Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 25(9): 1106-1115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264021

RESUMO

This study focused to enhance the cadmium (Cd) phytoextraction efficiency in Solanum nigrum by applying four biodegradable chelants (10 mM)-ethylene glycol tetraacetic acid (EGTA), ethylenediamine disuccinate (EDDS), nitrilotriacetic acid (NTA), and citric acid (CA), when grown in Cd-spiked soil (12 and 48 mg kg-1). Plant height, dry biomass, photosynthetic traits, and metal accumulation varied significantly with Cd and chelant treatments. Cadmium-toxicity resulted in reduction of plant growth and photosynthetic physiology, whereas chelant supplementation alleviated the toxic effect of Cd and increased its accumulation. Tolerance index value increased with addition of chelants in the order: EGTA (1.57-1.63) >EDDS (1.39-1.58) >NTA (1.14-1.50) >CA (1-1.22) compared with Cd (0.46-1.08). Transfer coefficient of root increased with supplementation of EGTA (3.40-3.85), EDDS (3.10-3.40), NTA (2.60-2.90), and CA (1.85-2.29), over Cd-alone (1.61-1.63). Similarly, translocation factor was also increased upon addition of EGTA (0.52-0.73), EDDS (0.35-0.81), NTA (0.38-0.75), and CA (0.53-0.54), compared with Cd-alone (0.36-0.59). Maximum Cd removal (67.67% at Cd12 and 36.05% at Cd48) was observed with supplementation of EGTA. The study concludes that the supplementation of EGTA and EDDS with S. nigrum can be employed as an efficient and environmentally safe technique for reclamation of Cd-contaminated soils.


Apart from the selection of a good hyperaccumulator, the choice of chelant (biodegradable/non-biodegradable) is an important aspect for the successful phytoextraction of metals from contaminated soil. We reported for the first time the potential of ethylene glycol tetraacetic acid (EGTA; a biodegradable chelant) in enhancing Cd phytoextraction by Solanum nigrum. Comparative appraisal of metal extraction efficiency of biodegradable chelants at low (12 mg kg−1) and high (48 mg kg−1) Cd dose depicted that EGTA performed better than EDDS, NTA, and CA (other biodegradable chelants). EGTA supplementation did not induce toxicity in plants; rather it improved metal accumulation, morphology, and photosynthetic physiology.


Assuntos
Poluentes do Solo , Solanum nigrum , Cádmio , Quelantes/farmacologia , Ácido Egtázico , Biodegradação Ambiental , Poluentes do Solo/análise , Ácido Nitrilotriacético , Solo , Ácido Cítrico
2.
Int J Phytoremediation ; 22(12): 1242-1248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32393060

RESUMO

The contamination of orchard by cadmium (Cd) has recently increased in severity. To decrease the Cd content in fruit tree, a pot-based experiment was conducted to study the effects of intercropping with two Solanum species (Solanum alatum and Solanum diphyllum) on the growth and Cd accumulation of Cyphomandra betacea seedlings. The data revealed that intercropping with two Solanum species significantly increased the biomass, photosynthetic pigment contents, antioxidant enzyme activities, and soluble protein contents of C. betacea seedlings under Cd stress condition. The intercropping significantly decreased the Cd content in C. betacea seedlings. However, the intercropping significantly decreased the S. alatum and S. diphyllum biomasses, while increased the Cd content and accumulation in the roots and shoots of two Solanum species, and the Cd uptake by S. alatum was lower than that of S. diphyllum. Therefore, intercropping with these two Solanum species, especially S. diphyllum, may promote the growth and decrease the Cd content in C. betacea.


Assuntos
Poluentes do Solo/análise , Solanum , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas/química , Plântula/química
3.
Ecotoxicol Environ Saf ; 151: 266-271, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29407559

RESUMO

A field investigation on the content of heavy metals in soils and 17 kinds of dominant plants from wasteland of the downstream of a Pb-Zn mine in Northwest Guangxi Zhuang Autonomous Region was carried out. The absorption and accumulation characteristics of heavy metals between plants and soil were compared, and the candidate species for ecosystem restoration of the area were selected. The results indicated that the soils had been subjected to pollution of heavy metals in varying degrees. The concentrations of Cd, Pb, Zn were 46.5, 57.3 and 23.7 times higher than their corresponding background values, respectively. The contents of Cd, Pb and Zn in the most analyzed plants exceed the normal ranges and the phytotoxic level. C. crepidioides, S. nigrum, B. pilosa, C. Canadensis, A. conyzoides, I. denticulata and E. crusgali showed strong capability in accumulation and transport of Cd, and they could be used as good candidates for Cd- phytoextraction. Among which, Cd concentration in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Thus, C. crepidioides demonstrated the basic characteristics of a Cd-hyperaccumulator. The lower translocation ratios for Cd, Cu, Zn and Pb in P. vittata and C. chinensis make them suitable for phytostabilization in the study area.


Assuntos
Asteraceae/química , Monitoramento Ambiental , Chumbo/análise , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Zinco/análise , Biodegradação Ambiental , China , Ecossistema , Mineração , Plantas/química
4.
Ecotoxicol Environ Saf ; 158: 300-308, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29727812

RESUMO

Cadmium, a high toxic heavy metal, is one of the most serious contaminants in soil and a potential threat to plant growth and human health. Amino acid metabolism has the central role in heavy metal stress resistance of plants. In this paper, a pot experiment was carried out to study the effects of different concentrations of cadmium (0, 3, 6, 12, 30 mg kg-1) on the growth, Cd accumulation and amino acid metabolism in two Compositae plants (Ageratum conyzoides L. and Crassocephalum crepidioides). The results showed that under cadmium stress, C. crepidioides accumulated more Cd in its shoot and was tolerant to Cd, whereas its low Cd-accumulating relative, A. conyzoides, suffered reduced growth. The Cd content in the aerial part of C. crepidioides exceeded the threshold of Cd-hyperaccumulator. Furthermore, the bioaccumulation factor (BCF) and biological transfer factor (BTF) values for Cd in C. crepidioides were > 1. Thus, C. crepidioides can be regarded as Cd-hyperaccumulator. The comparison between both studied plants indicated that Cd stress resulted in a differential but coordinated response of amino acid levels, which are playing a significant role in plant adaptation to Cd stress. Glu, Gln, Asp, Asn, Gaba, Val and Ala dominated the major amino acids. Higher Cd tolerance and Cd accumulation in C. crepidioides was associated with greater accumulation of free amino acids, especially for Gln and Asn, in C. crepidioides than in A. conyzoides.


Assuntos
Aminoácidos/metabolismo , Asteraceae/efeitos dos fármacos , Asteraceae/metabolismo , Cádmio/toxicidade , Estresse Fisiológico , Adaptação Fisiológica/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/farmacocinética , Relação Dose-Resposta a Droga , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
5.
Ecotoxicol Environ Saf ; 136: 180-188, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27931714

RESUMO

Current investigation conducted to evaluate the associated fungal endophyte interactions of a Cd hyper-accumulator Solanum nigrum Korean ecotype under varying concentrations of Cd. Two indole-3-acetic acid (IAA) producing fungal strains, RSF-4L and RSF-6L, isolated from the leaves of S. nigrum, were initially screened for Cd tolerance and accumulation potential. In terms of dry biomass production, the strain RSF-6L showed higher tolerance and accumulation capacity for Cd toxicity in comparison to RSF-4L. Therefore, RSF-6L was applied in vivo to S. nigrum and grown for six weeks under Cd concentrations of 0, 10, and 30mgKg-1 of dry sand. The effect of fungal inoculation assessed by plant physiological responses, endogenous biochemical regulations, and Cd profile in different tissues. Significant increase were observed in plant growth attributes such as shoot length, root length, dry biomass, leaf area, and chlorophyll contents in inoculated RSF-6L plants in comparison to non-inoculated plants with or without Cd contamination. RSF-6L inoculation decreased uptake of Cd in roots and above ground parts, as evidenced by a low bio-concentration factor (BCF) and improved tolerance index (TI). However, Cd concentration in the leaves remained the same for inoculated and non-inoculated plants under Cd spiking. Fungal inoculation protected the host plants, as evidenced by low peroxidase (POD) and polyphenol peroxidase (PPO) activities and high catalase (CAT) activity. Application of appropriate fungal inoculation that can improve tolerance mechanisms of hyper-accumulators and reduce Cd uptake can be recommended for phyto-stabilisation/immobilisation of heavy metals in crop fields.


Assuntos
Cádmio/metabolismo , Endófitos/fisiologia , Fungos/fisiologia , Poluentes do Solo/metabolismo , Solanum nigrum/metabolismo , Solanum nigrum/microbiologia , Biodegradação Ambiental , Inativação Metabólica , Solanum nigrum/efeitos dos fármacos , Solanum nigrum/crescimento & desenvolvimento
6.
Environ Sci Pollut Res Int ; 30(18): 53037-53049, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36854940

RESUMO

Selecting suitable agronomic measures can strengthen the application of intercropping in the remediation of cadmium (Cd)-contaminated soil. In this study, the effects of different planting densities and fertilizer applications on the crop growth and Cd absorption of a pumpkin (Cucurbita moschata)-Amaranthus hypochondriacus L. intercropping system was determined. The goal was to provide enhanced means and a scientific basis for the promotion and application of this intercropping system. The Cd content of pumpkin in different planting systems was lower than the national food safety standard (0.05 mg kg-1). In the IN-1 (4 pumpkin plants intercropped with 200 A. hypochondriacus plants) and IN-2 (4 pumpkin plants intercropped with 400 A. hypochondriacus plants) intercropping systems, the bioconcentration amount (BCA) per plant of Cd in A. hypochondriacus increased by 32.43% and 25.25%, respectively, compared with that of the monocropping system (P < 0.05). The IN-2 system had the highest equivalent ratio of heavy metal removal (3.08), indicating that this model had a substantial advantage for removing Cd. The land equivalent ratio of IN-1 (2.89) and IN-2 (2.60) was significantly higher than that of other intercropping systems, indicating that these two models had obvious yield advantages. In our study, chicken manure was the best at promoting the growth and yield of the two plants and sludge treatment significantly enhance Cd absorption of A. hypochondriacus. In general, intercropping four pumpkin plants with 400 A. hypochondriacus plants and applying chicken manure fertilizer can strengthen the application of this intercropping system in Cd-contaminated soil.


Assuntos
Amaranthus , Cucurbita , Poluentes do Solo , Cádmio/análise , Fazendas , Fertilizantes , Solo , Esterco , Poluentes do Solo/análise , Plantas , Biodegradação Ambiental
7.
J Hazard Mater ; 406: 124325, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33153785

RESUMO

Intercropping of hyperaccumulators with crops is a promising measure to enhance phytoremediation without impeding agricultural production. A Cd-hyperaccumulator, Solanum nigrum L. (S. nigrum), was intercropped with upland rice in a pot and rhizo-box experiment with Cd-contaminated soil to evaluate the combined effects of intercropping and arbuscular mycorrhizal fungi on plant growth and Cd accumulation. The results showed that, compared with monoculture, the combined treatments markedly decreased Cd concentration in rice parts, with the lowest Cd concentration in brown rice (reducing by 64.5%). The spatial distribution of root surface area and DTPA-Cd in the rhizo-box indicated competitive Cd uptake by neighbouring S. nigrum. Moreover, the combined treatments reduced Nramp5 expression but increased HMA3 levels in rice roots, leading to lower bioaccumulation and transfer coefficients. Additionally, fewer secreted organic acids and a higher rhizosphere pH were observed in rice. Conversely, the combined treatments promoted biomass, root length, root surface area, and decreased the rhizosphere pH in S. nigrum, thus increasing the Cd accumulation. Although the intercropping system with AMF inoculation notably reduced rice yield, the land-use efficiency was higher. These results provided insights into the role of AMF in the upland rice/S. nigrum system and demonstrated an alternative system for Cd phytoremediation.


Assuntos
Micorrizas , Oryza , Poluentes do Solo , Solanum nigrum , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
8.
Front Microbiol ; 12: 639997, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054748

RESUMO

Noccaea brachypetala is a close relative of Noccaea caerulescens, a model plant species used in metal hyperaccumulation studies. In a previous survey in the Catalan Pyrenees, we found two occidental and two oriental N. brachypetala populations growing on non-metalliferous soils, with accumulated high concentrations of Cd and Zn. Our hypothesis was that the microbiome companion of the plant roots may influence the ability of these plants to absorb metals. We performed high-throughput sequencing of the bacterial and fungal communities in the rhizosphere soil and rhizoplane fractions. The rhizobiomes and shoot ionomes of N. brachypetala plants were analyzed along with those from other non-hyperaccumulator Brassicaceae species found at the same sampling locations. The analyses revealed that microbiome richness and relative abundance tended to increase in N. brachypetala plants compared to non-hyperaccumulator species, regardless of plant location. We confirmed that the root compartment is a key factor in describing the community composition linked to the cohabiting Brassicaceae species, and the rhizoplane fraction contained the specific and rare taxa associated with each species. N. brachypetala plants harbored a similar relative abundance of fungi compared to the other plant hosts, but there was a notable reduction in some specific taxa. Additionally, we observed an enrichment in the hyperaccumulator rhizoplane of previously described metal-tolerant bacteria and bacteria involved in nitrogen cycling. The bacteria involved in the nitrogen cycle could contribute indirectly to the hyperaccumulator phenotype by improving soil quality and fertility. Our results indicate that N. brachypetala captures a particular prokaryotic community from the soil. This particular prokaryotic community may benefit the extraction of metal ions and/or improve plant nutrition. Our research identified satellite groups associated with the root niche of a hyperaccumulator plant that may assist in improving biological strategies in heavy metal remediation.

9.
Mitochondrial DNA B Resour ; 5(1): 436-438, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33366590

RESUMO

Bidens pilosa is an annual invasive and Cd-hyperaccumulator herb. The complete chloroplast genome sequence of the B. pilosa is 150,542 bp in length, which is composed of a large single-copy region of 83,542 bp, a small single-copy region of 17,624 bp and a pair of inverted repeat regions of 24,688 bp. It encodes a set of 114 genes, consisting of 80 protein coding, 30 tRNA and 4 rRNA genes. Among all of these genes, 2 genes possess double introns, and 16 genes have a single intron. Phylogenetic analysis showed that B. pilosa clustered together with Marshallia obovata.

10.
Chemosphere ; 220: 910-920, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33395812

RESUMO

Pot experiments were conducted to investigate the effects of a series of ß-cyclodextrin (ß-CD) on phytoremediation of soil co-contaminated with Cd and BDE-209 by amaranth (Amaranthus hypochondriacus L.) inoculated with arbuscular mycorrhizal fungus (AMF) - Rhizophagus intraradices. Results showed that the combination of mycorrhizal amaranth and 0.4% ß-CD (RI+ß0.4) significantly enhanced Cd concentrations and contents in shoots, total PBDEs concentration in roots, and BDE-209 dissipation in soil. Moreover, the RI+ß0.4 treatment exerted the highest removal efficiency of both Cd and BDE-209. On the contrary, the xylem area, shoot Cd and BDE-209 concentrations and contents, and removal efficiency of Cd were markedly reduced in mycorrhizal amaranth with 0.8% or 1.2% ß-CD treatments (RI+ß0.8, RI+ß1.2), compared with single inoculation treatment. The well-organized chloroplast and well-defined root anatomical structure were also observed in the treatment of RI+ß0.4. Positive correlation was found between shoot biomass and chlorophyll concentrations. Shoot Cd or BDE-209 concentrations were positively correlated with xylem areas. In conclusion, mycorrhizal amaranth added with 0.4% ß-CD could be used for the decontamination of soil polluted with mixture of Cd and BDE-209 due to the higher chlorophyll concentration and the larger xylem area.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa