Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Periodontal Res ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095980

RESUMO

AIMS: Orthodontic treatment commonly results in orthodontically induced inflammatory root resorption (OIIRR). This condition arises from excessive orthodontic force, which triggerslocal inflammatory responses and impedes cementoblasts' mineralization capacity. Low-intensity pulsed ultrasound (LIPUS) shows potential in reducing OIIRR. However, the precise mechanisms through which LIPUS reduces OIIRR remain unclear. This study aimed to explore the effects and mechanisms of LIPUS on the mineralization of force-treated cementoblasts and its impact on OIIRR. METHODS: We established a rat OIIRR model and locally administered LIPUS stimulation for 7 and 14 days. We analyzed root resorption volume, osteoclast differentiation, and the expression of osteocalcin and yes-associated protein 1 (YAP1) using micro-computed tomography (micro-CT), hematoxylin and eosin, tartrate-resistant acid phosphatase, immunofluorescence and immunohistochemistry staining. In vitro, we applied compressive force and LIPUS to the immortalized mouse cementoblasts (OCCM30). We assessed mineralization using alkaline phosphatase (ALP) staining, alizarin red staining, real-time quantitative polymerase chain reaction, Western blotting and immunofluorescence staining. RESULTS: In rats, LIPUS reduced OIIRR, as evidenced by micro-CT analysis and histological staining. In vitro, LIPUS enhanced mineralization of force-treated OCCM30 cells, as indicated by ALP and alizarin red staining, upregulated mRNA expression of mineralization-related genes, and increased protein expression of mineralization markers. Mechanistically, LIPUS activated YAP1 signaling via the cytoskeleton-Lamin A/C pathway, supported by immunofluorescence and Western blot analysis. CONCLUSION: This study demonstrates that LIPUS promotes mineralization in force-treated cementoblasts and reduces OIIRR by activating YAP1 through the cytoskeletal-Lamin A/C signaling pathway. These findings provide fresh insights into how LIPUS benefits orthodontic treatment and suggest potential strategies for preventing and treating OIIRR.

2.
Eur J Orthod ; 46(4)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39066623

RESUMO

BACKGROUND: The robustness and credibility of RT-qPCR results are critically dependent on the selection of suitable reference genes. However, the mineralization of the extracellular matrix can alter the intracellular tension and energy metabolism within cells, potentially impacting the expression of traditional reference genes, namely Actb and Gapdh. OBJECTIVE: To methodically identify appropriate reference genes for research focused on mouse cementoblast mineralization. MATERIALS AND METHODS: Time-series transcriptomic data of mouse cementoblast mineralization were used. To ensure expression stability and medium to high expression levels, three specific criteria were applied to select potential reference genes. The expression stability of these genes was ranked based on the DI index (1/coefficient of variation) to identify the top six potential reference genes. RT-qPCR validation was performed on these top six candidates, comparing their performance against six previously used reference genes (Rpl22, Ppib, Gusb, Rplp0, Actb, and Gapdh). Cq values of these 12 genes were analyzed by RefFinder to get a stability ranking. RESULTS: A total of 4418 (12.27%) genes met the selection criteria. Among them, Rab5if, Chmp4b, Birc5, Pea15a, Nudc, Supt4a were identified as candidate reference genes. RefFinder analyses revealed that two candidates (Birc5 and Nudc) exhibited superior performance compared to previously used reference genes. LIMITATIONS: RefFinder's stability ranking does not consider the influence of primer efficiency. CONCLUSIONS AND IMPLICATIONS: We propose Birc5 and Nudc as candidate reference genes for RT-qPCR studies investigating mouse cementoblast mineralization and cementum repair.


Assuntos
Cemento Dentário , Reação em Cadeia da Polimerase em Tempo Real , Survivina , Animais , Camundongos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Survivina/genética , Padrões de Referência , RNA-Seq/métodos , RNA-Seq/normas , Calcificação Fisiológica/genética
3.
J Cell Physiol ; 238(8): 1768-1787, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566596

RESUMO

The periodontal ligament is a crucial tissue that provides support to the periodontium. Situated between the alveolar bone and the tooth root, it consists primarily of fibroblasts, cementoblasts, osteoblasts, osteoclasts, periodontal ligament stem cells (PDLSCs), and epithelial cell rests of Malassez. Fibroblasts, cementoblasts, osteoblasts, and osteoclasts are functionally differentiated cells, whereas PDLSCs are undifferentiated mesenchymal stem cells. The dynamic development of these cells is intricately linked to periodontal changes and homeostasis. Notably, the regulation of programmed cell death facilitates the clearance of necrotic tissue and plays a pivotal role in immune response. However, it also potentially contributes to the loss of periodontal supporting tissues and root resorption. These findings have significant implications for understanding the occurrence and progression of periodontitis, as well as the mechanisms underlying orthodontic root resorption. Further, the regulation of periodontal ligament cell (PDLC) death is influenced by both systemic and local factors. This comprehensive review focuses on recent studies reporting the mechanisms of PDLC death and related factors.


Assuntos
Periodontite , Reabsorção da Raiz , Humanos , Ligamento Periodontal/metabolismo , Reabsorção da Raiz/metabolismo , Periodonto , Apoptose , Periodontite/genética , Periodontite/metabolismo
4.
Biol Proced Online ; 25(1): 2, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690939

RESUMO

BACKGROUND: Periodontal regeneration, treatment of periodontal-related diseases and improving the function of implants are global therapeutic challenges. The differentiation of human stem cells from apical papilla into cementoblasts may provide a strategy for periodontitis treatment. This study aimed to evaluate the differentiation of primary human stem cells apical papilla (hSCAPs) to cementoblast cells. MATERIAL AND METHODS: SCAPs cells were isolated from human third molar and then incubated for 21 days in a differentiation microenvironment. Alkaline phosphatase (ALP) and Alizarin red S staining assays were performed to evaluate the calcium deposition and formation of hydroxyapatite in the cultured hSCAPs microenvironment. Real-time polymerase chain reaction (RT-PCR) assay was performed for cementum protein 1 (CEMP1), collagen type I (COL1), F-Spondin (SPON1), osteocalcin (OCN), and osteopontin (OPN) as specific markers of cementoblasts and their progenitors. RESULTS: ALP phosphatase activity in day 21 of treatment demonstrated a significant increase in ALP compared to the control. Alizarin red S staining assay showed that the differentiated hSCAPs offered a great amount of calcium deposition nodules compared to the control. The increased expression level of CEMP1, OCN, OPN, COL1 and Spon1 was observed in days 7, 14 and 21 compared to the control, while greatest expression level was observed in day 21. CONCLUSION: In conclusion, the differentiation microenviroment is convenient and useful for promoting the differentiation of hSCAPs into cementoblast.

5.
J Periodontal Res ; 58(6): 1261-1271, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723604

RESUMO

OBJECTIVE: We analyzed the localization and expression of Cluster of differentiation 40 ligand (CD40L) in murine periodontal tissue applied with the orthodontic force to determine the CD40L-expressing cells under mechanical stress. Furthermore, we investigated whether CD40-CD40L interaction played an important role in transducing mechanical stress between periodontal ligament (PDL) cells and cementoblasts and remodeling the periodontal tissue for its homeostasis. BACKGROUND: PDL is a complex tissue that contains heterogeneous cell populations and is constantly exposed to mechanical stress, such as occlusal force. CD40 is expressed on PDL cells and upregulated under mechanical stress. However, whether its ligand, CD40L, is upregulated in periodontal tissue in response to mechanical stress, and which functions the CD40-CD40L interaction induces by converting the force to biological functions between the cement-PDL complex, are not fully understood. METHODS: The orthodontic treatment was applied to the first molars at the left side of the upper maxillae of mice using a nickel-titanium closed-coil spring. Immunohistochemistry was performed to analyze the localization of CD40L in the periodontal tissue under the orthodontic force. Human cementoblasts (HCEM) and human PDL cells were stretched in vitro and analyzed CD40L and CD40 protein expression using flow cytometry. A GFP-expressing CD40L plasmid vector was transfected into HCEM (CD40L-HCEM). CD40L-HCEM was co-cultured with human PDL cells with higher alkaline phosphatase (ALP) activity (hPDS) or lower ALP (hPDF). After co-culturing, cell viability and proliferation were analyzed by propidium iodide (PI) staining and bromodeoxyuridine (BrdU) assay. Furthermore, the mRNA expression of cytodifferentiation- and extracellular matrix (ECM)-related genes was analyzed by real-time PCR. RESULTS: Immunohistochemistry demonstrated that CD40L was induced on the cells present at the cementum surface in periodontal tissue at the tension side under the orthodontic treatment in mice. The flow cytometry showed that the in vitro-stretching force upregulated CD40L protein expression on HCEM and CD40 protein expression on human PDL cells. Co-culturing CD40L-HCEM with hPDF enhanced cell viability and proliferation but did not alter the gene expression related to cytodifferentiation and ECM. In contrast, co-culturing CD40L-HCEM with hPDS upregulated cytodifferentiation- and ECM-related genes but did not affect cell viability and proliferation. CONCLUSION: We revealed that in response to a stretching force, CD40L expression was induced on cementoblasts. CD40L on cementoblasts may interact with CD40 on heterogeneous PDL cells at the necessary time and location, inducing cell viability, proliferation, and cytodifferentiation, maintaining periodontal tissue remodeling and homeostasis.


Assuntos
Antígenos CD40 , Ligante de CD40 , Ligamento Periodontal , Animais , Humanos , Camundongos , Ligante de CD40/metabolismo , Células Cultivadas , Cemento Dentário , Ligantes , Ligamento Periodontal/metabolismo , Estresse Mecânico , Antígenos CD40/metabolismo
6.
Biochem Biophys Res Commun ; 587: 9-15, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34861472

RESUMO

OBJECTIVE: The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS: Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS: Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS: REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.


Assuntos
Relógios Biológicos/genética , Calcificação Fisiológica/genética , Cemento Dentário/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Cementogênese/efeitos dos fármacos , Cementogênese/genética , Cemento Dentário/citologia , Cemento Dentário/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Humanos , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais , Fator de Transcrição Sp7/genética , Fator de Transcrição Sp7/metabolismo , Tiofenos/farmacologia
7.
Stem Cells ; 39(1): 92-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038290

RESUMO

Loss of tissue attachment as a consequence of bacterial infection and inflammation represents the main therapeutic target for the treatment of periodontitis. Cementoblasts, the cells that produce the mineralized tissue, cementum, that is responsible for connecting the soft periodontal tissue to the tooth, are a key cell type for maintaining/restoring tissue attachment following disease. Here, we identify two distinct stem cell populations that contribute to cementoblast differentiation at different times. During postnatal development, cementoblasts are formed from perivascular-derived cells expressing CD90 and perivascular-associated cells that express Axin2. During adult homeostasis, only Wnt-responsive Axin2+ cells form cementoblasts but following experimental induction of periodontal disease, CD90+ cells become the main source of cementoblasts. We thus show that different populations of resident stem cells are mobilized at different times and during disease to generate precursors for cementoblast differentiation and thus provide an insight into the targeting cells resident cells for novel therapeutic approaches. The differentiation of these stem cells into cementoblasts is however inhibited by bacterial products such as lipopolysaccharides, emphasizing that regeneration of periodontal ligament soft tissue and restoration of attachment will require a multipronged approach.


Assuntos
Diferenciação Celular , Cemento Dentário/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Células-Tronco/metabolismo , Animais , Cemento Dentário/patologia , Camundongos , Camundongos Transgênicos , Ligamento Periodontal/patologia , Periodontite/genética , Periodontite/patologia , Células-Tronco/patologia
8.
J Periodontal Res ; 57(5): 1003-1013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930702

RESUMO

BACKGROUND AND OBJECTIVES: The molecular mechanisms mediating external root resorption are poorly understood. Interleukin-33 (IL-33) expression increased remarkably in the periodontal ligament (PDL) under orthodontic loading. The IL-33-driven responses are delicately cell type- and tissue context-dependent. It is unknown how IL-33 act on osteoclastogenesis in the context of root surface. This study aimed to investigate the effect of IL-33 on osteoclastogenesis in the PDL under mechanical loading. MATERIALS AND METHODS: C57BL/6J mice were treated with injections of phosphate buffer saline (PBS) or recombinant mouse IL-33 (rmIL-33, 6 µl, 30 µg/ml), and subjected to models of orthodontic tooth movement. Tartrated resistant acid phosphates (TRAP)-positive cells and IL-33 expressions were examined in the PDL. IL-33 release from human PDL cells (hPDLCs) was detected by ELISA. Cementoblast-like (OCCM-30) cells were cultured in the presence of rmIL-33 to examine the release of osteoclast-regulatory proteins. The effects of rmIL-33 on osteoclastogenesis were examined in vitro in cultures of bone marrow macrophages (BMMs) and in BMMs-OCCM-30 cocultures. Expressions of osteoclast-specific or -related genes and proteins were investigated in BMMs-OCCM-30 cocultures treated with or without rmIL-33, in the presence or absence of granulocyte-macrophage colony-stimulating factor (GM-CSF) neutralizing antibody. RESULTS: Interleukin-33 expressions were upregulated in the PDL under orthodontic loading. Static compressive force enhanced expression and release of IL-33 from hPDLCs. Administration of rmIL-33 resulted in reduced number of TRAP-positive cells in the PDL, and inhibited osteoclast differentiation from BMMs in vitro. OCCM-30 cells had varied osteoprotegerin (OPG) / receptor activator for nuclear factor-κB ligand (RANKL) secretion and increased release of GM-CSF under rmIL-33 stimulation. Treatment with rmIL-33 in BMMs-OCCM-30 cocultures resulted in inhibited differentiation and decreased activity of osteoclasts, and these effects were partially reversed by GM-CSF neutralizing antibody. CONCLUSIONS: Interleukin-33 inhibits osteoclastogenesis in the PDL under orthodontic loading. The anti-osteoclastogenic effects were mediated partly by directly affecting osteoclast precursors and partly by cementoblast-mediated release of GM-CSF.


Assuntos
Osteogênese , Ligamento Periodontal , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/farmacologia , Diferenciação Celular , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Interleucina-33/metabolismo , Interleucina-33/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos , Osteoprotegerina/metabolismo , Osteoprotegerina/farmacologia , Ligante RANK/metabolismo , Ligante RANK/farmacologia
9.
Int J Mol Sci ; 23(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955469

RESUMO

Ciliary neurotrophic factor (CNTF) was identified as a survival factor in various types of peripheral and central neurons, glia and non-neural cells. At present, there is no available data on the expression and localization of CNTF-receptors in cementoblasts as well as on the role of exogenous CNTF on this cell line. The purpose of this study was to determine if cementoblasts express CNTF-receptors and analyze the mechanism of its apoptotic regulation effects on cementoblasts. OCCM-30 cementoblasts were cultivated and stimulated kinetically using CNTF protein (NBP2-35168, Novus Biologicals). Quantified transcriptional (RT-qPCR) and translational (WB) products of CNTFRα, IL-6Rα (CD126), LIFR, p-GP130, GP130, p-ERK1/2, ERK1/2, Caspase-8, -9, -3 and cleaved-caspase-3 were evaluated. Immunofluorescence (IF) staining was applied to visualize the localization of the CNTF-receptors within cells. The apoptosis ratio was measured with an Annexin-V FITC/PI kit. The ERK1/2 antagonist (FR180204, Calbiochem) was added for further investigation by flow cytometry analysis. The CNTF-receptor complex (CNTFRα, LIFR, GP130) was functionally up-regulated in cementoblasts while cultivated with exogenous CNTF. CNTF significantly attenuated cell viability and proliferation for long-term stimulation. Flow cytometry analysis shows that CNTF enhanced the apoptosis after prolonged duration. However, after only a short-term period, CNTF halts the apoptosis of cementoblasts. Further studies revealed that CNTF activated phosphorylated GP130 and the anti-apoptotic molecule ERK1/2 signaling to participate in the regulation of the apoptosis ratio of cementoblasts. In conclusion, CNTF elicited the cellular functions through a notable induction of its receptor complex in cementoblasts. CNTF has an inhibitory effect on the cementoblast homeostasis. These data also elucidate a cellular mechanism for an exogenous CNTF-triggered apoptosis regulation in a mechanism of ERK1/2 and caspase signaling and provides insight into the complex cellular responses induced by CNTF in cementoblasts.


Assuntos
Subunidade alfa do Receptor do Fator Neutrófico Ciliar , Fator Neurotrófico Ciliar , Apoptose , Caspases/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Subunidade alfa do Receptor do Fator Neutrófico Ciliar/metabolismo , Receptor gp130 de Citocina/metabolismo , Cemento Dentário/metabolismo , Sistema de Sinalização das MAP Quinases , Receptor do Fator Neutrófico Ciliar/metabolismo
10.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012576

RESUMO

In animal models, the administration of ciliary neurotrophic factor (CNTF) was demonstrated to reduce bone mass and to participate in bone remodeling. Cementoblasts, a cell type embedded in the cementum, are the main cells to produce and mineralize the extracellular matrix. The effect of CNTF on cementoblasts has not yet been addressed. Thus, the goal of this in vitro study was to investigate possible influences of exogenous CNTF on cementogenesis, as well as autophagy regulation and subsequent mechanisms in cementoblasts. Cementoblasts (OCCM-30) were stimulated with exogenous CNTF. Alizarin Red staining was performed to analyze the functional differentiation (mineralization) of OCCM-30 cells. The release of OPG was quantified by ELISA. The expression of cementogenesis markers (RUNX-2, OCN, BMP-7, BSP, and SPON-2) was evaluated by RT-qPCR. Western blotting (WB) was performed for the protein expression of STAT3, COX-2, SHP-2, cPLAα, cPLAß; ERK1/2, P38, and JNK. The autophagic flux was assessed using WB and RT-qPCR analysis of LC3A/B, Beclin-1, and Atg-5, and the autophagosome was investigated by immunofluorescence staining (IF). The ERK1/2 (FR180204) or STAT3 (sc-202818) antagonist was added, and the cellular response was analyzed using flow cytometry. Exogenous CNTF significantly attenuated mineralized nodule formation, impaired OPG release, and downregulated the mRNA levels of RUNX-2, OCN, BMP-7, and BSP. Moreover, CNTF induced the phosphorylation of STAT3 and activated a transient activation of SHP-2, cPLAß, ERK1/2, P38, and JNK protein. CNTF also induced autophagosome formation and promoted autophagy-associated gene and protein expressions. Additionally, the inhibition of ERK1/2 or STAT3 reversed a CNTF-induced mineralization impairment and had regulatory effects on CNTF-induced autophagosome formation. Our data revealed that CNTF acts as a potent inhibitor of cementogenesis, and it can trigger autophagy, in part by ERK1/2 and STAT3 commitment in the cementoblasts. Thus, it may play an important role in inducing or facilitating inflammatory root resorption during orthodontic tooth movement.


Assuntos
Fator Neurotrófico Ciliar , Cemento Dentário , Animais , Autofagia , Proteína Morfogenética Óssea 7/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Cemento Dentário/metabolismo , Osteocalcina/metabolismo
11.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232704

RESUMO

Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.


Assuntos
Antígeno B7-H1 , Reabsorção da Raiz , Técnicas de Movimentação Dentária , Antígeno B7-H1/imunologia , Humanos , Fatores Imunológicos , Receptor de Morte Celular Programada 1 , Reabsorção da Raiz/etiologia , Reabsorção da Raiz/imunologia , Técnicas de Movimentação Dentária/efeitos adversos , Técnicas de Movimentação Dentária/métodos
12.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805974

RESUMO

Patients with periodontitis undergoing orthodontic therapy may suffer from undesired dental root resorption. The purpose of this in vitro study was to investigate the molecular mechanisms resulting in PD-L1 expression of cementoblasts in response to infection with Porphyromonas gingivalis (P. gingivalis) peptidoglycan (PGN) and compressive force (CF), and its interaction with hypoxia-inducible factor (HIF)-1α molecule: The cementoblast (OCCM-30) cells were kinetically infected with various concentrations of P. gingivalis PGN in the presence and absence of CF. Western blotting and RT-qPCR were performed to examine the protein expression of PD-L1 and HIF-1α as well as their gene expression. Immunofluorescence was applied to visualize the localization of these proteins within cells. An HIF-1α inhibitor was added for further investigation of necroptosis by flow cytometry analysis. Releases of soluble GAS-6 were measured by ELISA. P. gingivalis PGN dose dependently stimulated PD-L1 upregulation in cementoblasts at protein and mRNA levels. CF combined with P. gingivalis PGN had synergistic effects on the induction of PD-L1. Blockade of HIF-1α inhibited the P. gingivalis PGN-inducible PD-L1 protein expression under compression, indicating an HIF-1α dependent regulation of PD-L1 induction. Concomitantly, an HIF-1α inhibitor decreased the GAS-6 release in the presence of CF and P. gingivalis PGN co-stimulation. The data suggest that PGN of P. gingivalis participates in PD-L1 up-regulation in cementoblasts. Additionally, the influence of compressive force on P. gingivalis PGN-induced PD-L1 expression occurs in HIF-1α dependently. In this regard, HIF-1α may play roles in the immune response of cementoblasts via immune-inhibitory PD-L1. Our results underline the importance of molecular mechanisms involved in bacteria-induced periodontics and root resorption.


Assuntos
Antígeno B7-H1 , Reabsorção da Raiz , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Cemento Dentário/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Peptidoglicano/imunologia , Porphyromonas gingivalis/metabolismo , Reabsorção da Raiz/genética , Reabsorção da Raiz/imunologia
13.
J Cell Mol Med ; 25(20): 9710-9723, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523215

RESUMO

Hypoxia-induced apoptosis of cementoblasts (OCCM-30) may be harmful to orthodontic treatment. Hypoxia-inducible factor 1-alpha (HIF-1α) mediates the biological effects during hypoxia. Little is known about the survival mechanism capable to counteract cementoblast apoptosis. We aimed to investigate the potential roles of HIF-1α, as well as the protein-protein interactions with ERK1/2, using an in-vitro model of chemical-mimicked hypoxia and adipokines. Here, OCCM-30 were co-stimulated with resistin, visfatin or ghrelin under CoCl2 -mimicked hypoxia. In-vitro investigations revealed that CoCl2 -induced hypoxia triggered activation of caspases, resulting in apoptosis dysfunction in cementoblasts. Resistin, visfatin and ghrelin promoted the phosphorylated ERK1/2 expression in OCCM-30 cells. Furthermore, these adipokines inhibited hypoxia-induced apoptosis at different degrees. These effects were reversed by pre-treatment with ERK inhibitor (FR180204). In cells treated with FR180204, HIF-1α expression was inhibited despite the presence of three adipokines. Using dominant-negative mutants of HIF-1α, we found that siHIF-1α negatively regulated the caspase-8, caspase-9 and caspase-3 gene expression. We concluded that HIF-1α acts as a bridge factor in lengthy hypoxia-induced apoptosis in an ERK1/2-dependent pathway. Gene expressions of the caspases-3, caspase-8 and caspase-9 were shown to be differentially regulated by adipokines (resistin, visfatin and ghrelin). Our study, therefore, provides evidence for the role of ERK1/2 and HIF-1α in the apoptotic response of OCCM-30 cells exposed to CoCl2 -mimicked hypoxia, providing potential new possibilities for molecular intervention in obese patients undergoing orthodontic treatment.


Assuntos
Apoptose/genética , Caspases/metabolismo , Cemento Dentário/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia/genética , Hipóxia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Adipocinas/metabolismo , Adipocinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Cobalto/farmacologia , Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Necrose/tratamento farmacológico , Necrose/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
14.
Cytokine ; 138: 155380, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33264747

RESUMO

Lipopolysaccharide is a potent virulence factor of Porphyromonas gingivalis and has been implicated predominant pathogen in the development and progression of periodontal diseases. The aim of this study was to determine the effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on cementoblasts. Cementoblast (OCCM-30) were evaluated proliferation using real-time cell analyzer. In addition, total RNA was isolated at 8, 16, 24 and 72 h from 1000 ng/mL Pg-LPS treated OCCM-30 cells and mRNA expressions of pro/anti-inflammatory cytokine mediators, extracellular matrix enzymes and their tissue inhibitors and of oxidative stress enzymes were studied by real-time polymerase chain reaction. Proliferation analysis indicated that Pg-LPS slightly decreased proliferation of OCCM-30. Pg-LPS had a time-dependent impact on the expression of cytokines and enzymes. There was statistically significant up-regulation of IL-1ß and IL-10 in response to Pg-LPS at 8, 16, 24, 72 h but IL-6 expression was reduced compared to control at 8 h. While IL-8 and IL-17 expressions were determined higher than control group at 16 and 24 h, their expressions were decreased compared to control groups at 72 h (p < 0.01). While MMP-1, MMP-2, MMP-3, TIMP-1, TIMP-2 expressions increased, MMP-9 expression reduced at time-points. Also, a time-dependent up-regulation in mRNA levels for oxidative stress enzymes was detected. These results indicated that up-regulation in the transcripts of inflammation-associated cytokines and degradation enzymes were noted in the cementoblasts exposed to Pg-LPS. Cementoblasts infected with the virulence factors of periodontopathogens might also involve to the induction of inflammation and degradation of the periodontal tissues.


Assuntos
Cemento Dentário/metabolismo , Lipopolissacarídeos/química , Porphyromonas gingivalis/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Citocinas/metabolismo , Fibroblastos/metabolismo , Inflamação , Lipopolissacarídeos/metabolismo , Camundongos , Doenças Periodontais/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio
15.
Clin Oral Investig ; 25(4): 1933-1944, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32820432

RESUMO

OBJECTIVES: Juvenile obesity is a complex clinical condition that is present more and more frequently in the daily orthodontic practice. Over-weighted patients have an impaired bone metabolism, due in part to their increased levels of circulating adipokines. Particularly, leptin has been reported to play a key role in bone physiology. Leptin is ubiquitously present in the body, including blood, saliva, and crevicular fluid. If, and to what extent, it could influence the reaction of cementoblasts during orthodontic-induced forces is yet unknown. MATERIAL AND METHODS: OCCM-30 cementoblasts were cultivated under compressive forces using different concentrations of leptin. The expression of ObR, Runx-2, Osteocalcin, Rank-L, Sost, Caspase 3, 8, and 9 were analyzed by RT-PCR. Western blots were employed for protein analysis. The ERK1/2 antagonist FR180204 (Calbiochem) was used and cPLA2 activation, PGE2, and cytochrome C release were further evaluated. RESULTS: In vitro, when compressive forces are applied, leptin promotes ERK1/2 phosphorylation, as well as upregulates PGE2 and caspase 3 and caspase 9 on OCCM cells. Blockade of ERK1/2 impairs leptin-induced PGE2 secretion and reduced caspase 3 and caspase 9 expression. CONCLUSIONS: Leptin influences the physiological effect of compressive forces on cementoblasts, exerting in vitro a pro-inflammatory and pro-apoptotic effect. CLINICAL RELEVANCE: Our findings indicate that leptin exacerbates the physiological effect of compressive forces on cementoblasts promoting the release of PGE2 and increases the rate of cell apoptosis, and thus, increased levels of leptin may influence the inflammatory response during orthodontically induced tooth movement.


Assuntos
Cemento Dentário , Leptina , Apoptose , Dinoprostona , Humanos , Sistema de Sinalização das MAP Quinases , Sobrepeso
16.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067898

RESUMO

The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin red staining were used to display mineralization. Cell viability was analyzed by XTT assay, and morphological characterization was performed by DAPI/phalloidin staining. Cell migration was quantified with an established scratch assay. CAP and EMD upregulated both mRNA and protein synthesis of ALP, POSTN, and OPN. Additionally, DMP1 and COL1A1 were upregulated at both gene and protein levels. In addition to upregulated RUNX2 mRNA levels, treated cells mineralized more intensively. Moreover, CAP treatment resulted in an upregulation of KI67, higher cell viability, and improved cell migration. Our study shows that CAP appears to have stimulatory effects on regeneration-associated cell functions in cementoblasts.


Assuntos
Cementogênese/efeitos dos fármacos , Cemento Dentário/metabolismo , Gases em Plasma/farmacologia , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Osteocalcina/metabolismo , Osteopontina/metabolismo , Gases em Plasma/metabolismo , Transcriptoma/genética
17.
J Cell Biochem ; 121(3): 2606-2617, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31680324

RESUMO

Cementum regeneration is considered the gold standard for the treatment of periodontitis. As one of the most important primary proinflammatory cytokines, interleukin 1ß (IL1ß) plays an essential role during the early stage of periodontitis and its amounts simultaneously increase dramatically during this stage. Though promising, the differentiation of cementoblasts upon IL1ß-induced inflammation of the microenvironment and the relative interaction mechanism are still unknown. Here, we found that IL1ß inhibited cementoblast differentiation and microRNA-325-3p (miR-325-3p) was increased during IL1ß-stimulated cementoblasts. Bioinformatics analysis and luciferase reporter assay demonstrated miR-325-3p targeted runt-related transcription factor 2 directly. Transfection of miR-325-3p suppressed cementoblast differentiation in vitro and the formation of cementum-like tissues in vivo. The inhibitor of miR-325-3p could mitigate the above effects induced by IL1ß. Accordingly, our finding suggests a critical role of miR-325-3p in linking inflammation to impaired cementum regeneration and provides a potential possibility for applying miR-325-3p inhibitors in the treatment of periodontitis-related bone loss.


Assuntos
Diferenciação Celular , Cementogênese , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cemento Dentário/citologia , Regulação da Expressão Gênica , Interleucina-1beta/farmacologia , MicroRNAs/genética , Animais , Proliferação de Células , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Cemento Dentário/efeitos dos fármacos , Cemento Dentário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 19(6)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895782

RESUMO

The present study evaluated the protective effects of melatonin in ethanol (EtOH)-induced senescence and osteoclastic differentiation in human periodontal ligament cells (HPDLCs) and cementoblasts and the underlying mechanism. EtOH increased senescence activity, levels of reactive oxygen species (ROS) and the expression of cell cycle regulators (p53, p21 and p16) and senescence-associated secretory phenotype (SASP) genes (interleukin [IL]-1ß, IL-6, IL-8 and tumor necrosis factor-α) in HPDLCs and cementoblasts. Melatonin inhibited EtOH-induced senescence and the production of ROS as well as the increased expression of cell cycle regulators and SASP genes. However, it recovered EtOH-suppressed osteoblastic/cementoblastic differentiation, as evidenced by alkaline phosphatase activity, alizarin staining and mRNA expression levels of Runt-related transcription factor 2 (Runx2) and osteoblastic and cementoblastic markers (glucose transporter 1 and cementum-derived protein-32) in HPDLCs and cementoblasts. Moreover, it inhibited EtOH-induced osteoclastic differentiation in mouse bone marrow⁻derived macrophages (BMMs). Inhibition of protein never in mitosis gene A interacting-1 (PIN1) by juglone or small interfering RNA reversed the effects of melatonin on EtOH-mediated senescence as well as osteoblastic and osteoclastic differentiation. Melatonin blocked EtOH-induced activation of mammalian target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and Nuclear factor of activated T-cells (NFAT) c-1 pathways, which was reversed by inhibition of PIN1. This is the first study to show the protective effects of melatonin on senescence-like phenotypes and osteoclastic differentiation induced by oxidative stress in HPDLCs and cementoblasts through the PIN1 pathway.


Assuntos
Cemento Dentário/citologia , Etanol/farmacologia , Melatonina/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligamento Periodontal/citologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Cemento Dentário/metabolismo , Humanos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Ligamento Periodontal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
19.
Biochim Biophys Acta ; 1862(9): 1570-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27239697

RESUMO

Mucolipidosis II (MLII) is a severe systemic genetic disorder caused by defects in mannose 6-phosphate-dependent targeting of multiple lysosomal hydrolases and subsequent lysosomal accumulation of non-degraded material. MLII patients exhibit marked facial coarseness and gingival overgrowth soon after birth, accompanied with delayed tooth eruption and dental infections. To examine the pathomechanisms of early craniofacial and dental abnormalities, we analyzed mice with an MLII patient mutation that mimic the clinical and biochemical symptoms of MLII patients. The mouse data were compared with clinical and histological data of gingiva and teeth from MLII patients. Here, we report that progressive thickening and porosity of calvarial and mandibular bones, accompanied by elevated bone loss due to 2-fold higher number of osteoclasts cause the characteristic craniofacial phenotype in MLII. The analysis of postnatal tooth development by microcomputed tomography imaging and histology revealed normal dentin and enamel formation, and increased cementum thickness accompanied with accumulation of storage material in cementoblasts of MLII mice. Massive accumulation of storage material in subepithelial cells as well as disorganization of collagen fibrils led to gingival hypertrophy. Electron and immunofluorescence microscopy, together with (35)S-sulfate incorporation experiments revealed the accumulation of non-degraded material, non-esterified cholesterol and glycosaminoglycans in gingival fibroblasts, which was accompanied by missorting of various lysosomal proteins (α-fucosidase 1, cathepsin L and Z, Npc2, α-l-iduronidase). Our study shows that MLII mice closely mimic the craniofacial and dental phenotype of MLII patients and reveals the critical role of mannose 6-phosphate-dependent targeting of lysosomal proteins for alveolar bone, cementum and gingiva homeostasis.


Assuntos
Ossos Faciais/crescimento & desenvolvimento , Lisossomos/enzimologia , Manosefosfatos/metabolismo , Mucolipidoses/metabolismo , Odontogênese/fisiologia , Crânio/crescimento & desenvolvimento , Animais , Desenvolvimento Ósseo/fisiologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Gengiva/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mucolipidoses/genética , Mucolipidoses/patologia , Transferases (Outros Grupos de Fosfato Substituídos)/genética
20.
J Periodontal Res ; 52(3): 617-627, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28198538

RESUMO

BACKGROUND: Although expression of peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (PIN1) was reported in bone tissue, the precise role of PIN1 in periodontal tissue and cells remain unclear. MATERIAL & METHODS: To elucidate the roles of PIN1 in periodontal tissue, its expression in periodontal tissue and cells, and effects on in vitro 4 osteoblast differentiation and the underlying signaling mechanisms were evaluated. RESULTS: PIN1 was expressed in mouse periodontal tissues including periodontal ligament cells (PDLCs), cementoblasts and osteoblasts at the developing root formation stage (postnatal, PN14) and functional stage of tooth (PN28). Treatment of PIN1 inhibitor juglone, and gene silencing by RNA interference promoted osteoblast differentiation in PDLCs and cementoblasts, whereas the overexpression of PIN1 inhibited. Moreover, osteogenic medium-induced activation of AMPK, mTOR, Akt, ERK, p38 and NF-jB pathways were enhanced by PIN1 siRNA, but attenuated by PIN1 overexpression. Runx2 expressions were induced by PIN1 siRNA, but downregulated by PIN1 overexpression. CONCLUSION: In summary, this study is the first to demonstrate that PIN1 is expressed in developing periodontal tissue, and in vitro PDLCs and cementoblasts. PIN1 inhibition stimulates osteoblast differentiation, and thus may play an important role in periodontal regeneration.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA/fisiologia , Periodonto/metabolismo , Animais , Diferenciação Celular , Cemento Dentário/metabolismo , Técnicas In Vitro , Camundongos , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Periodonto/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa