Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
J Cell Sci ; 137(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39143856

RESUMO

Fluid shear stress (FSS) from blood flow, sensed by the vascular endothelial cells (ECs) that line all blood vessels, regulates vascular development during embryogenesis, controls adult vascular physiology and determines the location of atherosclerotic plaque formation. Although a number of papers have reported a crucial role for cell-cell adhesions or adhesion receptors in these processes, a recent publication has challenged this paradigm, presenting evidence that ECs can very rapidly align in fluid flow as single cells without cell-cell contacts. To address this controversy, four independent laboratories assessed EC alignment in fluid flow across a range of EC cell types. These studies demonstrate a strict requirement for cell-cell contact in shear stress sensing over timescales consistent with previous literature and inconsistent with the newly published data.


Assuntos
Células Endoteliais , Junções Intercelulares , Mecanotransdução Celular , Estresse Mecânico , Humanos , Junções Intercelulares/metabolismo , Células Endoteliais/metabolismo , Animais , Resistência ao Cisalhamento , Adesão Celular/fisiologia
2.
Development ; 150(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36628974

RESUMO

Src kinases are important regulators of cell adhesion. Here, we have explored the function of Src42A in junction remodelling during Drosophila gastrulation. Src42A is required for tyrosine phosphorylation at bicellular (bAJ) and tricellular (tAJ) junctions in germband cells, and localizes to hotspots of mechanical tension. The role of Src42A was investigated using maternal RNAi and CRISPR-Cas9-induced germline mosaics. We find that, during cell intercalations, Src42A is required for the contraction of junctions at anterior-posterior cell interfaces. The planar polarity of E-cadherin is compromised and E-cadherin accumulates at tricellular junctions after Src42A knockdown. Furthermore, we show that Src42A acts in concert with Abl kinase, which has also been implicated in cell intercalations. Our data suggest that Src42A is involved in two related processes: in addition to establishing tension generated by the planar polarity of MyoII, it may also act as a signalling factor at tAJs to control E-cadherin residence time.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Junções Aderentes/metabolismo , Caderinas/genética , Caderinas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Junções Intercelulares/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
3.
Development ; 149(23)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36314606

RESUMO

The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.


Assuntos
Adesões Focais , Talina , Animais , Adesões Focais/metabolismo , Talina/genética , Talina/metabolismo , Actinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células Endoteliais/metabolismo , Integrinas/genética , Integrinas/metabolismo , Adesão Celular
4.
Arterioscler Thromb Vasc Biol ; 44(3): 666-689, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38299356

RESUMO

BACKGROUND: Endothelial cells are constantly exposed to mechanical forces in the form of fluid shear stress, extracellular stiffness, and cyclic strain. The mechanoresponsive activity of YAP (Yes-associated protein) and its role in vascular development are well described; however, whether changes to transcription or epigenetic regulation of YAP are involved in these processes remains unanswered. Furthermore, how mechanical forces are transduced to the nucleus to drive transcriptional reprogramming in endothelial cells is poorly understood. The YAP target gene, AmotL2 (angiomotin-like 2), is a junctional mechanotransducer that connects cell-cell junctions to the nuclear membrane via the actin cytoskeleton. METHODS: We applied mechanical manipulations including shear flow, stretching, and substrate stiffness to endothelial cells to investigate the role of mechanical forces in modulating YAP transcription. Using in vitro and in vivo endothelial depletion of AmotL2, we assess nuclear morphology, chromatin organization (using transposase-accessible chromatin sequencing), and whole-mount immunofluorescent staining of the aorta to determine the regulation and functionality of YAP. Finally, we use genetic and chemical inhibition to uncouple the nuclear-cytoskeletal connection to investigate the role of this pathway on YAP transcription. RESULTS: Our results reveal that mechanical forces sensed at cell-cell junctions by the YAP target gene AmotL2 are directly involved in changes in global chromatin accessibility and activity of the histone methyltransferase EZH2, leading to modulation of YAP promotor activity. Functionally, shear stress-induced proliferation of endothelial cells in vivo was reliant on AmotL2 and YAP/TAZ (transcriptional coactivator with PDZ-binding motif) expression. Mechanistically, uncoupling of the nuclear-cytoskeletal connection from junctions and focal adhesions led to altered nuclear morphology, chromatin accessibility, and YAP promotor activity. CONCLUSIONS: Our findings reveal a role for AmotL2 and nuclear-cytoskeletal force transmission in modulating the epigenetic and transcriptional regulation of YAP to maintain a mechano-enforced positive feedback loop of vascular homeostasis. These findings may offer an explanation as to the proinflammatory phenotype that leads to aneurysm formation observed in AmotL2 endothelial deletion models.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transativadores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transativadores/metabolismo , Mecanotransdução Celular , Células Endoteliais/metabolismo , Epigênese Genética , Cromatina
5.
J Infect Dis ; 229(6): 1688-1701, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38416880

RESUMO

BACKGROUND: The bacterial genotoxin, cytolethal distending toxin (CDT), causes DNA damage in host cells, a risk factor for carcinogenesis. Previous studies have shown that CDT induces phenotypes reminiscent of epithelial to mesenchymal transition (EMT), a process involved in cancer initiation and progression. METHODS: We investigated different steps of EMT in response to Helicobacter hepaticus CDT and its active CdtB subunit using in vivo and in vitro models. RESULTS: Most of the steps of the EMT process were induced by CDT/CdtB and observed throughout the study in murine and epithelial cell culture models. CdtB induced cell-cell junction disassembly, causing individualization of cells and acquisition of a spindle-like morphology. The key transcriptional regulators of EMT (SNAIL and ZEB1) and some EMT markers were upregulated at both RNA and protein levels in response to CDT/CdtB. CdtB increased the expression and proteolytic activity of matrix metalloproteinases, as well as cell migration. A range of these results were confirmed in Helicobacter hepaticus-infected and xenograft murine models. In addition, colibactin, a genotoxic metabolite produced by Escherichia coli, induced EMT-like effects in cell culture. CONCLUSIONS: Overall, these data show that infection with genotoxin-producing bacteria elicits EMT process activation, supporting their role in tumorigenesis.


Assuntos
Toxinas Bacterianas , Diferenciação Celular , Transição Epitelial-Mesenquimal , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Camundongos , Humanos , Diferenciação Celular/efeitos dos fármacos , Helicobacter hepaticus , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Infecções por Helicobacter/microbiologia , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Feminino
6.
Development ; 148(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34532737

RESUMO

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Epitélio/metabolismo , Proteínas Repressoras/metabolismo , Asas de Animais/metabolismo , Junções Aderentes/metabolismo , Animais , Proteínas de Transporte , Citoplasma/metabolismo , Morfogênese/fisiologia , Pupa/metabolismo
7.
Hum Reprod ; 39(8): 1778-1793, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38915267

RESUMO

STUDY QUESTION: What is the pathological mechanism involved in a thin endometrium, particularly under ischaemic conditions? SUMMARY ANSWER: Endometrial dysfunction in patients with thin endometrium primarily results from remodelling in cytoskeletons and cellular junctions of endometrial epithelial cells under ischemic conditions. WHAT IS KNOWN ALREADY: A healthy endometrium is essential for successful embryo implantation and subsequent pregnancy; ischemic conditions in a thin endometrium compromise fertility outcomes. STUDY DESIGN, SIZE, DURATION: We recruited 10 patients with thin endometrium and 15 patients with healthy endometrium. Doppler ultrasound and immunohistochemical results confirmed the presence of insufficient endometrial blood perfusion in patients with thin endometrium. Organoids were constructed using healthy endometrial tissue and cultured under oxygen-glucose deprivation (OGD) conditions for 24 h. The morphological, transcriptomic, protein expression, and signaling pathway changes in the OGD organoids were observed. These findings were validated in both thin endometrial tissue and healthy endometrial tissue samples. PARTICIPANTS/MATERIALS, SETTING, METHODS: Endometrial thickness and blood flow were measured during the late follicular phase using transvaginal Doppler ultrasound. Endometrial tissue was obtained via hysteroscopy. Fresh endometrial tissues were used for the generation and culture of human endometrial organoids. Organoids were cultured in an appropriate medium and subjected to OGD to simulate ischemic conditions. Apoptosis and cell death were assessed using Annexin-V/propidium iodide staining. Immunofluorescence analysis, RNA sequencing, western blotting, simple westerns, immunohistochemistry, and electron microscopy were conducted to evaluate cellular and molecular changes. MAIN RESULTS AND THE ROLE OF CHANCE: Patients with thin endometrium showed significantly reduced endometrial thickness and altered blood flow patterns compared to those with healthy endometrium. Immunohistochemical staining revealed fewer CD34-positive blood vessels and glands in the thin endometrium group. Organoids cultured under OGD conditions exhibited significant morphological changes, increased apoptosis, and cell death. RNA-seq identified differentially expressed genes related to cytoskeletal remodeling and stress responses. OGD induced a strong cytoskeletal reorganization, mediated by the RhoA/ROCK signaling pathway. Additionally, electron microscopy indicated compromised epithelial integrity and abnormal cell junctions in thin endometrial tissues. Upregulation of hypoxia markers (HIF-1α and HIF-2α) and activation of the RhoA/ROCK pathway were also observed in thin endometrial tissues, suggesting ischemia and hypoxia as underlying mechanisms. LARGE SCALE DATA: none. LIMITATIONS AND REASONS FOR CAUTION: The study was conducted in an in vitro model, which may not fully replicate the complexity of in vivo conditions. WIDER IMPLICATIONS OF THE FINDINGS: This research provides a new three-dimensional in vitro model of thin endometrium, as well as novel insights into the pathophysiological mechanisms of endometrial ischaemia in thin endometrium, offering potential avenues for identifying therapeutic targets for treating fertility issues related to thin endometrium. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Natural Science Foundation of China (81925013); National Key Research and Development Project of China (2022YFC2702500, 2021YFC2700303, 2021YFC2700601); the Capital Health Research and Development Project (SF2022-1-4092); the National Natural Science Foundation of China (82288102, 81925013, 82225019, 82192873); Special Project on Capital Clinical Diagnosis and Treatment Technology Research and Transformation Application (Z211100002921054); the Frontiers Medical Center, Tianfu Jincheng Laboratory Foundation(TFJC2023010001). The authors declare that no competing interests exist.


Assuntos
Endométrio , Glucose , Organoides , Oxigênio , Humanos , Feminino , Endométrio/metabolismo , Endométrio/irrigação sanguínea , Endométrio/patologia , Organoides/metabolismo , Adulto , Glucose/metabolismo , Oxigênio/metabolismo , Citoesqueleto/metabolismo , Apoptose
8.
Adv Exp Med Biol ; 1441: 417-433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884723

RESUMO

This chapter will describe basic structural and functional features of the contractile apparatus of muscle cells of the heart, namely, cardiomyocytes and smooth muscle cells. Cardiomyocytes form the contractile myocardium of the heart, while smooth muscle cells form the contractile coronary vessels. Both muscle types have distinct properties and will be considered with respect to their cellular appearance (brick-like cross-striated versus spindle-like smooth), arrangement of contractile proteins (sarcomeric versus non-sarcomeric organization), calcium activation mechanisms (thin-filament versus thick-filament regulation), contractile features (fast and phasic versus slow and tonic), energy metabolism (high oxygen versus low oxygen demand), molecular motors (type II myosin isoenzymes with high adenosine diphosphate [ADP]-release rate versus myosin isoenzymes with low ADP-release rates), chemomechanical energy conversion (high adenosine triphosphate [ATP] consumption and short duty ratio versus low ATP consumption and high duty ratio of myosin II cross-bridges [XBs]), and excitation-contraction coupling (calcium-induced calcium release versus pharmacomechanical coupling). Part of the work has been published (Neuroscience - From Molecules to Behavior", Chap. 22, Galizia and Lledo eds 2013, Springer-Verlag; with kind permission from Springer Science + Business Media).


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Humanos , Contração Miocárdica/fisiologia , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Cálcio/metabolismo , Metabolismo Energético , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Acoplamento Excitação-Contração/fisiologia
9.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892168

RESUMO

Pinin (PNN) is a desmosome-associated protein that reinforces the organization of keratin intermediate filaments and stabilizes the anchoring of the cytoskeleton network to the lateral surface of the plasma membrane. The aberrant expression of PNN affects the strength of cell adhesion as well as modifies the intracellular signal transduction pathways leading to the onset of CRC. In our previous studies, we characterized the role of miR-195-5p in the regulation of desmosome junctions and in CRC progression. Here, with the aim of investigating additional mechanisms related to the desmosome complex, we identified PNN as a miR-195-5p putative target. Using a public data repository, we found that PNN was a negative prognostic factor and was overexpressed in colon cancer tissues from stage 1 of the disease. Then, we assessed PNN expression in CRC tissue specimens, confirming the overexpression of PNN in tumor sections. The increase in intracellular levels of miR-195-5p revealed a significant decrease in PNN at the mRNA and protein levels. As a consequence of PNN regulation by miR-195-5p, the expression of KRT8 and KRT19, closely connected to PNN, was affected. Finally, we investigated the in vivo effect of miR-195-5p on PNN expression in the colon of AOM/DSS-treated mice. In conclusion, we have revealed a new mechanism driven by miR-195-5p in the regulation of desmosome components, suggesting a potential pharmacological target for CRC therapy.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Int J Cosmet Sci ; 46(4): 494-505, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113319

RESUMO

Objective: Desmosomes are the most prominent interkeratinocyte junctions. The correct barrier function of stratified epithelia such as epidermis depends on their expression. During epidermal differentiation, the molecular composition of desmosomes evolves and so do their physical and chemical properties. Desquamation of corneocytes at the surface of the stratum corneum depends on an orderly degradation of desmosomes by endogenous enzymes. This process may be regulated by glycosylated molecules. We focused on the detection and characterization of potentially implicated players bearing 'sugar' characteristics. Methods: Using an original monoclonal antibody and biochemical methods, we partially characterized a proteoglycan of the exclusively chondroitin/dermatan sulphate type, secreted into the interkeratinocyte spaces, that is incorporated into the extracellular parts of desmosomes in quantities proportional to the degree of cell differentiation, as visualized with immuno-electron microscopy. Results: This antigen, that we named desmosealin, displays biochemical and immunocytochemical characteristics that clearly differentiate it from known desmosomal elements. Unlike so far described epidermal proteoglycans, which belong to the heparan sulphate family, desmosealin displays chondroitin/dermatan sulphate glycosaminoglycan chains. It can be detected within the extracellular 'cores' of desmosomes in the upper viable epidermal layers and in corneodesmosomes from the lowermost part of the stratum corneum. Conclusion: Extensive integration of proteoglycans into the extracellular parts of desmosomes at the late stages of keratinocyte maturation is likely of functional importance. Given its biochemical profile, its pattern of expression in the epidermis and its desmosomal localization, desmosealin may emerge as a key element in the regulation of desmosome processing, epidermal cohesion and formation of a functional epidermal barrier.


OBJECTIF: Les desmosomes sont les jonctions inter­kératinocytaires les plus proéminentes. Le fonctionnement appropriée des épithéliums stratifiés comme épiderme dépend de leur expression. La composition moléculaire et les propriétés physico­chimiques des desmosomes évoluent au cours de la différenciation épidermique. La desquamation de cornéocytes la surface du stratum corneum depend de la dégradation ordonnée des desmosomes par les enzymes endogènes. Ce processus peut être régulé par les molécules glycosylées. Notre travail consistait en détection et caractérisation de l'un des acteurs potentiellement impliqués, portant des chaînes carbohydrate. METHODES: Les approches d'analyse biochimique s'appuyant sur un anticorps monoclonal original (immunotransfert mono­et bi­dimensionnel, immunoprécipitation­immunodétection croisées, digestions enzymatiques, tests de déglycosylation et d'inhibition de synthèse) nous ont permis la caractérisation partielle d'un protéoglycanne sécrété dans les espaces inter­kératinocytaires. Cette molécule s'intègre aux desmosomes en quantités proportionnelles au stade de différenciation des kératinocytes, comme le démontrent les marquages ultrastructuraux à l'or colloïdal sur des cryocoupes et tissus enrobés en résines acryliques. RESULTATS: Cet antigène, que nous avons appelé desmosealine, est clairement distinct des éléments constitutifs de desmosomes décrits jusqu'alors. Contrairement aux protéoglycannes épidermiques connus, il porte exclusivement les chaînes glycosaminoglycannes de type chondroïtine/dermatane sulfate. La desmosealine est présente dans les parties extracellulaires de desmosomes, dans la portion supérieure de l'épiderme vivant et le début du stratum corneum. CONCLUSION: L'intégration massive d'un protéoglycanne dans des parties intercellulaires de desmosomes revêt vraisemblablement une importance fonctionnelle. De par son profile biochimique, sa distribution dans l'épiderme et son affinité pour les desmosomes, le desmosealine peut s'avérer être un élément clé dans la régulation de la cohésion interkératinocytaire et la formation de la barrière de perméabilité épidermique.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Condroitina , Desmossomos , Humanos , Condroitina/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Desmossomos/metabolismo
11.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851405

RESUMO

Cadherin-mediated cell adhesion requires anchoring via the ß-catenin-α-catenin complex to the actin cytoskeleton, yet, α-catenin only binds F-actin weakly. A covalent fusion of VE-cadherin to α-catenin enhances actin anchorage in endothelial cells and strongly stabilizes endothelial junctions in vivo, blocking inflammatory responses. Here, we have analyzed the underlying mechanism. We found that VE-cadherin-α-catenin constitutively recruits the actin adaptor vinculin. However, removal of the vinculin-binding region of α-catenin did not impair the ability of VE-cadherin-α-catenin to enhance junction integrity. Searching for an alternative explanation for the junction-stabilizing mechanism, we found that an antibody-defined epitope, normally buried in a short α1-helix of the actin-binding domain (ABD) of α-catenin, is openly displayed in junctional VE-cadherin-α-catenin chimera. We found that this epitope became exposed in normal α-catenin upon triggering thrombin-induced tension across the VE-cadherin complex. These results suggest that the VE-cadherin-α-catenin chimera stabilizes endothelial junctions due to conformational changes in the ABD of α-catenin that support constitutive strong binding to actin.


Assuntos
Caderinas , Células Endoteliais , Citoesqueleto de Actina , Actinas/genética , Caderinas/genética , Junções Intercelulares , Vinculina , alfa Catenina/genética
12.
Cell Tissue Res ; 393(3): 559-575, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328709

RESUMO

Mammalian target of rapamycin (mTOR) is a crucial signaling protein regulating a range of cellular events. Numerous studies have reported that the mTOR pathway is related to spermatogenesis in mammals. However, its functions and underlying mechanisms in crustaceans remain largely unknown. mTOR exists as two multimeric functional complexes termed mTOR complex 1 (mTORC1) and mTORC2. Herein, we first cloned ribosomal protein S6 (rpS6, a downstream molecule of mTORC1) and protein kinase C (PKC, a downstream effector of mTORC2) from the testis of Eriocheir sinensis. The dynamic localization of rpS6 and PKC suggested that both proteins may be essential for spermatogenesis. rpS6/PKC knockdown and Torin1 treatment led to defects in spermatogenesis, including germ cell loss, retention of mature sperm and empty lumen formation. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was disrupted in the rpS6/PKC knockdown and Torin1 treatment groups, accompanied by changing in expression and distribution of junction proteins. Further study demonstrated that these findings may result from the disorganization of filamentous actin (F-actin) networks, which were mediated by the expression of actin-related protein 3 (Arp3) rather than epidermal growth factor receptor pathway substrate 8 (Eps8). In summary, our study illustrated that mTORC1/rpS6 and mTORC2/PKC regulated spermatogenesis via Arp3-mediated actin microfilament organization in E. sinensis.


Assuntos
Sêmen , Transdução de Sinais , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Sêmen/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Espermatogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Barreira Hematotesticular/metabolismo , Mamíferos/metabolismo
13.
Cell Commun Signal ; 21(1): 291, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853467

RESUMO

NF-κB transcription factors are critical regulators of innate and adaptive immunity and major mediators of inflammatory signaling. The NF-κB signaling is dysregulated in a significant number of cancers and drives malignant transformation through maintenance of constitutive pro-survival signaling and downregulation of apoptosis. Overactive NF-κB signaling results in overexpression of pro-inflammatory cytokines, chemokines and/or growth factors leading to accumulation of proliferative signals together with activation of innate and select adaptive immune cells. This state of chronic inflammation is now thought to be linked to induction of malignant transformation, angiogenesis, metastasis, subversion of adaptive immunity, and therapy resistance. Moreover, accumulating evidence indicates the involvement of NF-κB signaling in induction and maintenance of invasive phenotypes linked to epithelial to mesenchymal transition (EMT) and metastasis. In this review we summarize reported links of NF-κB signaling to sequential steps of transition from epithelial to mesenchymal phenotypes. Understanding the involvement of NF-κB in EMT regulation may contribute to formulating optimized therapeutic strategies in cancer. Video Abstract.


Assuntos
NF-kappa B , Neoplasias , Humanos , NF-kappa B/metabolismo , Transição Epitelial-Mesenquimal/genética , Transdução de Sinais , Neoplasias/metabolismo , Transformação Celular Neoplásica , Fenótipo , Linhagem Celular Tumoral
14.
Cell Mol Life Sci ; 79(10): 535, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180740

RESUMO

Preservation of blood vessel integrity, which is critical for normal physiology and organ function, is controlled at multiple levels, including endothelial junctions. However, the mechanism that controls the adequate assembly of endothelial cell junctions is not fully defined. Here, we uncover TAp73 transcription factor as a vascular architect that orchestrates transcriptional programs involved in cell junction establishment and developmental blood vessel morphogenesis and identify Angiomotin (AMOT) as a TAp73 direct transcriptional target. Knockdown of p73 in endothelial cells not only results in decreased Angiomotin expression and localization at intercellular junctions, but also affects its downstream function regarding Yes-associated protein (YAP) cytoplasmic sequestration upon cell-cell contact. Analysis of adherens junctional morphology after p73-knockdown in human endothelial cells revealed striking alterations, particularly a sharp increase in serrated junctions and actin bundles appearing as stress fibers, both features associated with enhanced barrier permeability. In turn, stabilization of Angiomotin levels rescued those junctional defects, confirming that TAp73 controls endothelial junction dynamics, at least in part, through the regulation of Angiomotin. The observed defects in monolayer integrity were linked to hyperpermeability and reduced transendothelial electric resistance. Moreover, p73-knockout retinas showed a defective sprout morphology coupled with hemorrhages, highlighting the physiological relevance of p73 regulation in the maintenance of vessel integrity in vivo. We propose a new model in which TAp73 acts as a vascular architect integrating transcriptional programs that will impinge with Angiomotin/YAP signaling to maintain junctional dynamics and integrity, while balancing endothelial cell rearrangements in angiogenic vessels.


Assuntos
Angiomotinas , Células Endoteliais , Actinas/metabolismo , Caderinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
15.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674801

RESUMO

Canonical coxsackievirus and adenovirus receptor (CXADR) is a transmembrane component of cell junctions that is crucial for cardiac and testicular functions via its homophilic and heterophilic interaction. CXADR is expressed in both Sertoli cells and germ cells and is localized mainly at the interface between Sertoli-Sertoli cells and Sertoli-germ cells. Knockout of CXADR in mouse Sertoli cells specifically impairs male reproductive functions, including a compromised blood-testis barrier, apoptosis of germ cells, and premature loss of spermatids. Apart from serving as an important component for cell junctions, recent progress has showed the potential roles of CXADR as a signaling mediator in spermatogenesis. This review summarizes current research progress related to the regulation and role of CXADR in spermatogenesis as well as in pathological conditions. We hope this review provides some future directions and a blueprint to promote the further study on the roles of CXADR.


Assuntos
Receptores Virais , Espermatogênese , Animais , Masculino , Camundongos , Infecções por Coxsackievirus , Enterovirus , Camundongos Knockout , Receptores Virais/metabolismo , Células de Sertoli/fisiologia , Espermátides , Testículo
16.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069408

RESUMO

Desmosomes play a key role in the regulation of cell adhesion and signaling. Dysregulation of the desmosome complex is associated with the loss of epithelial cell polarity and disorganized tissue architecture typical of colorectal cancer (CRC). The aim of this study was to investigate and characterize the effect of miR-195-5p on desmosomal junction regulation in CRC. In detail, we proposed to investigate the deregulation of miR-195-5p and JUP, a gene target that encodes a desmosome component in CRC patients. JUP closely interacts with desmosomal cadherins, and downstream, it regulates several intracellular transduction factors. We restored the miR-195-5p levels by transient transfection in colonic epithelial cells to examine the effects of miR-195-5p on JUP mRNA and protein expression. The JUP regulation by miR-195-5p, in turn, determined a modulation of desmosome cadherins (Desmoglein 2 and Desmocollin 2). Furthermore, we focused on whether the miR-195-5p gain of function was also able to modulate the expression of key components of Wnt signaling, such as NLK, LEF1 and Cyclin D1. In conclusion, we have identified a novel mechanism controlled by miR-195-5p in the regulation of adhesive junctions, suggesting its potential clinical relevance for future miRNA-based therapy in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , gama Catenina/genética , gama Catenina/metabolismo , Desmossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas Serina-Treonina Quinases/metabolismo
17.
J Biol Chem ; 296: 100493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33675748

RESUMO

PDZ domains are one of the most abundant protein domains in eukaryotes and are frequently found on junction-localized scaffold proteins. Various signaling molecules bind to PDZ proteins via PDZ-binding motifs (PBM) and fine-tune cellular signaling. However, how such interaction affects protein function is difficult to predict and must be solved empirically. Here we describe a long isoform of the guanine nucleotide exchange factor GIV/Girdin (CCDC88A) that we named GIV-L, which is conserved throughout evolution, from invertebrates to vertebrates, and contains a PBM. Unlike GIV, which lacks PBM and is cytosolic, GIV-L localizes onto cell junctions and has a PDZ interactome (as shown through annotating Human Cell Map and BioID-proximity labeling studies), which impacts GIV-L's ability to bind and activate trimeric G-protein, Gαi, through its guanine-nucleotide exchange modulator (GEM) module. This GEM module is found exclusively in vertebrates. We propose that the two functional modules in GIV may have evolved sequentially: the ability to bind PDZ proteins via the PBM evolved earlier in invertebrates, whereas G-protein binding and activation may have evolved later only among vertebrates. Phenotypic studies in Caco-2 cells revealed that GIV and GIV-L may have antagonistic effects on cell growth, proliferation (cell cycle), and survival. Immunohistochemical analysis in human colon tissues showed that GIV expression increases with a concomitant decrease in GIV-L during cancer initiation. Taken together, these findings reveal how regulation in GIV/CCDC88A transcript helps to achieve protein modularity, which allows the protein to play opposing roles either as a tumor suppressor (GIV-L) or as an oncogene (GIV).


Assuntos
Neoplasias do Colo/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral/fisiologia , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Humanos , Proteínas dos Microfilamentos/química , Domínios PDZ , Fosforilação , Ligação Proteica , Isoformas de Proteínas , Transporte Proteico , Transdução de Sinais , Proteínas de Transporte Vesicular/química , Peixe-Zebra
18.
Cell Tissue Res ; 390(2): 293-313, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36044078

RESUMO

Spermatogenesis is a finely regulated process of germ cell proliferation and differentiation that leads to the production of sperm in seminiferous tubules. Although the mammalian target of rapamycin (mTOR) signaling pathway is crucial for spermatogenesis in mammals, its functions and molecular mechanisms in spermatogenesis remain largely unknown in nonmammalian species, particularly in Crustacea. In this study, we first identified es-Raptor (the core component of mTOR complex 1) and es-Rictor (the core component of mTOR complex 2) from the testis of Eriocheir sinensis. Dynamic localization of es-Raptor and es-Rictor implied that these proteins were indispensable for the spermatogenesis of E. sinensis. Furthermore, es-Raptor and es-Rictor knockdown results showed that the mature sperm failed to be released, causing almost empty lumens in the testis. We investigated the reasons for these effects and found that the actin-based cytoskeleton was disrupted in the knockdown groups. In addition, the integrity of the testis barrier (similar to the blood-testis barrier in mammals) was impaired and affected the expression of cell junction proteins. Further study revealed that es-Raptor and es-Rictor may regulate spermatogenesis via both mTORC1- and mTORC2-dependent mechanisms that involve es-rpS6 and es-Akt/es-PKC, respectively. Moreover, to explore the testis barrier in E. sinensis, we established a cadmium chloride (CdCl2)-induced testis barrier damage model as a positive control. Morphological and immunofluorescence results were similar to those of the es-Raptor and es-Rictor knockdown groups. Altogether, es-Raptor and es-Rictor were important for spermatogenesis through maintenance of the actin filament network and cell junctions in E. sinensis.


Assuntos
Braquiúros , Sêmen , Animais , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Espermatogênese/fisiologia , Citoesqueleto de Actina , Junções Intercelulares , Proteínas/farmacologia , Mamíferos
19.
Clin Genet ; 101(4): 466-471, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060117

RESUMO

Diaphanous-related formin 1 (DIAPH1) is a formin homology F-actin elongating protein encoded by DIAPH1. Homozygous recessive variants resulting in the loss of DIAPH1 function cause seizures, cortical blindness, and microcephaly syndrome (SCBMS), but hearing loss has not been reported. In contrast, dominant variants of human DIAPH1 are associated with DFNA1 non-syndromic sensorineural hearing loss. The deafness phenotype is due partly to abnormal F-actin elongation activity caused by disruption of the DIAPH1 autoinhibitory mechanism. We report an elderly female heterozygous for the c.3145C>T: p.R1049X variant who showed late-onset sensorineural hearing loss in her fifth decade. p.R1049X lacks F-actin elongation activity because this variant truncates one-third of the FH2 domain, which is vital for DIAPH1 dimerization and processive F-actin elongation activity. Concordantly, no increase of F-actin or processive F-actin elongation activity was observed after overexpression of p.R1049X DIAPH1 in HeLa cells or by single-molecule microscopy using Xenopus XTC cells. However, overexpression of the p.R1049X variant impairs formation of cell-cell junctions and mitosis. We speculate that late-onset hearing loss is a long-term consequence of heterozygosity for the recessive p.R1049X variant, a phenotype that may have been overlooked among carriers of other recessive alleles of DIAPH1.


Assuntos
Forminas , Perda Auditiva Neurossensorial , Perda Auditiva , Idoso , Feminino , Forminas/genética , Células HeLa , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Humanos , Fenótipo
20.
Cell Commun Signal ; 20(1): 19, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177067

RESUMO

BACKGROUND: The Src tyrosine kinase phosphorylates effector proteins to induce expression of the podoplanin (PDPN) receptor in order to promote tumor progression. However, nontransformed cells can normalize the growth and morphology of neighboring transformed cells. Transformed cells must escape this process, called "contact normalization", to become invasive and malignant. Contact normalization requires junctional communication between transformed and nontransformed cells. However, specific junctions that mediate this process have not been defined. This study aimed to identify junctional proteins required for contact normalization. METHODS: Src transformed cells and oral squamous cell carcinoma cells were cultured with nontransformed cells. Formation of heterocellular adherens junctions between transformed and nontransformed cells was visualized by fluorescent microscopy. CRISPR technology was used to produce cadherin deficient and cadherin competent nontransformed cells to determine the requirement for adherens junctions during contact normalization. Contact normalization of transformed cells cultured with cadherin deficient or cadherin competent nontransformed cells was analyzed by growth assays, immunofluorescence, western blotting, and RNA-seq. In addition, Src transformed cells expressing PDPN under a constitutively active exogenous promoter were used to examine the ability of PDPN to override contact normalization. RESULTS: We found that N-cadherin (N-Cdh) appeared to mediate contact normalization. Cadherin competent cells that expressed N-Cdh inhibited the growth of neighboring transformed cells in culture, while cadherin deficient cells failed to inhibit the growth of these cells. Results from RNA-seq analysis indicate that about 10% of the transcripts affected by contact normalization relied on cadherin mediated communication, and this set of genes includes PDPN. In contrast, cadherin deficient cells failed to inhibit PDPN expression or normalize the growth of adjacent transformed cells. These data indicate that nontransformed cells formed heterocellular cadherin junctions to inhibit PDPN expression in adjacent transformed cells. Moreover, we found that PDPN enabled transformed cells to override the effects of contact normalization in the face of continued N-Cdh expression. Cadherin competent cells failed to normalize the growth of transformed cells expressing PDPN under a constitutively active exogenous promoter. CONCLUSIONS: Nontransformed cells form cadherin junctions with adjacent transformed cells to decrease PDPN expression in order to inhibit tumor cell proliferation. Cancer begins when a single cell acquires changes that enables them to form tumors. During these beginning stages of cancer development, normal cells surround and directly contact the cancer cell to prevent tumor formation and inhibit cancer progression. This process is called contact normalization. Cancer cells must break free from contact normalization to progress into a malignant cancer. Contact normalization is a widespread and powerful process; however, not much is known about the mechanisms involved in this process. This work identifies proteins required to form contacts between normal cells and cancer cells, and explores pathways by which cancer cells override contact normalization to progress into malignant cancers. Video Abstract.


Assuntos
Antígenos CD , Caderinas , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Transformação Celular Neoplásica , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa