membrane for translocation. Three NP-membrane interaction states are identified that are found to depend on the NP size and membrane surface tension. These results can provide useful guidelines to fabricate ligand-coated NPs for practical use in targeted drug delivery, and motivate further studies of nano-bio-interactions with more consideration of cascading effects.


Assuntos
Membrana Celular/metabolismo , Materiais Revestidos Biocompatíveis , Nanopartículas/química , Células A549 , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes
16.
ACS Appl Mater Interfaces ; 11(30): 27464-27469, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31268656

RESUMO

Harvesting water from high humidity conditions is an attractive strategy toward strengthening water security due to its cost-effective and zero-energy mechanism. To facilitate this process, bio-inspired microstructures with heightened water accumulating ability are typically affixed onto atmospheric water harvesters. However, because of this surface morphology type harvester design, there is an inherent partition of regions with different water accumulating abilities: the active water harvesting region (AWHR) and passive water harvesting region (PWHR). Most of the water harvested by such water harvesters is usually attributed to the AWHR, while a large amount of uncollected water is present in the PWHR as numerous small water droplets that are prone to re-evaporation. This lack of PWHR utilization may be considered as the Achilles' heel toward optimal water harvesting. Hence, in this work, a cascading effect was proposed with a microstructure design to induce water harvesting from both AWHR and PWHR. The "clearing" of PWHR columns was demonstrated via a cascading effect, contributing to ca. 3 times more water harvested as compared to the unmodified water harvester. The successful demonstration of this cascading effect highlights the necessity of considering PWHR in the future water harvester designs so as to achieve efficient water harvesting.

17.
Acta sci., Biol. sci ; 36(2): 155-163, abr.- jun. 2014. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-849052

RESUMO

The aim of the current study was to assess the variability in heterotrophic nanoflagellate abundance attributable to variables responsible for the influence of bottom-up and top-down control mechanisms in the plankton food web along a trophic gradient in subtropical reservoirs (Paraná State, Brazil). In particular, we hypothesised that food resources were the main determinant for the abundance of heterotrophic nanoflagellates (HNF) along a trophic gradient. Results showed that HNF communities were weakly influenced by the bottom-up mechanism. Moreover, there was evidence of a slight influence from a top-down control mechanism on this community. Therefore, the results of the present study did not corroborate the hypothesis initially proposed, and further studies are needed to elucidate the complex outcomes of trophic gradients on planktonic HNF communities, including other predictor variables related to abiotic interactions, such as morphometrics, hydrology, priorities uses and climate conditions.


O objetivo do presente estudo foi investigar a variabilidade da abundância de nanoflagelados heterotróficos (NFH) planctônicos atribuída a variáveis responsáveis pela influencia dos mecanismos de controle bottom-up e top-down na cadeia alimentar planctônica ao longo de um gradiente trófico em reservatórios subtropicais (Estado do Paraná, Brasil). Nós avaliamos a hipótese de que a abundância de NFH aumenta ao longo de um gradiente trófico principalmente devido ao efeito bottom-up. Os resultados mostraram importantes relações presa-predador entre NFH e bactéria e fioplâncton. Entretanto, a ausência de um padrão claro de aumento da abundância de NFH em direção aos reservatórios eutróficos sugere que o controle bottom-up não foi relacionado ao gradiente trófico. Além disso, apesar de significante, um fraco efeito bottom-up e um sinal do mecanismo de controle top-down sugerem que o recurso alimentar não foi o principal fator regulador da dinâmica de NFH nos reservatórios estudados. Assim, os resultados do presente estudo não corroboraram a hipótese inicialmente proposta e futuros estudos são necessários para elucidar a complexidade da influencia de gradientes tróficos em NFH, incluindo outras variáveis preditoras relacionadas às interações abióticas como morfometria, hidrologia, prioridade de uso e condições climáticas.


Assuntos
Ecossistema , Alimentos , Água Doce , Plâncton
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa