Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
1.
Chemphyschem ; : e202400267, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894510

RESUMO

Colloidal two-dimensional (2D) nanoplatelets (NPLs) have been extensively studied owing to promising potential in optoelectronic applications. Here, we have reported the preparation of 2D CdSeTe alloy NPLs and investigated their energy and charge transfer with porphyrin molecules. The red shifting in the optical properties suggests the change in the band gaps. Furthermore, the energy and the charge transfer are evident in the composite of CdSeTe alloy NPLs with 5,10,15,20-tetra(4pyridyl)-porphyrin (TpyP) molecules. The quenching in the photoluminescence (PL) spectra and PL decay time supports the energy transfer (~61 % efficiency) and the charge transfer. The thermodynamically feasible hole transfer is evidenced by the band alignment of the alloy NPLs and TpyP molecules, which is further supported by a transient absorption spectroscopy (TAS) study. The TA study found the hole transfer within ~3 ps time scale, proving the effective charge carrier separation for better optoelectronic applications.

2.
J Fluoresc ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136909

RESUMO

Mercury (Hg), a notorious heavy metal with detrimental impacts on human health and the environment, necessitates the development of precise measurement methods. This study introduces an expeditious and straightforward photochemical approach to synthesize thioglycolic acid (TGA)-stabilized CdTe/CdS/ZnS core/multi-shell quantum dots (QDs). The synthesized CdTe/CdS/ZnS QDs were comprehensively characterized using fluorescence spectroscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), Field Emission Scanning Electron Microscopy (FESEM), and X-Ray diffraction (XRD). XRD and EDS results confirmed the successful formation of CdTe/CdS/ZnS structure. Also, FESEM and TEM results showed that CdTe/CdS/ZnS QDs were spherical. Results showed that synthesized Exhibiting vibrant green fluorescence and notable quenching in the presence of Hg2+ ions, these QDs emerge as promising candidates for fabricating a fluorescent sensor. The proposed sensor demonstrates notable sensitivity to Hg2+, featuring a detection limit of 16.32 nM and a linear range from 20 nM to 70 nM. The sensor's selectivity was confirmed by analyzing various anions and cations. Moreover, when tested with tap water, river water, and agricultural samples, the sensor exhibited reliable performance, validated by Inductively Coupled Plasma (ICP) analysis. Additionally, CdTe/CdS/ZnS QDs immobilized on micro pads proved effective for on-site water sample analysis, presenting a versatile solution for environmental monitoring.

3.
J Fluoresc ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396147

RESUMO

Gamma rays, as hazardous nuclear radiation, necessitate effective and rapid detection methods. This paper introduces a low-cost, fast, and simple fluorescence method based on CdTe/CdS core/shell quantum dots for gamma-ray detection. CdTe/CdS quantum dots, subjected to gamma irradiation from a 60Co source under various conditions, were investigated to assess their fluorescence sensor capabilities. The obtained results showed that an increase in CdTe/CdS nanoparticle size was associated with decreased sensitivity, while a reduction in CdTe/CdS concentration correlated with increased sensitivity. To further validate the practicality of CdTe/CdS core/shell quantum dots in gamma-ray detection, the structural properties of the quantum dots were meticulously studied. Raman spectroscopy, X-ray diffraction (XRD), and Fourier-transform infrared (FT-IR) analysis were conducted before and after gamma-ray radiation. The results demonstrated the crystalline stability of CdTe/CdS core/shell quantum dots under gamma irradiation, highlighting their robust structural integrity. In conclusion, the experimental findings underscore the exceptional potential of CdTe/CdS quantum dots as an off-fluorescence probe for simple, low-cost, fast, and on-site detection of gamma rays. This research contributes to the advancement of efficient and practical methods for gamma-ray sensing in various applications.

4.
J Fluoresc ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536610

RESUMO

In this work, a simple and sensitive N-acetyl-L-cysteine (NAC)-covered CdTe quantum dots (NAC-CdTe QDs) fluorescence probe for continuous detection of Co2+ and pyrophosphate ions (PPi, P2O74-) was synthesized. The fluorescence of the quantum dots was significantly quenched by Co2+ through the coordination of Co2+ and the carboxyl groups on the NAC-CdTe quantum dots. Interestingly, the combination of NAC-CdTe quantum dots with Co2+ yields a new fluorescence probe of Co2+-modified NAC-CdTe QDs (Co2+@NAC-CdTe). The addition of PPi restored the fluorescence due to the competition between PPi and carboxyl groups with Co2+ causing Co2+ to detach from the surface of Co2+@NAC-CdTe quantum dots. Thus, a sensitive and reversible detection of Co2+ and PPi had been successfully established. The Co2+@NAC-CdTe quantum dots fluorescence probe exhibits excellent selectivity and high sensitivity toward PPi detection with low detection limit of 0.28 µM. In addition, the novel fluorescence probe was successfully applied to detect the concentration of PPi in environmental water samples and in-vitro cells imaging.

5.
Anal Bioanal Chem ; 416(21): 4769-4778, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38676824

RESUMO

Exploring the construction of an interface with bright emission, fabulous stability, and good function to develop high-performance electrochemiluminescence (ECL) biosensors for tumor biomarkers is in high demand but faces a huge challenge. Herein, we report an oriented attachment and in situ self-assembling strategy for one-step fabrication of CdTe QD-encapsulated Hf polymer membrane onto an ITO surface (Hf-CP/CdTe QDs/APS/ITO). Hf-CP/CdTe QDs/APS/ITO is fascinating with excellent stability, high ECL emission, and specific adsorption toward ssDNA against dsDNA and mononucleotides (mNs). These interesting properties make it an ideal interface to rationally develop an immobilization-free ECL biosensor for cancer antigen 125 (CA125), used as a proof-of-concept analyte, based on target-aptamer recognition-promoted exonuclease III (Exo III)-assisted digestion. The recognition of ON by CA125 leads to the formation of CA125@ON, which hybridizes with Fc-ssDNA to switch Exo III-assisted digestion, decreasing the amount of Fc groups anchored onto the electrode's surface and blocking electron transfer. As compared to the case where CA125 was absent, significant ECL emission recovery is determined and relies on CA125 concentration. Thus, highly sensitive analysis of CA125 against other biomarkers was achieved with a limit of detection down to 2.57 pg/mL. We envision this work will provide a new path to develop ECL biosensors with excellent properties, which shows great potential for early and accurate diagnosis of cancer.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Antígeno Ca-125 , Compostos de Cádmio , Técnicas Eletroquímicas , Medições Luminescentes , Polímeros , Pontos Quânticos , Telúrio , Pontos Quânticos/química , Telúrio/química , Compostos de Cádmio/química , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Humanos , Técnicas Biossensoriais/métodos , Polímeros/química , Antígeno Ca-125/análise , Limite de Detecção
6.
Mikrochim Acta ; 191(9): 525, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120793

RESUMO

A dual-emission ratiometric fluorescence sensor (CDs@CdTe@MIP) with a self-calibration function was successfully constructed for AMO detection. In the CDs@CdTe@MIP system, non-imprinted polymer-coated CDs and molecule-imprinted polymer-coated CdTe quantum dots were used as the reference signal and response elements, respectively. The added AMO quenched the fluorescence of the CdTe quantum dots, whereas the fluorescence intensity of the CDs remained almost unchanged. The AMO concentration was monitored using the fluorescence intensity ratio (log(I647/I465)0/(I647/I465)) to reduce interference from the testing environment. The sensor with a low detection limit of 0.15 µg/L enabled detection of the AMO concentration within 6 min. The ratiometric fluorescence sensor was used to detect AMO in spiked pork samples; it exhibited a high recovery efficiency and relative standard deviation (RSD) of 97.94-103.70% and 3.77-4.37%, respectively. The proposed highly sensitive and selective platform opens avenues for sensitive, reliable, and rapid determination of pharmaceuticals in the environment and food safety monitoring using ratiometric sensors.


Assuntos
Amoxicilina , Compostos de Cádmio , Limite de Detecção , Impressão Molecular , Pontos Quânticos , Espectrometria de Fluorescência , Telúrio , Pontos Quânticos/química , Compostos de Cádmio/química , Telúrio/química , Espectrometria de Fluorescência/métodos , Amoxicilina/análise , Amoxicilina/química , Corantes Fluorescentes/química , Sulfetos/química , Animais , Contaminação de Alimentos/análise , Polímeros Molecularmente Impressos/química , Suínos
7.
Mikrochim Acta ; 191(7): 363, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829464

RESUMO

The development of low-cost and highly sensitive ratiometric fluorescence sensor, CdTe@MIPs/MgF2, for N-Ethylpentylone (NEP) detection in wastewater samples is described. In this system, CdTe@MIPs (λex = 370, λem = 570) are employed as the receptor and response unit for NEP, with MgF2 (λex = 370, λem = 470) as the reference signal to enhance stability. Under optimal conditions, the sensor shows fluorescent quenching response at 570 nm to NEP in linear range of 2-200 nM, with LOD of 0.6 nM. The sensor also demonstrates significant selectivity for NEP over other analogues and interferents, making it ideal for practical applications in wastewater analysis. This approach is potentially more cost-effective and sensitive than conventional mass spectrometry in detecting abused substances in sewage. Additionally, the MgF2 fluorescent nano-material was first-ever developed and investigated, which may be significant in future research.

8.
Mikrochim Acta ; 191(4): 216, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517549

RESUMO

A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001-100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.


Assuntos
Compostos de Cádmio , Nanopartículas , Pontos Quânticos , Humanos , Pontos Quânticos/química , Compostos de Cádmio/química , Telúrio/química , Trombina , Reprodutibilidade dos Testes , Técnicas Eletroquímicas , Nanopartículas/química
9.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123992

RESUMO

Effective X-ray photon-counting spectral imaging (x-CSI) detector design involves the optimisation of a wide range of parameters both regarding the sensor (e.g., material, thickness and pixel pitch) and electronics (e.g., signal-processing chain and count-triggering scheme). Our previous publications have looked at the role of pixel pitch, sensor thickness and a range of additive charge sharing correction algorithms (CSCAs), and in this work, we compare additive and subtractive CSCAs to identify the advantages and disadvantages. These CSCAs differ in their approach to dealing with charge sharing: additive approaches attempt to reconstruct the original event, whilst subtractive approaches discard the shared events. Each approach was simulated on data from a wide range of x-CSI detector designs (pixel pitches 100-600 µm, sensor thickness 1.5 mm) and X-ray fluxes (106-109 photons mm-2 s-1), and their performance was characterised in terms of absolute detection efficiency (ADE), absolute photopeak efficiency (APE), relative coincidence counts (RCC) and binned spectral efficiency (BSE). Differences between the two approaches were explained mechanistically in terms of the CSCA's effect on both charge sharing and pule pileup. At low X-ray fluxes, the two approaches perform similarly, but at higher fluxes, they differ in complex ways. Generally, additive CSCAs perform better on absolute metrics (ADE and APE), and subtractive CSCAs perform better on relative metrics (RCC and BSE). Which approach to use will, thus, depend on the expected operating flux and whether dose efficiency or spectral efficiency is more important for the application in mind.

10.
Sensors (Basel) ; 24(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124086

RESUMO

The development of fluorescent molecular imprinting sensors for direct, rapid, and sensitive detection of small organic molecules in aqueous systems has always presented a significant challenge in the field of detection. In this study, we successfully prepared a hydrophilic colloidal molecular imprinted polymer (MIP) with 2,4-dichlorophenoxyacetic acid (2,4-D) using a one-pot approach that incorporated polyglycerol methacrylate (PGMMA-TTC), a hydrophilic macromolecular chain transfer agent, to mediate reversible addition-fragmentation chain transfer precipitation polymerization (RAFTPP). To simplify the polymerization process while achieving ratiometric fluorescence detection, red fluorescent CdTe quantum dots (QDs) and green fluorescent nitrobenzodiazole (NBD) were introduced as fluorophores (with NBD serving as an enhancer to the template and QDs being inert). This strategy effectively eliminated background noise and significantly improved detection accuracy. Uniform-sized MIP microspheres with high surface hydrophilicity and incorporated ratiometric fluorescent labels were successfully synthesized. In aqueous systems, the hydrophilic ratio fluorescent MIP exhibited a linear response range from 0 to 25 µM for the template molecule 2,4-D with a detection limit of 0.13 µM. These results demonstrate that the ratiometric fluorescent MIP possesses excellent recognition characteristics and selectivity towards 2,4-D, thus, making it suitable for selective detection of trace amounts of pesticide 2,4-D in aqueous systems.

11.
Small ; 19(28): e2301939, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010046

RESUMO

Bifacial CdTe solar cells with greater power density than the monofacial baselines are demonstrated by using a CuGaOx rear interface buffer that passivates while reducing sheet resistance and contact resistance. Inserting CuGaOx between the CdTe and Au increases mean power density from 18.0 ± 0.5 to 19.8 ± 0.4 mW cm-2 for one sun front illumination. However, coupling CuGaOx with a transparent conductive oxide leads to an electrical barrier. Instead, CuGaOx is integrated with cracked film lithography (CFL)-patterned metal grids. CFL grid wires are spaced narrowly enough (≈10 µm) to alleviate semiconductor resistance while retaining enough passivation and transmittance for a bifacial power gain: bifacial CuGaOx /CFL grids generate 19.1 ± 0.6 mW cm-2 for 1 sun front + 0.08 sun rear illumination and 20.0 ± 0.6 mW cm-2 at 1 sun front + 0.52 sun rear-the highest reported power density at field albedo conditions for a scaled polycrystalline absorber.

12.
Anal Biochem ; 668: 115090, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870552

RESUMO

It is particularly meaningful to therapeutic drug monitoring (TDM) of mycophenolic acid (MPA) for transplant patients to maximize the drug efficacy and minimize the adverse effect. In this study, a novel fluorescence and colorimetric dual-readout probe was put forward to fast and reliable detect MPA. The blue fluorescence of MPA was largely enhanced in the presence of poly (ethylenimine) (PEI), while the red fluorescence of CdTe@SiO2 (silica-coated CdTe quantum dots) provided a reliable reference signal. Hence, combining PEI70,000 and CdTe@SiO2, a fluorescence and colorimetric dual-readout probe could be constructed. For fluorescence measurement of MPA, the linearity was obtained in the MPA concentration range of 0.5-50 µg/mL, with a limit of detection (LOD) of 33 ng/mL. For the visual detection, the fluorescent colorimetric card was established in the MPA concentration from 0.5 to 50 µg/mL corresponding to the fluorescence color from red to violet and then to blue, which could be used for semi-quantification. Furthermore, in the light of the ColorCollect APP by the smartphone, the ratio of blue and red brightness values was linear with the MPA concentration from 1 to 50 µg/mL; thus, quantification of MPA could be realized by APP with the LOD of 83 ng/mL. The developed method was successfully applied to the analysis of MPA in the plasma samples of three patients after oral administration of mycophenolate mofetil, which was the prodrug of MPA. The result was comparable to those obtained by the clinically widely-used enzyme multiplied immunoassay technique. The developed probe was fast, cost-effective and operational convenience, and possessed high potential for TDM of MPA.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Humanos , Ácido Micofenólico , Dióxido de Silício , Polietilenoimina , Colorimetria , Telúrio , Corantes Fluorescentes
13.
J Fluoresc ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37624469

RESUMO

A known property of quantum dots (QDs) is their characteristic luminescence, which would make it possible to detect different types of cancers after being functionalized with some type of biological molecule. For this reason, in the present investigation a methodological analysis of the physicochemical characteristics of the CdTe/ZnS core/shell QDs was carried out, using techniques such as Optical Absorbance Spectroscopy (UV-Vis), Molecular Fluorescence, Fourier Transform Infrared Spectroscopy (FT-IR), Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Zeta Potential that allowed to verify the photoluminescent effectiveness of these semiconductor nanocrystals as an alternative to conventional techniques currently used for the detection of specific cancers smaller than 1 cm. The study consisted of theoretically determining the bandgap energy, the size of the nanocrystals and the molar absorptivity from the wavelength value for the maximum intensity of the excitonic peak. It was also possible to verify the maximum intensity for each sample and thus evaluate its photoluminescent response, as well as it was possible to determine the charge distribution, the hydrodynamic size and the surface composition of each quantum dot. The results obtained correspond to what has been reported in the literature, which makes them good candidates for the detection of cancer in precancerous stages.

14.
J Fluoresc ; 33(6): 2361-2367, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37071231

RESUMO

Gamma rays are a type of ionizing radiation that are extremely hazardous and dangerous for humans and the environment. The fluorescence method is a simple, useful, and fast method for the detection of gamma rays. In this research, CdTe/ZnS core/shell quantum dots were used as on fluorescence sensor for the detection of gamma rays. CdTe/ZnS core/shell QDs were prepared via a simple and rapid photochemical method. The shell thickness and concentration of CdTe/ZnS core/shell quantum dots were studied as two important factors in the optical behavior of CdTe/ZnS quantum dots. The obtained results showed that the PL intensity of CdTe/ZnS QDs after gamma irradiation was increased and also a slight redshift in the PL spectrum was observed. X-ray diffractions (XRD) and Raman analyses were used to study the effect of gamma irradiation on the structural properties of CdTe/ZnS QDs. The obtained results showed that gamma irradiation couldn't damage the crystalline structure of CdTe/ZnS core/shell QDs.

15.
J Fluoresc ; 33(5): 2075-2084, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36988782

RESUMO

In this paper, a novel amino acid surface-functionalized semiconductor CdTe quantum dot fluorescent probe amidated by carboxyl and amide groups was synthesized to detect pyrophosphate ions (P2O74-, PPi). L-Arginine (L-Arg) was grafted onto cysteine modified CdTe quantum dots (Mea-CdTe QDs) to form a new L-Arginine-functionalized quantum dot fluorescent probe (L-Arg@Mea-CdTe). The prepared probe has good optical properties with multiple grafted functional groups on the surface. The guanidine group of the L-Arg@Mea-CdTe fluorescent probe is strongly basic and will be fully protonated under physiological conditions. The resulting hydrogen bonds bound to pyrophosphate lead to significant changes in the fluorescence of CdTe quantum dots. IR and XPS characterization were performed to confirm it. The addition of PPi induces a significant fluorescence quenching of L-Arg@Mea-CdTe in aqueous solution. The fluorescent QDs probe can also detect pyrophosphate with good sensitivity and anti-interference performance. The detection limit of the L-Arg@Mea-CdTe fluorescence probe for PPi is as low as 0.30 µM. In addition, the novel nano-fluorescent probe was successfully applied to detect PPi in water and in cell imaging.

16.
Ecotoxicol Environ Saf ; 267: 115614, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890249

RESUMO

Cadmium tellurium quantum dots (CdTe QDs) as one of the most widely used QDs have been reported the toxicity and biosafety in recent years, little work has been done to reduce their toxicity however. Based on the mechanisms of toxicity of CdTe QDs on liver target organs such as oxidative stress and apoptosis previously reported by other researchers, we investigated the mechanism of action of trace element selenium (Se) to mitigate the hepatotoxicity of CdTe QDs. The experimental results showed that Se-Met at 40-140 µg L-1 could enhance the function of intracellular antioxidant defense system and the molecular structure of related antioxidant enzymes by reduce the production of ROS by 45%, protecting the activity of antioxidants and up-regulating the expression of selenoproteins with antioxidant functions, Gpx1 increase 225% and Gpx4 upregulated 47%. In addition, Se-Met could alleviate CdTe QDs-induced apoptosis by regulating two apoptosis-inducing factors, as intracellular caspase 3/9 expression levels were reduced by 70% and 87%, decreased Ca2+ concentration, and increased mitochondrial membrane potential measurements. Overall, this study indicates that Se-Met has a significant protective effect on the hepatotoxicity of CdTe QDs. Se-Met can be applied to the preparation of CdTe QDs to inhibit its toxicity and break the application limitation.


Assuntos
Compostos de Cádmio , Doença Hepática Induzida por Substâncias e Drogas , Pontos Quânticos , Selênio , Humanos , Selênio/farmacologia , Pontos Quânticos/toxicidade , Cádmio/toxicidade , Antioxidantes/farmacologia , Compostos de Cádmio/toxicidade , Telúrio/toxicidade , Oxirredução , Apoptose
17.
Sensors (Basel) ; 23(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37430709

RESUMO

In radiation detectors, the spatial distribution of the electric field plays a fundamental role in their operation. Access to this field distribution is of strategic importance, especially when investigating the perturbing effects induced by incident radiation. For example, one dangerous effect that prevents their proper operation is the accumulation of internal space charge. Here, we probe the two-dimensional electric field in a Schottky CdTe detector using the Pockels effect and report on its local perturbation after exposure to an optical beam at the anode electrode. Our electro-optical imaging setup, together with a custom processing routine, allows the extraction of the electric-field vector maps and their dynamics during a voltage bias-optical exposure sequence. The results are in agreement with numerical simulations, allowing us to confirm a two-level model based on a dominant deep level. Such a simple model is indeed able to fully account for both the temporal and spatial dynamics of the perturbed electric field. This approach thus allows a deeper understanding of the main mechanisms affecting the non-equilibrium electric-field distribution in CdTe Schottky detectors, such as those leading to polarization. In the future, it could also be used to predict and improve the performance of planar or electrode-segmented detectors.

18.
Sensors (Basel) ; 23(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36991805

RESUMO

Traces of mercury ions in environmental water can harm humans and animals. Paper-based visual detection methods have been widely developed for the rapid detection of mercury ions; however, existing methods are not sensitive enough to be used in real environments. Here, we developed a novel, simple and effective visual fluorescent sensing paper-based chip for the ultrasensitive detection of mercury ions in environmental water. CdTe-quantum-dots-modified silica nanospheres were firmly absorbed by and anchored to the fiber interspaces on the paper's surface to effectively avoid the unevenness caused by liquid evaporation. The fluorescence of quantum dots emitted at 525 nm can be selectively and efficiently quenched with mercury ions, and the ultrasensitive visual fluorescence sensing results attained using this principle can be captured using a smartphone camera. This method has a detection limit of 2.83 µg/L and a fast response time (90 s). We successfully achieved the trace spiking detection of seawater (from three regions), lake water, river water and tap water with recoveries in the range of 96.8-105.4% using this method. This method is effective, low-cost, user-friendly and has good prospects for commercial application. Additionally, the work is expected to be utilized in the automated big data collection of large numbers of environmental samples.

19.
Sensors (Basel) ; 23(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37177647

RESUMO

X-ray photon counting spectral imaging (x-CSI) determines a detected photon's energy by comparing the charge it induces with several thresholds, counting how many times each is crossed (the standard method, STD). This paper is the first to demonstrate that this approach can unexpectedly delete counts from the recorded energy spectrum under some clinically relevant conditions: a process we call negative counting. Four alternative counting schemes are proposed and simulated for a wide range of sensor geometries (pixel pitch 100-600 µm, sensor thickness 1-3 mm), number of thresholds (3, 5, 8, 24 and 130) and medically relevant X-ray fluxes (106-109 photons mm-2 s-1). Spectral efficiency and counting efficiency are calculated for each simulation. Performance gains are explained mechanistically and correlated well with the improved suppression of "negative counting". The best performing scheme (Shift Register, SR) entirely eliminates negative counting, remaining close to an ideal scheme at fluxes of up to 108 photons mm-2 s-1. At the highest fluxes considered, the deviation from ideal behaviour is reduced by 2/3 in SR compared with STD. The results have significant implications both for generally improving spectral fidelity and as a possible path toward the 109 photons mm-2 s-1 goal in photon-counting CT.

20.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37447923

RESUMO

The estimation of the characteristic parameters of the electrical contacts in CdZnTe and CdTe detectors is related to the identification of the main transport mechanisms dominating the currents. These investigations are typically approached by modelling the current-voltage (I-V) curves with the interfacial layer-thermionic-diffusion (ITD) theory, which incorporates the thermionic emission, diffusion and interfacial layer theories into a single theory. The implementation of the ITD model in measured I-V curves is a critical procedure, requiring dedicated simplifications, several best fitting parameters and the identification of the voltage range where each transport mechanism dominates. In this work, we will present a novel method allowing through a simple procedure the estimation of some characteristic parameters of the metal-semiconductor interface in CdZnTe and CdTe detectors. The barrier height and the effects of the interfacial layer will be evaluated through the application of a new function related to the differentiation of the experimental I-V curves.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Telúrio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa