Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Nutr ; 119(10): 1102-1110, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29759109

RESUMO

Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.


Assuntos
Anticolesterolemiantes/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Hordeum , Grãos Integrais , Gordura Abdominal , Animais , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/biossíntese , Ácidos e Sais Biliares/metabolismo , Biomarcadores/análise , Colesterol/biossíntese , Colesterol/genética , Colesterol/metabolismo , Dieta , Fibras na Dieta/administração & dosagem , Fezes/química , Expressão Gênica , Intestino Delgado/química , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Lipídeos/sangue , Fígado/química , Fígado/metabolismo , Masculino , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley
3.
Aquat Toxicol ; 264: 106736, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37913686

RESUMO

Plastic is undoubtedly the most useful and versatile polymeric material that man has developed in the last two centuries Despite the societal benefits, plastic is now a serious global issue because it is persistent and may bioaccumulate into aquatic biota as microplastics (MPs). This study was designed to evaluate the daily uptake and cellular effects due to a short-term (up to 72 h) exposure to 3 µm red polystyrene MPs (50 beads/mL) in the gills of the Mediterranean mussel Mytilus galloprovincialis, chosen as model species for its ecological and commercial relevance. After measuring the daily uptake of MPs and detecting their presence within the branchial epithelium at all the exposure time-points (T24, T48, T72), some cleaning mechanisms were observed by neutral and acid mucous secretions at mussel gills. The protonic Nuclear Magnetic Resonance (1H NMR)-based metabolomics, combined with chemometrics, allowed to comprehensively explore the time-dependent metabolic disorders triggered by MPs in mussel gills over the short-term trial. Specifically, the clear clustering between MP-treated mussel gills and those from control, together with the grouping for experimental time-points as depicted by the Principal Component Analysis (PCA), were due to changes in the amino acids and energy metabolism, disturbances in the osmoregulatory processes, as well as in the cholinergic neurotransmission. Moreover, as evidenced by enzymatic assays, even the oxidative defense systems and lipid metabolism were hampered by MP exposure. Overall, these findings provides the first insights into the early time-dependent mechanisms of toxicity of polystyrene MPs in marine mussels, and underline the potential environment and human health risk posed by MPs contamination.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Brânquias/metabolismo , Microplásticos/metabolismo , Mytilus/metabolismo , Plásticos , Poliestirenos/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Sci Total Environ ; 856(Pt 1): 158732, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122726

RESUMO

Species from shallow marine environments are particularly vulnerable to extreme weather events (heatwaves and extreme rainfall) that can promote abrupt environmental shifts, namely in temperature and salinity (respectively). To assess how these shifts impact species' cellular stress responses (CSR), ditch shrimps Palaemon varians were exposed to a chronic (28 days) thermohaline stress experiment. Three levels of temperature (20, 23 and 26 °C) and two levels of salinity (20 and 40) were tested in a full factorial experiment, and shrimps sampled at the 7th, 14th, 21st and 28th day of exposure. Survival, wet weight (as proxy for growth), and cellular stress biomarkers associated with oxidative stress (LPO - Lipid Peroxidation, GST - Glutathione-S-Transferase, SOD - Superoxide Dismutase, TAC - Total Antioxidant Capacity and CAT - Catalase) and protein denaturation (UBI - Ubiquitin and HSP-70 - Heat Shock Protein 70 kDa) were analysed in shrimps' muscle at each sampling day. Temperature and time of exposure significantly affected biomarker levels, with shrimps exposed to 20 and 26 °C revealing more pronounced differences. No interactions were detected between temperature and salinity, suggesting that these factors display additive effects on shrimps' CSR. Antioxidant agents (CAT and TAC) increased under elevated temperature, while protein denaturation markers (UBI and HSP-70) were mostly affected by time of exposure, decreasing at 28 days. Total protein reserves increased throughout time and no effects on wet weight were observed. A negative correlation between wet weight and HSP-70 was detected, suggesting that HSP-70 levels are dependent on organism size. Peak survival (~73 %) was found under 20 °C and salinity 40 and lower survival (~30-40 %) was associated with higher temperatures (23 and 26 °C) and lower salinity (20). We conclude that P. varians displays some level of acclimation capacity but differences in survival may indicate effects on osmoregulation processes and the need for longer timeframes to fully acclimate to heat and hyposaline stress.


Assuntos
Decápodes , Clima Extremo , Palaemonidae , Animais , Palaemonidae/metabolismo , Plásticos , Antioxidantes , Aclimatação , Decápodes/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Biomarcadores/metabolismo
5.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839058

RESUMO

Studies have described the occurrence of nanoparticles (NPs) in aquatic ecosystems, with particular attention to the widely commercialized carbon nanotubes (CNTs). Their presence in the environment raises concerns, especially regarding their toxicity when co-occurring with other pollutants such as metals. In the present study, changes to the metabolic capacity, oxidative, and neurologic status were evaluated in the presence of carboxylated multi-walled CNTs and chromium (Cr(III)) using two of the most ecologically and economically relevant filter feeder organisms: the clam species Ruditapes decussatus and R. philippinarum. Results indicated that although Cr, either alone or in combination with CNTs, was found in a similar concentration level in both species, a species-specific Cr accumulation was observed, with higher values in R. decussatus in comparison with R. philippinarum. Inhibition of antioxidant defenses and neurotoxic effects were detected only in R. philippinarum. The interaction between contaminants seems to have no effect in terms of antioxidant enzyme activities and neuro status. Nevertheless, synergistic activation of responses to both contaminants may have altered the metabolic capacity of bivalves, particularly evident in R. decussatus. While both clams are tolerant to both contaminants (alone and together), they showed a relevant accumulation capacity, which may represent a possible contaminant transfer to humans.

6.
Front Oncol ; 12: 821454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311070

RESUMO

Objective: Circulating rare cells (CRCs) are known as a crucial nucleated cellular response to pathological conditions, yet the landscape of cell types across a wide variety of diseases lacks comprehensive understanding. This study aimed at detecting and presenting a full spectrum of highly heterogeneous CRCs in clinical practice and further explored the characterization of CRC subtypes in distinct biomarker combinations and aneuploid chromosomes among various disease groups. Methods: Peripheral blood was obtained from 2,360 patients with different cancers and non-neoplastic diseases. CRC capture and identification were accomplished using a novel platform integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) strategy with a high-throughput automated image scanning system, on which hemocyte, tumor, epithelial, endothelial, mesenchymal, and stemness biomarkers were immunostained and displayed simultaneously. Double chromosome enumeration probe (CEP8 and CEP12) co-detection was performed on isolated CRCs from an extended trial for two chromosome ploidy patterns. Results: A comprehensive atlas categorizing the diverse CRCs into 71 subtypes outlining was mapped out. The presence of epithelial-mesenchymal transition (EMT) or endothelial-mesenchymal transition (EndoMT), the cells with progenitor property, hematologic CRCs expressing multiple biomarkers, CRCs at "naked nuclei" status, and the rarely reported aneuploid mesenchymal epithelial-endothelial fusion cluster were described. Circulating tumor cells (CTCs) were detected in 2,157 (91.4%) patients; the total numbers of CTCs and circulating tumor-derived endothelial cells (CTECs) were relatively higher in several digestive system cancer types and non-neoplastic infectious diseases (p < 0.05). Co-detection combining CEP8 and CEP12 showed a higher diagnostic specificity on account of 57.27% false negativity of CRC detection through a single probe of CEP8. Conclusions: The alternative biomarkers and chromosomes to be targeted by SE-iFISH and the image scanning platform, along with the comprehensive atlas, offer insight into the heterogeneity of CRCs and reveal potential contributions to specific disease diagnosis and therapeutic target cell discovery.

7.
Aquat Toxicol ; 232: 105750, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33529976

RESUMO

Gradual ocean warming and marine heatwaves represent major threats for marine organisms already facing other anthropogenic-derived hazards, such as chemical contamination in coastal areas. In this study, the combined effects of thermal stress and exposure to gadolinium (Gd), a metal used as a contrasting agent in medical imaging which enters the aquatic environment, were investigated in the embryos and larvae of the sea urchin Paracentrotus lividus. Embryos were exposed to six treatments of three temperatures (18 °C, 21 °C, 24 °C) and two Gd concentrations (control: 0 µM; treated: 20 µM). With respect to developmental progression, increased temperature accelerated development and achievement of the larval stage, while Gd-exposed embryos at the control temperature (18 °C) showed a general delay in development at 24 h post-fertilization (hpf), and a stunting effect and impaired skeleton growth at 48 hpf. Elevated temperatures at near-future projections (+3 °C, 21 °C) reduced the negative effects of Gd on development with a lower percentage of abnormality and improved skeleton growth. Combined extreme warming at present-day marine heatwave conditions (+6 °C, 24 °C) and Gd treatment resulted in a lower proportion of embryos reaching the advanced larval stages compared to the 21 °C + Gd. At the molecular level, western blot analysis showed that Gd was the main driver for the induction of heat shock protein (HSP60, HSP70) expression. At 48 hpf, temperature increase was the main driver for activation of additional cellular stress response strategies such as autophagy and apoptosis. Combined treatments showed the induction of HSP60 at 24 hpf and autophagic and apoptotic processes at 48 hpf. Treatments having low levels of HSPs expression showed high levels of apoptosis, and vice versa, clearly demonstrating the antagonistic effects of HSPs expression and apoptosis. Detection of fragmented DNA in apoptotic nuclei showed selective apoptosis, likely in extremely damaged cells. Our results indicate that the negative effects of Gd-exposure on P. lividus larval development and biomineralization will be mitigated by a near-future ocean warming, up to a thermotolerance threshold when negative synergistic effects were evident. Our data highlight the use of biomarkers as sensitive tools to detect environmental impacts as well as the need for a better understanding of the interactions between the multiple stressors faced by marine species in coastal environments.

8.
Mol Neurobiol ; 58(7): 3043-3060, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33606195

RESUMO

The concept 'the retina as a window to the brain' has been increasingly explored in Alzheimer´s disease (AD) in recent years, since some patients present visual alterations before the first symptoms of dementia. The retina is an extension of the brain and can be assessed by noninvasive methods. However, assessing the retina for AD diagnosis is still a matter of debate. Using the triple transgenic mouse model of AD (3xTg-AD; males), this study was undertaken to investigate whether the retina and brain (hippocampus and cortex) undergo similar molecular and cellular changes during the early stages (4 and 8 months) of the pathology, and if the retina can anticipate the alterations occurring in the brain. We assessed amyloid-beta (Aß) and hyperphosphorylated tau (p-tau) levels, barrier integrity, cell death, neurotransmitter levels, and glial changes. Overall, the retina, hippocampus, and cortex of 3xTg-AD are not significantly affected at these early stages. However, we detected a few differential changes in the retina and brain regions, and particularly a different profile in microglia branching in the retina and hippocampus, only at 4 months, where the number and length of the processes decreased in the retina and increased in the hippocampus. In summary, at the early stages of pathology, the retina, hippocampus, and cortex are not significantly affected but already present some molecular and cellular alterations. The retina did not mirror the changes detected in the brain, and these observations should be taking into account when using the retina as a potential diagnostic tool for AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Retina/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Diferenciação Celular/fisiologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Técnicas de Cultura de Órgãos , Retina/patologia
9.
Front Pharmacol ; 11: 635823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33603671

RESUMO

Background: Juvenile idiopathic arthritis (JIA) is the most common chronic inflammatory arthritis of childhood, characterized by various clinical phenotypes associated with variable prognosis. Significant progress has been achieved with the use of biologic treatments, which specifically block pro-inflammatory molecules involved in the disease pathogenesis. The most commonly used biologics in JIA are monoclonal antibodies and recombinant proteins targeting interleukins 1 (IL-1) and 6 (IL-6), and tumor necrosis factor α (TNF-α). Several biomarkers have been investigated in JIA. Aims: To assess the level of evidence available regarding the role of biomarkers in JIA related to guiding clinical and therapeutic decisions, providing disease prognostic information, facilitating disease activity monitoring and assessing biologic treatment response in JIA, as well as propose new strategies for biologic therapy-related biomarker use in JIA. Methods: We searched PubMed for relevant literature using predefined key words corresponding to several categories of biomarkers to assess their role in predicting and assessing biologic treatment response and clinical remission in JIA. Results: We reviewed serological, cellular, genetic, transcriptomic and imaging biomarkers, to identify candidates that are both well-established and widely used, as well as newly investigated in JIA on biologic therapy. We evaluated their role in management of JIA as well as identified the unmet needs for new biomarker discovery and better clinical applications. Conclusion: Although there are no ideal biomarkers in JIA, we identified serological biomarkers with potential clinical utility. We propose strategies of combining biomarkers of response to biologics in JIA, as well as routine implementation of clinically acceptable imaging biomarkers for improved disease assessment performance.

10.
Front Immunol ; 11: 602547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424849

RESUMO

Prognostic, diagnostic or predictive biomarkers are urgently needed for assessment of chronic graft-versus-host disease (cGvHD), a major risk for patients undergoing allogeneic hematopoietic stem cell transplantation. The main goal of this review generated within the COST Action EUROGRAFT "Integrated European Network on Chronic Graft Versus Host Disease" was to identify potential novel biomarkers for cGvHD besides the widely accepted molecular and cellular biomarkers. Thus, the focus was on cellular biomarkers, alloantibodies, glycomics, endothelial derived particles, extracellular vesicles, microbiome, epigenetic and neurologic changes in cGvHD patients. Both host-reactive antibodies in general, and particularly alloantibodies have been associated with cGvHD and require further consideration. Glycans attached to IgG modulate its activity and represent a promising predictive and/or stratification biomarker for cGVHD. Furthermore, epigenetic changes such as microRNAs and DNA methylation represent potential biomarkers for monitoring cGvHD patients and novel targets for developing new treatment approaches. Finally, the microbiome likely affects the pathophysiology of cGvHD; bacterial strains as well as microbial metabolites could display potential biomarkers for dysbiosis and risk for the development of cGvHD. In summary, although there are no validated biomarkers currently available for clinical use to better inform on the diagnosis, prognosis or prediction of outcome for cGvHD, many novel sources of potential markers have shown promise and warrant further investigation using well characterized, multi-center patient cohorts.


Assuntos
Biomarcadores/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Animais , Bactérias/metabolismo , Micropartículas Derivadas de Células/metabolismo , Doença Crônica , Tomada de Decisão Clínica , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal , Marcadores Genéticos , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Humanos , Isoanticorpos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Valor Preditivo dos Testes , Prognóstico
11.
Front Immunol ; 10: 924, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134058

RESUMO

Following the approval, in recent years, of the first immune checkpoint inhibitor, there has been an explosion in the development of immuno-modulating pharmacological modalities for the treatment of various cancers. From the discovery phase to late-stage clinical testing and regulatory approval, challenges in the development of immuno-oncology (IO) drugs are multi-fold and complex. In the preclinical setting, the multiplicity of potential drug targets around immune checkpoints, the growing list of immuno-modulatory molecular and cellular forces in the tumor microenvironment-with additional opportunities for IO drug targets, the emergence of exploratory biomarkers, and the unleashed potential of modality combinations all have necessitated the development of quantitative, mechanistically-oriented systems models which incorporate key biology and patho-physiology aspects of immuno-oncology and the pharmacokinetics of IO-modulating agents. In the clinical setting, the qualification of surrogate biomarkers predictive of IO treatment efficacy or outcome, and the corresponding optimization of IO trial design have become major challenges. This mini-review focuses on the evolution and state-of-the-art of quantitative systems models describing the tumor vs. immune system interplay, and their merging with quantitative pharmacology models of IO-modulating agents, as companion tools to support the addressing of these challenges.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/imunologia , Modelos Imunológicos , Neoplasias , Microambiente Tumoral , Humanos , Oncologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
12.
Hum Immunol ; 79(5): 322-333, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29374560

RESUMO

Development of tolerance protocols requires assays or biomarkers that distinguish tolerant recipients from non-tolerant ones to be established. In addition, a thorough understanding of the plausible mechanisms associated with clinical transplant tolerance is necessary to take the field forward. Unlike the majority of molecular signature analyses utilized by others, the emphasis of this article is on the cellular and functional biomarkers of induced transplant tolerance. Immunity to an organ transplant is very complex, comprised of two broad categories - innate and acquired or adaptive immune responses. Innate immunity can be avoided by eliminating or preventing ischemic injuries to the donor organ and tolerance at the level of adaptive immunity can be induced by infusions of a number of cellular products. Since adaptive immune response consists of inflammatory hypersensitivity, cellular (cytotoxic and helper) and humoral aspects, all these need to be measured, and the recipients who demonstrate donor-specific unresponsiveness in all can be considered tolerant or candidates for immunosuppression minimization and/or withdrawal. The mechanisms by which these agents bring about transplant tolerance include regulation, anergy, exhaustion, senescence and deletion of the recipient immune cells. Another proven mechanism of tolerance is full or mixed donor chimerism. However, it should be cautioned that non-deletional tolerance can be reversed.


Assuntos
Biomarcadores/metabolismo , Tolerância ao Transplante/imunologia , Imunidade Adaptativa , Citometria de Fluxo , Perfilação da Expressão Gênica , Rejeição de Enxerto/imunologia , Humanos , Terapia de Imunossupressão , Teste de Cultura Mista de Linfócitos , Quimeras de Transplante/imunologia , Tolerância ao Transplante/genética
13.
Chemosphere ; 211: 360-370, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30077932

RESUMO

Increased consumption and improper disposal of prescription medication, such as beta (ß)-blockers, contribute to their introduction into waterways and may pose threats to non-target aquatic organisms. There has been rising concern about the impacts of these prescription drugs on coastal ecosystems, especially because wastewater treatment plants are not designed to eliminate them from the discharge. Few studies have characterized the sublethal effects of ß-blocker exposures in marine invertebrates. The overall aim of our research is to identify cellular responses of two commercially important filter-feeding marine bivalves, hard clams (Mercenaria mercenaria) and Eastern oysters (Crassostrea virginica), upon exposures to two ß-blocker drugs, propranolol and metoprolol. In vitro exposures with bivalve digestive gland and gill tissues were conducted where tissues were separately exposed to each drug for 24 h. Tissue samples were analyzed for cellular damage (lysosomal membrane destabilization and lipid peroxidation), total antioxidant capacity, and glutathione-s-transferase activity. Elevated damage and changes in enzyme activities were noted in the exposed tissues at environmentally relevant concentrations. Differences in species and tissue sensitivities and responses to exposures were also observed. These studies enhance our understanding of the potential impacts of prescription medication on coastal organisms. Additionally, this work demonstrates that filter-feeders may serve as good model organisms to examine the effects of unintended environmental exposures to ß-blockers. These studies are part of our ongoing work aimed at evaluation of sublethal biomarkers of pharmaceutical exposures and identification of key events that can contribute to the development of adverse outcome pathways (AOPs).


Assuntos
Antagonistas Adrenérgicos beta/efeitos adversos , Crassostrea/química , Mercenaria/química , Frutos do Mar/análise , Poluentes Químicos da Água/química , Animais , Alimentos Marinhos
14.
Aquat Toxicol ; 204: 171-179, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30278354

RESUMO

Ocean warming and acidification could represent an additional threat to marine organisms already coping with other anthropogenic impacts, such as chemical contamination in coastal areas. In this study, interactions between such multiple stressors and their synergistic effects in terms of accumulation, detoxification and biological effects of metals were investigated in the Mediterranean mussel Mytilus galloprovincialis. Organisms sampled during the winter period were exposed for 28 days to different combinations of two temperatures (10 °C and 15 °C), two pH/pCO2 (8.20/∼400µatm and 7.4/∼3000µatm) and two cadmium concentrations (0 and 20 µg/L). Cadmium concentrations increased in digestive glands and gills of metal-exposed mussels and were further enhanced by co-exposure at higher temperature. Interactive effects of temperature and/or pH were observed on Cd-mediated metallothionein induction, responsiveness of antioxidant system and onset of oxidative damages in lipids, with tissue-specific effects. Immunological effects showed a generalized sensitivity of lysosomal membrane stability toward the investigated stressors with major effects in co-exposed organisms. Cadmium and temperature affected phagocytosis efficiency and composition of haemocyte populations probably influencing the micronucleus frequency through varied mitotic rate. Several differences were highlighted between these results and those previously obtained from mussels exposed in summer, supporting the importance of season when addressing the tolerance of temperate organisms to variations of environmental factors. The elaboration of the whole biomarker results through weighted criteria allowed to summarize specific hazard indices, highlighting tissue-specific sensitivity toward multiple stressors and the need of improving the knowledge on interactions between multiple stressors.


Assuntos
Ácidos/metabolismo , Cádmio/toxicidade , Aquecimento Global , Mytilus/metabolismo , Oceanos e Mares , Estações do Ano , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Lisossomos/efeitos dos fármacos , Metalotioneína/metabolismo , Mytilus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
15.
Chemosphere ; 169: 493-502, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27894055

RESUMO

Despite the great interest in the consequences of climate change on the physiological functioning of marine organisms, indirect and interactive effects of rising temperature and pCO2 on bioaccumulation and responsiveness to environmental pollutants are still poorly explored, particularly in terms of cellular mechanisms. According to future projections of temperature and pH/pCO2, this study investigated the main cellular pathways involved in metal detoxification and oxidative homeostasis in Mediterranean mussels, Mytilus galloprovincialis, exposed for 4 weeks to various combinations of two levels of pH/pCO2 (8.2/∼400 µatm and 7.4/∼3000 µatm), temperature (20 and 25 °C), and cadmium addition (0 and 20 µg/L). Bioaccumulation was increased in metal exposed organisms but it was not further modulated by different temperature and pH/pCO2 combinations. However, interactions between temperature, pH and cadmium had significant effects on induction of metallothioneins, responses of the antioxidant system and the onset of oxidative damages, which was tissue dependent. Multiple stressors increased metallothioneins concentrations in the digestive gland revealing different oxidative effects: while temperature and cadmium enhanced glutathione-dependent antioxidant protection and capability to neutralize peroxyl radicals, the metal increased the accumulation of lipid peroxidation products under acidified conditions. Gills did not reveal specific effects for different combinations of factors, but a general stress condition was observed in this tissue after various treatments. Significant variations of immune system were mainly caused by increased temperature and low pH, while co-exposure to acidification and cadmium enhanced metal genotoxicity and the onset of permanent DNA damage in haemocytes. Elaboration of the whole biomarker data in a cellular hazard index, corroborated the synergistic effects of temperature and acidification which increased the toxicological effects of cadmium. The overall results confirmed that climate change could influence ecotoxicological effects of environmental contaminants, highlighting the importance of a better knowledge of cellular mechanisms to understand and predict responsiveness of marine organisms to such multiple stressors.


Assuntos
Biomarcadores/metabolismo , Cádmio/farmacologia , Cádmio/farmacocinética , Mudança Climática , Mytilus/metabolismo , Animais , Disponibilidade Biológica , Dano ao DNA/efeitos dos fármacos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Metalotioneína/metabolismo , Mytilus/química , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/análise
16.
Ageing Res Rev ; 37: 1-15, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28487242

RESUMO

Frailty is an emerging geriatric syndrome characterized by higher vulnerability to stressors, with an increased risk of adverse health outcomes such as mortality, morbidity, disability, hospitalization, and institutionalization. Although it is generally recognized to have a biological basis, no particular biological trait has been consistently associated to frailty status so far. In this work, epidemiological studies evaluating association of frailty status with alterations at cellular level - namely oxidative stress, genomic instability and DNA damage and repair biomarkers -were revised and compared. A total of 25 studies fulfilled inclusion/exclusion criteria and, consequently, were included in the review. Variations of oxidative stress biomarkers were often associated to frailty status in older people. On the contrary, genomic instability seems not to be linked to frailty. The only study which addressed the possible relationship between DNA repair modulations and frailty status also failed in finding association. Despite the large number of cellular alterations known to be associated with frailty, studies on this issue are still very scarce and limited to some of the possible cellular targets. The established link between DNA repair, genomic instability, and age and age-related disorders, encourage deeper investigations on this line.


Assuntos
Reparo do DNA , Idoso Fragilizado , Instabilidade Genômica , Estresse Oxidativo , Idoso , Biomarcadores/metabolismo , Estudos Epidemiológicos , Genômica , Humanos , Institucionalização , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa