Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 988
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2221641120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276394

RESUMO

Both the cerebellum and basal ganglia are involved in rhythm processing, but their specific roles remain unclear. During rhythm perception, these areas may be processing purely sensory information, or they may be involved in motor preparation, as periodic stimuli often induce synchronized movements. Previous studies have shown that neurons in the cerebellar dentate nucleus and the caudate nucleus exhibit periodic activity when the animals prepare to respond to the random omission of regularly repeated visual stimuli. To detect stimulus omission, the animals need to learn the stimulus tempo and predict the timing of the next stimulus. The present study demonstrates that neuronal activity in the cerebellum is modulated by the location of the repeated stimulus and that in the striatum (STR) by the direction of planned movement. However, in both brain regions, neuronal activity during movement and the effect of electrical stimulation immediately before stimulus omission were largely dependent on the direction of movement. These results suggest that, during rhythm processing, the cerebellum is involved in multiple stages from sensory prediction to motor control, while the STR consistently plays a role in motor preparation. Thus, internalized rhythms without movement are maintained as periodic neuronal activity, with the cerebellum and STR preferring sensory and motor representations, respectively.


Assuntos
Gânglios da Base , Cerebelo , Animais , Cerebelo/fisiologia , Gânglios da Base/fisiologia , Núcleos Cerebelares/fisiologia , Corpo Estriado/fisiologia , Núcleo Caudado , Movimento/fisiologia
2.
Annu Rev Psychol ; 75: 1-32, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788571

RESUMO

Motivational processes are complex and multifaceted, with both directional and activational aspects. Behavioral activation and exertion of effort are functions that enable organisms to overcome obstacles separating them from significant outcomes. In a complex environment, organisms make cost/benefit decisions, assessing work-related response costs and reinforcer preference. Animal studies have challenged the general idea that dopamine (DA) is best viewed as the reward transmitter and instead have illustrated the involvement of DA in activational and effort-related processes. Mesocorticolimbic DA is a key component of the effort-related motivational circuitry that includes multiple neurotransmitters and brain areas. Human studies have identified brain areas and transmitter systems involved in effort-based decision making and characterized the reduced selection of high-effort activities associated with motivational symptoms of depression and schizophrenia. Animal and human research on the neurochemistry of behavioral activation and effort-related processes makes an important conceptual contribution by illustrating the dissociable nature of distinct aspects of motivation.


Assuntos
Dopamina , Esforço Físico , Animais , Humanos , Motivação , Recompensa , Tomada de Decisões/fisiologia
3.
J Neurochem ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783749

RESUMO

The dorsal striatum is composed of the caudate nucleus and the putamen in human and non-human primates. These two regions receive different cortical projections and are functionally distinct. The caudate is involved in the control of goal-directed behaviors, while the putamen is implicated in habit learning and formation. Previous reports indicate that ethanol differentially influences neurotransmission in these two regions. Because neurotransmitters primarily signal through G protein-coupled receptors (GPCRs) to modulate neuronal activity, the present study aimed to determine whether ethanol had a region-dependent impact on the expression of proteins that are involved in the trafficking and function of GPCRs, including G protein subunits and their effectors, protein kinases, and elements of the cytoskeleton. Western blotting was performed to examine protein levels in the caudate and the putamen of male cynomolgus macaques that self-administered ethanol for 1 year under free access conditions, along with control animals that self-administered an isocaloric sweetened solution under identical operant conditions. Among the 18 proteins studied, we found that the levels of one protein (PKCß) were increased, and 13 proteins (Gαi1/3, Gαi2, Gαo, Gß1γ, PKCα, PKCε, CaMKII, GSK3ß, ß-actin, cofilin, α-tubulin, and tubulin polymerization promoting protein) were reduced in the caudate of alcohol-drinking macaques. However, ethanol did not alter the expression of any proteins examined in the putamen. These observations underscore the unique vulnerability of the caudate nucleus to changes in protein expression induced by chronic ethanol exposure. Whether these alterations are associated with ethanol-induced dysregulation of GPCR function and neurotransmission warrants future investigation.

4.
Hippocampus ; 34(7): 310-326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38721743

RESUMO

Classic research has shown a division in the neuroanatomical structures that support flexible (e.g., short-cutting) and habitual (e.g., familiar route following) navigational behavior, with hippocampal-caudate systems associated with the former and putamen systems with the latter. There is, however, disagreement about whether the neural structures involved in navigation process particular forms of spatial information, such as associations between constellations of cues forming a cognitive map, versus single landmark-action associations, or alternatively, perform particular reinforcement learning algorithms that allow the use of different spatial strategies, so-called model-based (flexible) or model-free (habitual) forms of learning. We sought to test these theories by asking participants (N = 24) to navigate within a virtual environment through a previously learned, 9-junction route with distinctive landmarks at each junction while undergoing functional magnetic resonance imaging (fMRI). In a series of probe trials, we distinguished knowledge of individual landmark-action associations along the route versus knowledge of the correct sequence of landmark-action associations, either by having absent landmarks, or "out-of-sequence" landmarks. Under a map-based perspective, sequence knowledge would not require hippocampal systems, because there are no constellations of cues available for cognitive map formation. Within a learning-based model, however, responding based on knowledge of sequence would require hippocampal systems because prior context has to be utilized. We found that hippocampal-caudate systems were more active in probes requiring sequence knowledge, supporting the learning-based model. However, we also found greater putamen activation in probes where navigation based purely on sequence memory could be planned, supporting models of putamen function that emphasize its role in action sequencing.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Navegação Espacial , Humanos , Navegação Espacial/fisiologia , Hipocampo/fisiologia , Hipocampo/diagnóstico por imagem , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto Jovem , Adulto , Corpo Estriado/fisiologia , Corpo Estriado/diagnóstico por imagem , Mapeamento Encefálico/métodos , Realidade Virtual , Sinais (Psicologia)
5.
Eur J Neurosci ; 59(7): 1407-1427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123503

RESUMO

DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.


Assuntos
Distonia Muscular Deformante , Distonia , Camundongos , Animais , Dopamina/análise , Distonia/genética , Distonia Muscular Deformante/genética , Corpo Estriado/química , Sinapses/ultraestrutura
6.
Eur J Neurosci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161062

RESUMO

For over four decades, fast-scan cyclic voltammetry (FSCV) has been used to selectively measure neurotransmitters such as dopamine (DA) with high spatial and temporal resolution, providing detailed information about the regulation of DA in the extracellular space. FSCV is an optimal method for determining concentrations of stimulus-evoked DA in brain tissue. When modelling diseases involving disturbances in DA transmission, preclinical rodent models are especially useful because of the availability of specialized tools and techniques that serve as a foundation for translational research. There is known heterogeneity in DA dynamics between and within DA-innervated brain structures and between males and females. However, systematic evaluations of sex- and species-differences across multiple areas are lacking. Therefore, using FSCV, we captured a broad range of DA dynamics across five sub-regions of the dorsal and ventral striatum of males and females of both rats and mice that reflect the functional heterogeneity of DA kinetics and dynamics within these structures. While numerous differences were found, in particular, we documented a strong, consistent pattern of increased DA transporter activity in females in all of the regions surveyed. The data herein are intended to be used as a resource for further investigation of DA terminal function.

7.
Hum Brain Mapp ; 45(10): e26780, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38984446

RESUMO

Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.


Assuntos
Dor Crônica , Imageamento por Ressonância Magnética , Descanso , Humanos , Masculino , Feminino , Dor Crônica/fisiopatologia , Dor Crônica/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Dor Musculoesquelética/fisiopatologia , Dor Musculoesquelética/diagnóstico por imagem , Resiliência Psicológica , Estudos Prospectivos , Biomarcadores , Estudos Longitudinais , Seguimentos
8.
BMC Med ; 22(1): 140, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528552

RESUMO

BACKGROUND: It is well-established that parental obesity is a strong risk factor for offspring obesity. Further, a converging body of evidence now suggests that maternal weight profiles may affect the developing offspring's brain in a manner that confers future obesity risk. Here, we investigated how pre-pregnancy maternal weight status influences the reward-related striatal areas of the offspring's brain during in utero development. METHODS: We used diffusion tensor imaging to quantify the microstructure of the striatal brain regions of interest in neonates (N = 116 [66 males, 50 females], mean gestational weeks at birth [39.88], SD = 1.14; at scan [43.56], SD = 1.05). Linear regression was used to test the associations between maternal pre-pregnancy body mass index (BMI) and infant striatal mean diffusivity. RESULTS: High maternal pre-pregnancy BMI was associated with higher mean MD values in the infant's left caudate nucleus. Results remained unchanged after the adjustment for covariates. CONCLUSIONS: In utero exposure to maternal adiposity might have a growth-impairing impact on the mean diffusivity of the infant's left caudate nucleus. Considering the involvement of the caudate nucleus in regulating eating behavior and food-related reward processing later in life, this finding calls for further investigations to define the prognostic relevance of early-life caudate nucleus development and weight trajectories of the offspring.


Assuntos
Imagem de Tensor de Difusão , Obesidade , Masculino , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Índice de Massa Corporal , Obesidade/complicações , Fatores de Risco , Mães
9.
Ann Surg Oncol ; 31(5): 3098-3099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353797

RESUMO

BACKGROUND: Minimally invasive caudate lobectomy, or even paracaval caudate resection, can be associated with significant bleeding due to its abutment of inferior vena cava (IVC), portal pedicle and hepatic veins.1-3 This risk can be magnified by cirrhosis as well as response to neoadjuvant therapy (a common phenomenon after excellent response to neoadjuvant chemotherapy), leading to obliteration or even fusion of the hepato-caval space.4-7 PATIENT: A 68-year-old female with stage IVa colorectal adenocarcinoma was found to have a single liver metastasis (3.8 × 3.1 cm) in the paracaval caudate lobe. The patient received four cycles of neoadjuvant chemotherapy, leading to inflammatory fusion of the hepato-caval space. Despite this, the patient underwent a safe laparoscopic Spiegel process resection. TECHNIQUE: Prior to surgery, three-dimensional liver and port site modeling was performed to optimize the understanding of the spatial relationship between the tumor, IVC, and portal-hepatic veins. Following inflow control of portal veinous branches, the fused hepato-caval space was dissected. The adhesions were then sharply dissected to mobilize the paracaval caudate lobe off the IVC. Using scissors rather than an energy device reduced the risk of inadvertent thermal injury to the IVC. CONCLUSION: Preoperative virtual hepatectomy facilitates surgical planning, increasing the understanding of the tumor/vessel relationship and port placement. In case of a fused hepato-caval space, low central venous pressure and judicious management of short hepatic vein branches are the key for a successful dissection. Moreover, anticipation of a fused hepato-caval space and its strategic management are paramount when performing a minimally invasive caudate resection.


Assuntos
Laparoscopia , Neoplasias Hepáticas , Feminino , Humanos , Idoso , Veia Cava Inferior/cirurgia , Neoplasias Hepáticas/secundário , Hepatectomia/métodos , Laparoscopia/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38730083

RESUMO

PURPOSE: Brain functional and physiological plasticity is essential to combat dynamic environmental challenges. The rhythmic dopamine signaling pathway, which regulates emotion, reward and learning, shows seasonal patterns with higher capacity of dopamine synthesis and lower number of dopamine transporters during dark seasons. However, seasonal variation of the dopamine receptor signaling remains to be characterized. METHODS: Based on a historical database of healthy human brain [11C]raclopride PET scans (n = 291, 224 males and 67 females), we investigated the seasonal patterns of D2/3 dopamine receptor signaling. Daylength at the time of scanning was used as a predictor for brain regional non-displaceable binding of the radiotracer, while controlling for age and sex. RESULTS: Daylength was negatively correlated with availability of D2/3 dopamine receptors in the striatum. The largest effect was found in the left caudate, and based on the primary sample, every 4.26 h (i.e., one standard deviation) increase of daylength was associated with a mean 2.8% drop (95% CI -0.042 to -0.014) of the receptor availability. CONCLUSIONS: Seasonally varying D2/3 receptor signaling may also underlie the seasonality of mood, feeding, and motivational processes. Our finding suggests that in future studies of brain dopamine signaling, especially in high-latitude regions, the effect of seasonality should be considered.

11.
Mov Disord ; 39(5): 855-862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38465778

RESUMO

BACKGROUND: Intrastriatal delivery of potential therapeutics in Huntington's disease (HD) requires sufficient caudate and putamen volumes. Currently, volumetric magnetic resonance imaging is rarely done in clinical practice, and these data are not available in large research cohorts such as Enroll-HD. OBJECTIVE: The objective of this study was to investigate whether predictive models can accurately classify HD patients who exceed caudate and putamen volume thresholds required for intrastriatal therapeutic interventions. METHODS: We obtained and merged data for 1374 individuals across three HD cohorts: IMAGE-HD, PREDICT-HD, and TRACK-HD/TRACK-ON. We imputed missing data for clinical variables with >72% non-missing values and used the model-building algorithm BORUTA to identify the 10 most important variables. A random forest algorithm was applied to build a predictive model for putamen volume >2500 mm3 and caudate volume >2000 mm3 bilaterally. Using the same 10 predictors, we constructed a logistic regression model with predictors significant at P < 0.05. RESULTS: The random forest model with 1000 trees and minimal terminal node size of 5 resulted in 83% area under the curve (AUC). The logistic regression model retaining age, CAG repeat size, and symbol digit modalities test-correct had 85.1% AUC. A probability cutoff of 0.8 resulted in 5.4% false positive and 66.7% false negative rates. CONCLUSIONS: Using easily obtainable clinical data and machine learning-identified initial predictor variables, random forest, and logistic regression models can successfully identify people with sufficient striatal volumes for inclusion cutoffs. Adopting these models in prescreening could accelerate clinical trial enrollment in HD and other neurodegenerative disorders when volume cutoffs are necessary enrollment criteria. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Núcleo Caudado , Doença de Huntington , Imageamento por Ressonância Magnética , Putamen , Humanos , Doença de Huntington/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Adulto , Putamen/diagnóstico por imagem , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/patologia , Idoso , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/patologia , Estudos de Coortes
12.
Psychol Med ; : 1-13, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777630

RESUMO

Major depressive disorder (MDD) is characterized by deficient reward functions in the brain. However, existing findings on functional alterations during reward anticipation, reward processing, and learning among MDD patients are inconsistent, and it was unclear whether a common reward system implicated in multiple reward functions is altered in MDD. Here we meta-analyzed 18 past studies that compared brain reward functions between adult MDD patients (N = 477, mean age = 26.50 years, female = 59.40%) and healthy controls (N = 506, mean age = 28.11 years, females = 55.58%), and particularly examined group differences across multiple reward functions. Jack-knife sensitivity and subgroup meta-analyses were conducted to test robustness of findings across patient comorbidity, task paradigm, and reward nature. Meta-regression analyses assessed the moderating effect of patient symptom severity and anhedonia scores. We found during reward anticipation, MDD patients showed lower activities in the lateral prefrontal-thalamus circuitry. During reward processing, patients displayed reduced activities in the right striatum and prefrontal cortex, but increased activities in the left temporal cortex. During reward learning, patients showed reduced activity in the lateral prefrontal-thalamic-striatal circuitry and the right parahippocampal-occipital circuitry but higher activities in bilateral cerebellum and the left visual cortex. MDD patients showed decreased activity in the right thalamus during both reward anticipation and learning, and in the right caudate during both reward processing and learning. Larger functional changes in MDD were observed among patients with more severe symptoms and higher anhedonia levels. The thalamic-striatal circuitry functional alterations could be the key neural mechanism underlying MDD patients overarching reward function deficiencies.

13.
Psychol Med ; : 1-10, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497102

RESUMO

BACKGROUND: Anorexia nervosa (AN) is a serious psychiatric illness that remains difficult to treat. Elucidating the neural mechanisms of AN is necessary to identify novel treatment targets and improve outcomes. A growing body of literature points to a role for dorsal fronto-striatal circuitry in the pathophysiology of AN, with increasing evidence of abnormal task-based fMRI activation within this network among patients with AN. Whether these abnormalities are present at rest and reflect fundamental differences in brain organization is unclear. METHODS: The current study combined resting-state fMRI data from patients with AN (n = 89) and healthy controls (HC; n = 92) across four studies, removing site effects using ComBat harmonization. First, the a priori hypothesis that dorsal fronto-striatal connectivity strength - specifically between the anterior caudate and dlPFC - differed between patients and HC was tested using seed-based functional connectivity analysis with small-volume correction. To assess specificity of effects, exploratory analyses examined anterior caudate whole-brain connectivity, amplitude of low-frequency fluctuations (ALFF), and node centrality. RESULTS: Compared to HC, patients showed significantly reduced right, but not left, anterior caudate-dlPFC connectivity (p = 0.002) in small-volume corrected analyses. Whole-brain analyses also identified reduced connectivity between the right anterior caudate and left superior frontal and middle frontal gyri (p = 0.028) and increased connectivity between the right anterior caudate and right occipital cortex (p = 0.038). No group differences were found in analyses of anterior caudate ALFF and node centrality. CONCLUSIONS: Decreased coupling of dorsal fronto-striatal regions indicates that circuit-based abnormalities persist at rest and suggests this network may be a potential treatment target.

14.
Brain Behav Immun ; 119: 693-708, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677626

RESUMO

Newborns exposed to birth asphyxia transiently experience deficient blood flow and a lack of oxygen, potentially inducing hypoxic-ischaemic encephalopathy and subsequent neurological damage. Immunomodulatory components in plasma may dampen these responses. Using caesarean-delivered pigs as a model, we hypothesized that dietary plasma supplementation improves brain outcomes in pigs exposed to birth asphyxia. Mild birth asphyxia was induced by temporary occlusion of the umbilical cord prior to caesarean delivery. Motor development was assessed in asphyxiated (ASP) and control (CON) piglets using neonatal arousal, physical activity and gait test parameters before euthanasia on Day 4. The ASP pigs exhibited increased plasma lactate at birth, deficient motor skills and increased glial fibrillary acidic protein levels in CSF and astrogliosis in the putamen. The expression of genes related to oxidative stress, inflammation and synaptic functions was transiently altered in the motor cortex and caudate nucleus. The number of apoptotic cells among CTIP2-positive neurons in the motor cortex and striatal medium spiny neurons was increased, and maturation of preoligodendrocytes in the internal capsule was delayed. Plasma supplementation improved gait performance in the beam test, attenuated neuronal apoptosis and affected gene expression related to neuroinflammation, neurotransmission and antioxidants (motor cortex, caudate). We present a new clinically relevant animal model of moderate birth asphyxia inducing structural and functional brain damage. The components in plasma that support brain repair remain to be identified but may represent a therapeutic potential for infants and animals after birth asphyxia.


Assuntos
Animais Recém-Nascidos , Asfixia Neonatal , Encéfalo , Modelos Animais de Doenças , Animais , Suínos , Asfixia Neonatal/terapia , Encéfalo/metabolismo , Feminino , Estresse Oxidativo/fisiologia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , Neurônios/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Asfixia/terapia , Gravidez , Córtex Motor/metabolismo
15.
Behav Brain Funct ; 20(1): 13, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789988

RESUMO

BACKGROUND: Macular degeneration of the eye is a common cause of blindness and affects 8% of the worldwide human population. In adult cats with bilateral lesions of the central retina, we explored the possibility that motion perception training can limit the associated degradation of the visual system. We evaluated how visual training affects behavioral performance and white matter structure. Recently, we proposed (Kozak et al. in Transl Vis Sci Technol 10:9, 2021) a new motion-acuity test for low vision patients, enabling full visual field functional assessment through simultaneous perception of shape and motion. Here, we integrated this test as the last step of a 10-week motion-perception training. RESULTS: Cats were divided into three groups: retinal-lesioned only and two trained groups, retinal-lesioned trained and control trained. The behavioral data revealed that trained cats with retinal lesions were superior in motion tasks, even when the difficulty relied only on acuity. 7 T-MRI scanning was done before and after lesioning at 5 different timepoints, followed by Fixel-Based and Fractional Anisotropy Analysis. In cats with retinal lesions, training resulted in a more localized and reduced percentage decrease in Fixel-Based Analysis metrics in the dLGN, caudate nucleus and hippocampus compared to untrained cats. In motion-sensitive area V5/PMLS, the significant decreases in fiber density were equally strong in retinal-lesioned untrained and trained cats, up to 40% in both groups. The only cortical area with Fractional Anisotropy values not affected by central retinal loss was area V5/PMLS. In other visual ROIs, the Fractional Anisotropy values increased over time in the untrained retinal lesioned group, whereas they decreased in the retinal lesioned trained group and remained at a similar level as in trained controls. CONCLUSIONS: Overall, our MRI results showed a stabilizing effect of motion training applied soon after central retinal loss induction on white matter structure. We propose that introducing early motion-acuity training for low vision patients, aimed at the intact and active retinal peripheries, may facilitate brain plasticity processes toward better vision.


Assuntos
Imageamento por Ressonância Magnética , Percepção de Movimento , Substância Branca , Animais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Gatos , Imageamento por Ressonância Magnética/métodos , Percepção de Movimento/fisiologia , Retina/diagnóstico por imagem , Retina/fisiopatologia , Masculino , Feminino
16.
Toxicol Pathol ; : 1926233241268849, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149788

RESUMO

Degenerative lesions specific to the basal nuclei have not been described as a background finding in Beagle dogs. This report comprises a documentation of seven cases. In the context of a nonclinical safety studies, the authors suggest documenting the lesion descriptively as degeneration neuropil, basal nuclei, bilateral as it is characterized by (1) vacuolation, neuropil; (2) gliosis (astro- and/or microgliosis); and (3) demyelination. This novel lesion is considered a potential new background change for several reasons: (1) It occurred in animals from test item-treated and also vehicle-treated groups; (2) no dose dependency was observed; (3) in one of six affected test item-treated dogs, the given compound was shown not to penetrate the blood-brain barrier; and (4) statistical comparison between the proportions of affected dogs in the treatment and control groups did not yield a statistically significant difference. The etiology remains unknown and is subject to further investigations.

17.
BMC Infect Dis ; 24(1): 708, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030483

RESUMO

BACKGROUND: K. pneumoniae liver abscess (KPLA) mostly involves the right lobe. We present a case of K. pneumoniae caudate liver abscess with invasive liver abscess syndrome (ILAS) was rarely identified. CASE PRESENTATION: A 53-year-old man with elevated glycated hemoglobin with chills, rigors and a fever of five days. The patient presented with tachycardia and fever. Physical examination revealed tenderness over the right abdomen was elicited. In particular, the inflammatory markers were markedly elevated, and computerized tomography (CT) showed pulmonary abscess, pulmonary embolism and caudate liver abscess. The patient's sequential organ failure assessment (SOFA) score was 10 points. Klebsiella pneumoniae was isolated from sputum, urine and blood. With the suspicion of liver abscesses, ILAS and sepsis. The patient was successfully treated with antibiotics. He returned to close to his premorbid function. CONCLUSION: K. pneumoniae caudate liver abscess was rare. This is the first detailed report of K. pneumoniae caudate liver abscess with invasive liver abscess syndrome. Patients with cryptogenic K. pneumoniae liver abscess are advised to undergo an examination of intestinal barrier function. The study indicates that in patients with K. pneumoniae liver abscess, a caudate liver abscess size of ≤ 9.86 cm² may be characteristic of those suitable for conservative treatment of invasive liver abscess syndrome.


Assuntos
Antibacterianos , Infecções por Klebsiella , Klebsiella pneumoniae , Abscesso Hepático , Humanos , Masculino , Klebsiella pneumoniae/isolamento & purificação , Pessoa de Meia-Idade , Infecções por Klebsiella/diagnóstico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/complicações , Abscesso Hepático/microbiologia , Abscesso Hepático/diagnóstico por imagem , Abscesso Hepático/tratamento farmacológico , Antibacterianos/uso terapêutico , Tomografia Computadorizada por Raios X
18.
Brain ; 146(8): 3319-3330, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795496

RESUMO

Structural grey and white matter changes precede the manifestation of clinical signs of Huntington's disease by many years. Conversion to clinically manifest disease therefore likely reflects not merely atrophy but a more widespread breakdown of brain function. Here, we investigated the structure-function relationship close to and after clinical onset, in important regional brain hubs, particularly caudate nucleus and putamen, which are central to maintaining normal motor behaviour. In two independent cohorts of patients with premanifest Huntington's disease close to onset and very early manifest Huntington's disease (total n = 84; n = 88 matched controls), we used structural and resting state functional MRI. We show that measures of functional activity and local synchronicity within cortical and subcortical regions remain normal in the premanifest Huntington's disease phase despite clear evidence of brain atrophy. In manifest Huntington's disease, homeostasis of synchronicity was disrupted in subcortical hub regions such as caudate nucleus and putamen, but also in cortical hub regions, for instance the parietal lobe. Cross-modal spatial correlations of functional MRI data with receptor/neurotransmitter distribution maps showed that Huntington's disease-specific alterations co-localize with dopamine receptors D1 and D2, as well as dopamine and serotonin transporters. Caudate nucleus synchronicity significantly improved models predicting the severity of the motor phenotype or predicting the classification into premanifest Huntington's disease or motor manifest Huntington's disease. Our data suggest that the functional integrity of the dopamine receptor-rich caudate nucleus is key to maintaining network function. The loss of caudate nucleus functional integrity affects network function to a degree that causes a clinical phenotype. These insights into what happens in Huntington's disease could serve as a model for what might be a more general relationship between brain structure and function in neurodegenerative diseases in which other brain regions are vulnerable.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/metabolismo , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Dopamina , Encéfalo/patologia , Atrofia/patologia , Imageamento por Ressonância Magnética , Fenótipo
19.
Biol Cybern ; 118(1-2): 127-143, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644417

RESUMO

The cognitive impairment will gradually appear over time in Parkinson's patients, which is closely related to the basal ganglia-cortex network. This network contains two parallel circuits mediated by putamen and caudate nucleus, respectively. Based on the biophysical mean-field model, we construct a dynamic computational model of the parallel circuit in the basal ganglia-cortex network associated with Parkinson's disease dementia. The simulated results show that the decrease of power ratio in the prefrontal cortex is mainly caused by dopamine depletion in the caudate nucleus and is less related to that in the putamen, which indicates Parkinson's disease dementia may be caused by a lesion of the caudate nucleus rather than putamen. Furthermore, the underlying dynamic mechanism behind the decrease of power ratio is investigated by bifurcation analysis, which demonstrates that the decrease of power ratio is due to the change of brain discharge pattern from the limit cycle mode to the point attractor mode. More importantly, the spatiotemporal course of dopamine depletion in Parkinson's disease patients is well simulated, which states that with the loss of dopaminergic neurons projecting to the striatum, motor dysfunction of Parkinson's disease is first observed, whereas cognitive impairment occurs after a period of onset of motor dysfunction. These results are helpful to understand the pathogenesis of cognitive impairment and provide insights into the treatment of Parkinson's disease dementia.


Assuntos
Gânglios da Base , Demência , Modelos Neurológicos , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Gânglios da Base/fisiopatologia , Demência/fisiopatologia , Demência/patologia , Simulação por Computador , Vias Neurais/fisiopatologia , Córtex Cerebral/fisiopatologia , Dopamina/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-39073446

RESUMO

Increasing evidence implicates compromised myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal networks in schizophrenia. We previously reported a deficiency of myelinating oligodendrocytes (OL), oligodendrocyte progenitors (OP) and satellite oligodendrocytes of neurons (Sat-OL) in the prefrontal cortex and the inferior parietal cortex - cortical hubs of the frontoparietal cognitive network and default mode network (DMN) altered in schizophrenia. Deficiency of OL and OP was also detected in the head of the caudate nucleus (HCN), which accumulates cortical projections from the associative cortex and is the central node of these networks. However, the number of Sat-Ol per neuron in schizophrenia has not been studied in the HCN. In the current study we estimated the number of Sat-Ol per neuron in the rostral part of the HCN in schizophrenia (n = 18) compared to healthy controls (n = 18) in the same section collection that was previously used to study the number Ol and OP. We found a significant decrease of the number of Sat-Ol per neuron (- 50%, p < 0.001) in schizophrenia as compared to normal controls. Considering that the rostral part of the HCN is an individual network-specific projection zone of the DMN, the deficit of Sat-Ol found in schizophrenia may be related to the dysfunctional DMN-HCN connections, which has been repeatedly described in schizophrenia. The dramatic decrease of the number of Sat-Ol per neuron may be partially related to a pronounced excess of dopamine concentration in the rostral part of the HCN in schizophrenia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa