Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 120(6): 811-829, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688380

RESUMO

The bacterial PASTA kinase, IreK, is required for intrinsic cephalosporin resistance in the Gram-positive opportunistic pathogen, Enterococcus faecalis. IreK activity is enhanced in response to cell wall stress, such as cephalosporin exposure. The downstream consequences of IreK activation are not well understood in E. faecalis, but recent work in other low-GC Gram-positive bacteria demonstrated PASTA kinase-dependent regulation of MurAA, an enzyme that performs the first committed step in the peptidoglycan synthesis pathway. Here, we used genetic suppressor selections to identify MurAA as a downstream target of IreK signaling in E. faecalis. Using complementary genetic and biochemical approaches, we demonstrated that MurAA abundance is regulated by IreK signaling in response to physiologically relevant cell wall stress to modulate substrate flux through the peptidoglycan synthesis pathway. Specifically, the IreK substrate, IreB, promotes proteolysis of MurAA through a direct physical interaction in a manner responsive to phosphorylation by IreK. MurAB, a homolog of MurAA, also promotes MurAA proteolysis and interacts directly with IreB. Our results therefore establish a connection between the cell wall stress sensor IreK and one critical physiological output to modulate peptidoglycan synthesis and drive cephalosporin resistance.


Assuntos
Enterococcus faecalis , Peptidoglicano , Enterococcus faecalis/metabolismo , Peptidoglicano/metabolismo , Resistência às Cefalosporinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfotransferases/metabolismo , Parede Celular/metabolismo
2.
Mol Microbiol ; 120(6): 805-810, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38012814

RESUMO

Regulation of the first committed step of peptidoglycan precursor synthesis by MurA-enzyme homologs has recently taken center stage in many different bacteria. In different low-GC Gram-positive bacteria, regulation of this step has been shown to be regulated by phosphorylation of homologs of the IreB/ReoM regulatory protein by PASTA-domain Ser/Thr-protein kinases. In this issue, Mascari, Little, and Kristich determine this regulatory pathway and its links to resistance to cephalosporin ß-lactam antibiotics in the major human pathogen, Enterococcus faecalis (Efa). Unbiased genetic selections identified MurAA (MurA-family homolog) as the downstream target of IreB regulation in the absence of the IreK Ser/Thr-protein kinase. Physiological and biochemical approaches, including determination of MICs to ceftriaxone, Western blotting of MurAA cellular amounts, isotope incorporation into peptidoglycan sacculi, and thermal-shift binding assays of purified proteins, demonstrated that unphosphorylated IreB, together with proteins MurAB (MurZ-family homolog), and ReoY(Efa) negatively regulate MurAA stability and cellular amount by the ClpCP protease. Importantly, this paper supports the idea that ceftriaxone stimulates phosphorylation of IreB, which leads to increased cellular MurAA amount and precursor pathway flux required for E. faecalis cephalosporin resistance. Overall, findings in this paper significantly contribute to understanding variations of this central regulatory pathway in other low-GC Gram-positive bacteria.


Assuntos
Ceftriaxona , Enterococcus , Humanos , Fosforilação , Enterococcus/metabolismo , Peptidoglicano/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Antimicrob Agents Chemother ; 68(9): e0055524, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39058024

RESUMO

Enterococci exhibit intrinsic resistance to cephalosporins, mediated in part by the class B penicillin-binding protein (bPBP) Pbp4 that exhibits low reactivity toward cephalosporins and thus can continue crosslinking peptidoglycan despite exposure to cephalosporins. bPBPs partner with cognate SEDS (shape, elongation, division, and sporulation) glycosyltransferases to form the core catalytic complex of peptidoglycan synthases that synthesize peptidoglycan at discrete cellular locations, although the SEDS partner for Pbp4 is unknown. SEDS-bPBP peptidoglycan synthases of enterococci have not been studied, but some SEDS-bPBP pairs can be predicted based on sequence similarity. For example, FtsW (SEDS)-PbpB (bPBP) is predicted to form the catalytic core of the peptidoglycan synthase that functions at the division septum (the divisome). However, PbpB is readily inactivated by cephalosporins, raising the question-how could the FtsW-PbpB synthase continue functioning to enable growth in the presence of cephalosporins? In this work, we report that the FtsW-PbpB peptidoglycan synthase is required for cephalosporin resistance of Enterococcus faecalis, despite the fact that PbpB is inactivated by cephalosporins. Moreover, Pbp4 associates with the FtsW-PbpB synthase and the TPase activity of Pbp4 is required to enable growth in the presence of cephalosporins in an FtsW-PbpB-synthase-dependent manner. Overall, our results implicate a model in which Pbp4 directly interacts with the FtsW-PbpB peptidoglycan synthase to provide TPase activity during cephalosporin treatment, thereby maintaining the divisome SEDS-bPBP peptidoglycan synthase in a functional state competent to synthesize crosslinked peptidoglycan. These results suggest that two bPBPs coordinate within the FtsW-PbpB peptidoglycan synthase to drive cephalosporin resistance in E. faecalis.


Assuntos
Antibacterianos , Proteínas de Bactérias , Resistência às Cefalosporinas , Cefalosporinas , Enterococcus faecalis , Proteínas de Ligação às Penicilinas , Peptidoglicano Glicosiltransferase , Peptidoglicano , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano Glicosiltransferase/genética , Resistência às Cefalosporinas/genética , Cefalosporinas/farmacologia , Antibacterianos/farmacologia , Peptidoglicano/metabolismo , Testes de Sensibilidade Microbiana , Peptidil Transferases/metabolismo , Peptidil Transferases/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
4.
J Bacteriol ; 204(4): e0060221, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35258319

RESUMO

Cephalosporins are commonly prescribed antibiotics that impair cross-linking of the bacterial cell wall. The Gram-positive opportunistic pathogen, Enterococcus faecalis, is intrinsically resistant to these antibiotics and proliferates substantially during cephalosporin therapy. As a result, the usage of cephalosporins has the potential to lead to life-threatening enterococcal infections. Yet, the molecular mechanisms that drive cephalosporin resistance (CR) are incompletely understood. Previously, we demonstrated that MurAA, an enzyme that catalyzes the first committed step in peptidoglycan (PG) synthesis, is required for CR. However, the mechanism by which MurAA contributes to CR remained unknown. Here, we tested the hypothesis that MurAA drives CR by controlling metabolic flux through the PG synthesis pathway. To do so, we developed and exploited an inducible gene expression system for E. faecalis based on an interspecies chimeric receptor that responds to exogenous nitrate for control of expression from a NisR-regulated promoter (PnisA). We used this tool to demonstrate synthetic lethality of MurAA with its homolog MurAB, to titrate expression of MurAA, and to conditionally deplete multiple PG synthesis enzymes downstream of MurAA that are predicted to be essential. These genetic manipulations, in addition to pharmacological inhibition of the PG synthesis pathway, all led to reductions in PG synthesis that correlated with reductions in CR. Our findings are consistent with a model in which control of metabolic flux through the PG synthesis pathway is a major driver of CR. IMPORTANCE Enterococci are dangerous opportunistic pathogens with the potential to cause life-threatening infections due in part to their intrinsic resistance to cephalosporin antibiotics. Elucidating the molecular mechanisms that provide this resistance is critical for the development of strategies to both prevent and treat enterococcal infections. Here, we report that the cell wall synthesis enzyme, MurAA, drives cephalosporin resistance at least in part by controlling metabolic flux through the peptidoglycan synthesis pathway. To demonstrate this, we designed and validated an inducible gene expression system based on a chimeric receptor that is functional in multiple lineages of E. faecalis. In doing so, we provided a new tool for inducible gene expression with broad applications beyond our studies, including studies of essential genes.


Assuntos
Resistência às Cefalosporinas , Enterococcus faecalis , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Cefalosporinas/metabolismo , Cefalosporinas/farmacologia , Enterococcus faecalis/metabolismo , Expressão Gênica , Peptidoglicano/metabolismo
5.
J Bacteriol ; 204(10): e0030422, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094306

RESUMO

Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired mechanisms of resistance to commonly used antibiotics, including cephalosporins. The transmembrane serine/threonine PASTA kinase, IreK, is an important determinant of enterococcal cephalosporin resistance. Upon exposure to cephalosporins, IreK becomes autophosphorylated, which stimulates its kinase activity to phosphorylate downstream substrates and drive cephalosporin resistance. However, the molecular mechanisms that modulate IreK autophosphorylation in response to cell wall stress, such as that induced by cephalosporins, remain unknown. A cytoplasmic protein, GpsB, promotes signaling by PASTA kinase homologs in other bacterial species, but the function of enterococcal GpsB has not been previously investigated. We used in vitro and in vivo approaches to test the hypothesis that enterococcal GpsB promotes IreK signaling in response to cephalosporins to drive cephalosporin resistance. We found that GpsB promotes IreK activity both in vivo and in vitro. This effect is required for cephalosporins to trigger IreK autophosphorylation and activation of an IreK-dependent signaling pathway, and thereby is also required for enterococcal intrinsic cephalosporin resistance. Moreover, analyses of GpsB mutants and a ΔireK gpsB double mutant suggest that GpsB has an additional function, beyond regulation of IreK activity, which is required for optimal growth and full cephalosporin resistance. Collectively, our data provide new insights into the mechanism of signal transduction by the PASTA kinase IreK and the mechanism of enterococcal intrinsic cephalosporin resistance. IMPORTANCE Enterococci are opportunistic pathogens that can cause severe bacterial infections. Treatment of these infections is challenging because enterococci possess intrinsic and acquired resistance to commonly used antibiotics. In particular, enterococci are intrinsically resistant to cephalosporin antibiotics, a trait that requires the activity of a transmembrane serine/threonine kinase, IreK, which belongs to the bacterial PASTA kinase family. The mechanisms by which PASTA kinases are regulated in cells are poorly understood. Here, we report that the cytoplasmic protein GpsB directly promotes IreK signaling in enterococci to drive cephalosporin resistance. Thus, we provide new insights into PASTA kinase regulation and control of enterococcal cephalosporin resistance, and suggest that GpsB could be a promising target for new therapeutics to disable cephalosporin resistance.


Assuntos
Resistência às Cefalosporinas , Enterococcus faecalis , Enterococcus faecalis/metabolismo , Cefalosporinas/farmacologia , Cefalosporinas/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais , Proteínas Serina-Treonina Quinases/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Treonina/metabolismo , Treonina/farmacologia , Serina/metabolismo
6.
Emerg Infect Dis ; 28(2): 432-435, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076010

RESUMO

Among 114 clinical Neisseria gonorrhoeae isolates collected in Vietnam during 2019-2020, we detected 15 of subclone sequence type 13871 of the FC428 clonal complex. Fourteen sequence type 13871 isolates with mosaic penA allele 60.001 were ceftriaxone or cefixime nonsusceptible, and 3/14 were azithromycin nonsusceptible. Emergence of this subclone threatens treatment effectiveness.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Farmacorresistência Bacteriana , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Vietnã/epidemiologia
7.
Appl Environ Microbiol ; 88(15): e0083722, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862684

RESUMO

Phylogenetic distribution and extended spectrum ß-lactamase (ESBL) activity of Escherichia coli recovered from surface and reclaimed water in the mid-Atlantic U.S. were evaluated. Among 488 isolates, phylogroups B1 and A were the most and least prevalent, respectively. Water type, but not season, affected phylogroup distribution. The likelihood of detecting group A isolates was higher in reclaimed than pond (P < 0.01), freshwater river (P < 0.01) or brackish river (P < 0.05) water. Homogeneity in group distribution was lowest in pond water, where group B1 comprised 50% of isolates. Only 16 (3.3%) isolates exhibited phenotypic resistance to one or more cephalosporins tested and only four had ESBL activity, representing groups B1, B2 isolates, and D. Phylogroup was a factor in antimicrobial resistance (P < 0.05), with group A (8.7%) and D (1.6%) exhibiting the highest and lowest rates. Resistance to cefoxitin was the most prevalent. Multi- versus single drug resistance was affected by phylogroup (P < 0.05) and more likely in groups D and B1 than A which carried resistance to cefoxitin only. The most detected ß-lactam resistance genes were blaCMY-2 and blaTEM. Water type was a factor for blaCTX-M gene detection (P < 0.05). Phenotypic resistance to cefotaxime, ceftriaxone, cefuroxime and ceftazidime, and genetic determinants for ESBL-mediated resistance were found predominantly in B2 and D isolates from rivers and reclaimed water. Overall, ESBL activity and cephalosporin resistance in reclaimed and surface water isolates were low. Integrating data on ESBL activity and ß-lactam resistance among E. coli populations can inform decisions on safety of irrigation water sources and One Health. IMPORTANCE Extended spectrum ß-lactamase (ESBL) producing bacteria, that are resistant to a broad range of antimicrobial agents, are spreading in the environment but data remain scarce. ESBL-producing Escherichia coli infections in the community are on the rise. This work was conducted to assess presence of ESBL-producing E. coli in water that could be used for irrigation of fresh produce. The study provides the most extensive evaluation of ESBL-producing E. coli in surface and reclaimed water in the mid-Atlantic United States. The prevalence of ESBL producers was low and phenotypic resistance to cephalosporins (types of ß-lactam antibiotics) was affected by season but not water type. Data on antimicrobial resistance among E. coli populations in water can inform decisions on safety of irrigation water sources and One Health.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Antibacterianos/farmacologia , Cefoxitina , Resistência às Cefalosporinas/genética , Cefalosporinas/farmacologia , Infecções por Escherichia coli/microbiologia , Humanos , Filogenia , beta-Lactamases/genética
8.
Eur J Clin Microbiol Infect Dis ; 41(12): 1459-1465, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36227508

RESUMO

This retrospective study aimed to clarify the interspecies differences in the clinical characteristics and risk factors of bloodstream infection (BSI) due to third-generation cephalosporin-resistant (3GC-R) Escherichia coli (EC) and Klebsiella pneumoniae (KP) in patients with liver cirrhosis (LC). KP BSI had more comorbidities and higher treatment failure rate than EC BSI. Non-alcoholic LC was a risk factor for treatment failure in EC, whereas it was not associated with KP. Risk factors for BSI due to 3GC-R strain were nosocomial infection in EC, and ß-lactam/fluoroquinolone treatment ≤ 30 days in KP. These results could help predict outcomes of BSI and improve clinical practice.


Assuntos
Bacteriemia , Infecções por Escherichia coli , Infecções por Klebsiella , Sepse , Humanos , Klebsiella pneumoniae , Escherichia coli , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Resistência às Cefalosporinas , Estudos Retrospectivos , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Fatores de Risco , Sepse/tratamento farmacológico , Cirrose Hepática/complicações , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
9.
Ann Clin Microbiol Antimicrob ; 21(1): 54, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443758

RESUMO

OBJECTIVES: Among patients with haematological malignancy, bacteraemia is a common complication during chemotherapy-induced neutropenia. Resistance of gram-negative bacteria (GNB) to third-generation cephalosporins (3GC) is increasing. In order to explore the value of using surveillance cultures to guide empirical treatment e.g. choosing between carbapenem versus ceftazidime- we aimed to assess the distribution of pathogens causing bacteraemia in patients with haematological malignancy, and the proportion of 3GC-resistant GNB (3GC-R GNB) bacteraemia that was preceded by 3GC-R GNB colonization. METHODS: Using 11 years of data (2008-2018) from the Dutch national antimicrobial resistance surveillance system, we assessed the prevalence of 3GC-R GNB in episodes of bacteraemia, and the proportion of 3GC-R GNB bacteraemia that was preceded by 3GC-R GNB colonization. Colonization was defined as availability of any GNB surveillance isolate in the year before, independent of the causative micro-organism (time-paired isolates). RESULTS: We included 3887 patients, representing 4142 episodes of bacteraemia. GNB were identified in 715/4142 (17.3%), of which 221 (30.9%) were 3GC-R GNB. In 139 of these 221 patients a time-paired surveillance culture was available. In 76.2% (106/139) of patients these surveillance cultures already showed 3GC-R GNB isolates in the year prior to the culture date of the 3GC-R GNB positive blood isolate. CONCLUSIONS: This multi-centre study shows that in patients with haematological malignancy, the majority of 3GC-R GNB bacteraemia is preceded by 3GC-R GNB colonization. Prospective clinical studies are needed to assess the safety and benefits of the use of surveillance-cultures to guide empirical therapy to restrict the empirical use of carbapenems in this population.


Assuntos
Bacteriemia , Neoplasias Hematológicas , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Bacteriemia/tratamento farmacológico , Neoplasias Hematológicas/complicações , Neoplasias Hematológicas/tratamento farmacológico , Carbapenêmicos , Ceftazidima
10.
Food Microbiol ; 103: 103936, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35082062

RESUMO

The worldwide spread of Extra-intestinal Pathogenic Escherichia coli (ExPEC), together with the antimicrobial resistance linked with extended-spectrum ß-lactamases (ESBLs) and plasmid-mediated AmpC ß-lactamases (pAmpCs) are pressing threats for public health. This study aimed to investigate the presence of ExPEC genes in third-generation cephalosporin (3 GC)-resistant E. coli and to study their distribution in broiler carcasses at the slaughterhouse after the chilling process. To this purpose, isolates from a collection of 3 GC-resistant E. coli from carcasses of broilers originating from twelve broiler farms and three production chains were investigated. Several multivariate statistical approaches were adopted to elucidate the relationships among features. Phylogroup F was predominant in all broiler batches and was mainly associated with blaTEM and ESBL genes but less correlated to ExPEC genes. Another remarkable finding was the predominance of ExPEC strains assigned to uncommon phylogroups, such as B2, D, E and Clade I, commonly found into the environment. This study represents a first step for a comprehensive characterization of ExPEC genes harboured by 3 GC-resistant E. coli. These findings may be valuable for the identification of potential risks associated to broiler carcasses as source of uncommon E. coli phylogroups.


Assuntos
Infecções por Escherichia coli , Escherichia coli Extraintestinal Patogênica , Animais , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Galinhas , Escherichia coli/genética , Infecções por Escherichia coli/veterinária , beta-Lactamases
11.
Genomics ; 113(4): 2171-2176, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965548

RESUMO

BACKGROUND: Recent reports have established the emergence and dissemination of extensively drug resistant (XDR) H58 Salmonella Typhi clone in Pakistan. In India where typhoid fever is endemic, only sporadic cases of ceftriaxone resistant S. Typhi are reported. This study aimed at elucidating the phylogenetic evolutionary framework of ceftriaxone resistant S. Typhi isolates from India to predict their potential dissemination. METHODS: Five ceftriaxone resistant S. Typhi isolates from three tertiary care hospitals in India were sequenced on an Ion Torrent Personal Genome Machine (PGM). A core genome single-nucleotide-polymorphism (SNP) based phylogeny of the isolates in comparison to the global collection of MDR and XDR S. Typhi isolates was built. Two of five isolates were additionally sequenced using Oxford Nanopore MinION to completely characterize the plasmid and understand its transmission dynamics within Enterobacteriaceae. RESULTS: Comparative genomic analysis and detailed plasmid characterization indicate that while in Pakistan (4.3.1 lineage I) the XDR trait is associated with blaCTX-M-15 gene on IncY plasmid, in India (4.3.1 lineage II), the ceftriaxone resistance is due to short term persistence of resistance plasmids such as IncX3 (blaSHV-12) or IncN (blaTEM-1B + blaDHA-1). CONCLUSION: Considering the selection pressure exerted by the extensive use of ceftriaxone in India, there are potential risks for the occurrence of plasmid transmission events in the predominant H58 lineages. Therefore, continuous monitoring of S. Typhi lineages carrying plasmid-mediated cephalosporin resistant genes is vital not just for India but also globally.


Assuntos
Salmonella typhi , Febre Tifoide , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Enterobacteriaceae/genética , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos/genética , Salmonella typhi/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-33199391

RESUMO

ß-Lactam antibiotics are presently the most important treatments for infections by pathogenic Escherichia coli, but their use is increasingly compromised by ß-lactamases, including the chromosomally encoded class C AmpC serine-ß-lactamases (SBLs). The diazabicyclooctane (DBO) avibactam is a potent AmpC inhibitor; the clinical success of avibactam combined with ceftazidime has stimulated efforts to optimize the DBO core. We report kinetic and structural studies, including four high-resolution crystal structures, concerning inhibition of the AmpC serine-ß-lactamase from E. coli (AmpC EC ) by clinically relevant DBO-based inhibitors: avibactam, relebactam, nacubactam, and zidebactam. Kinetic analyses and mass spectrometry-based assays were used to study their mechanisms of AmpC EC inhibition. The results reveal that, under our assay conditions, zidebactam manifests increased potency (apparent inhibition constant [Kiapp], 0.69 µM) against AmpC EC compared to that of the other DBOs (Kiapp = 5.0 to 7.4 µM) due to an ∼10-fold accelerated carbamoylation rate. However, zidebactam also has an accelerated off-rate, and with sufficient preincubation time, all the DBOs manifest similar potencies. Crystallographic analyses indicate a greater conformational freedom of the AmpC EC -zidebactam carbamoyl complex compared to those for the other DBOs. The results suggest the carbamoyl complex lifetime should be a consideration in development of DBO-based SBL inhibitors for the clinically important class C SBLs.


Assuntos
Escherichia coli , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genética
13.
Foodborne Pathog Dis ; 18(10): 702-711, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33534635

RESUMO

Salmonella Enteritidis is an important foodborne pathogen with high prevalence of resistance to cephalosporins, imposing a serious threat to public health. Therefore, a total of 162 Salmonella Enteritidis isolates collected from child patients in China from 2007 to 2017 were characterized for their resistance to cephalosporins and investigated the transmission characteristics of cephalosporin resistance gene. We found that 15 (9.26%) isolates were all resistant to cefalotin (minimum inhibitory concentration [MIC] ≥512 µg/mL), ceftazidime (MIC 16-128 µg/mL), ceftriaxone (MIC 64 to ≥512 µg/mL), ceftiofur (MIC 64-256 µg/mL), and cefotaxime (MIC 64 to ≥512 µg/mL) with the possession of cephalosporin resistance genes blaCTX-M-55 (n = 13), blaCTX-M-101 (n = 1), and blaCTX-M-153 (n = 1). Molecular typing further revealed that these 15 isolates belonged to sequence type ST11 and shared close pulsed-field gel electrophoresis patterns, suggesting the possibility of clonal spread in Salmonella Enteritidis interspecies. Furthermore, conjugation experiments were successfully performed in 13 of 15 isolates, and blaCTX-M-55 was present on conjugative plasmids with sizes ranging from 54.7 to 173.4 kb. Compared with recipient Escherichia coli C600, transconjugants conferred elevated MICs for cephalosporins ranging from 2- to 2048-fold. The genetic structure surrounding of blaCTX-M-55 gene in transconjugants were ΔISEcp1-blaCTX-M-55-orf477 (n = 8) and ISEcp1-blaCTX-M-55-orf477 (n = 3), respectively. Taken together, blaCTX-M on the plasmids might contribute to cephalosporin resistance in Salmonella Enteritidis, and conjugative transfer of blaCTX-M-55 might facilitate the spread of cephalosporin resistance in Salmonella Enteritidis. Hence, effective mitigation measurements are needed to reduce the threat caused by cephalosporin-resistant Salmonella Enteritidis to public health.


Assuntos
Antibacterianos , Salmonella enteritidis , Antibacterianos/farmacologia , Resistência às Cefalosporinas/genética , Cefalosporinas/farmacologia , Criança , Diarreia , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella enteritidis/genética , beta-Lactamases/genética
14.
J Biol Chem ; 294(38): 14020-14032, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31362987

RESUMO

Resistance of Neisseria gonorrhoeae to extended-spectrum cephalosporins (ESCs) has become a major threat to human health. The primary mechanism by which N. gonorrhoeae becomes resistant to ESCs is by acquiring a mosaic penA allele, encoding penicillin-binding protein 2 (PBP2) variants containing up to 62 mutations compared with WT, of which a subset contribute to resistance. To interpret molecular mechanisms underpinning cephalosporin resistance, it is necessary to know how PBP2 is acylated by ESCs. Here, we report the crystal structures of the transpeptidase domain of WT PBP2 in complex with cefixime and ceftriaxone, along with structures of PBP2 in the apo form and with a phosphate ion bound in the active site at resolutions of 1-7-1.9 Å. These structures reveal that acylation of PBP2 by ESCs is accompanied by rotation of the Thr-498 side chain in the KTG motif to contact the cephalosporin carboxylate, twisting of the ß3 strand to form the oxyanion hole, and rolling of the ß3-ß4 loop toward the active site. Recognition of the cephalosporin carboxylate appears to be the key trigger for formation of an acylation-competent state of PBP2. The structures also begin to explain the impact of mutations implicated in ESC resistance. In particular, a G545S mutation may hinder twisting of ß3 because its side chain hydroxyl forms a hydrogen bond with Thr-498. Overall, our data suggest that acylation is initiated by conformational changes elicited or trapped by binding of ESCs and that these movements are restricted by mutations associated with resistance against ESCs.


Assuntos
D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/ultraestrutura , Acilação , Alelos , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico , Cefixima/farmacologia , Ceftriaxona/farmacologia , Resistência às Cefalosporinas , Cefalosporinas/farmacologia , Gonorreia/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Proteínas de Ligação às Penicilinas/química
15.
BMC Infect Dis ; 19(1): 245, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866828

RESUMO

BACKGROUND: Increased resistance to third-generation cephalosporin (3GC) is a serious concern for community-onset Escherichia coli infection because this resistance easily delays effective treatment. This study surveyed the current antimicrobial resistance pattern among E. coli isolates that cause community-onset bacteremia, with a special focus on the prevalence of and the risk factors for 3GC resistance, and determined factors for poor outcomes among patients with community-onset E. coli bacteremia. METHODS: This retrospective study was conducted at a tertiary-care teaching hospital in Taiwan. All adult patients with community-onset E. coli bacteremia between January 1, 2015, and December 31, 2015 were enrolled and were divided into two groups depending on whether the E. coli isolate was susceptible to 3GCs. Risk factors for 3GC resistance, 14-day all-cause mortality, and length of hospital stay were analyzed. RESULTS: The overall rate of 3GC resistance among E. coli isolates causing community-onset bacteremia was 19.7%, whereas it was 9.6% if only isolates causing community-acquired bacteremia were considered. Independent risk factors for 3GC-resistant community-onset E. coli bacteremia were hospitalization within the past 1 year (odds ratio: 2.4, 95% confidence interval: 1.6-3.7, P < 0.001), exposure to antibiotics within the past 15 days (2.6, 1.4-4.9, P = 0.002), residence in nursing home or long-term care facility (3.6, 1.0-12.3, P = 0.044), presence of underlying genitourinary disease (1.9, 1.2-2.9, P = 0.005), and presence of indwelling implantable intravenous port (2.2, 1.1-4.1, P = 0.021). 3GC resistance was independently associated with increased length of hospital stays (P < 0.001). CONCLUSION: In this study, the prevalence of 3GC resistance was high among both patients with community-onset and those with community-acquired E. coli bacteremia. 3GC resistance is a strong independent risk factor for length of hospital stay. The effectiveness of empirical antibiotic treatment would partially explain the impact of 3GC resistance, but more evidence is needed. The choice of appropriate empirical antibiotics for community-onset E. coli bacteremia might impact outcomes in terms of the length of hospital stay and need to be individualized according to the patient-specific risk for acquiring drug-resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Bacteriemia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli , Escherichia coli , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Hospitais , Humanos , Prevalência , Fatores de Risco
16.
Dig Dis Sci ; 64(8): 2359-2367, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30761472

RESUMO

OBJECTIVES: There are few studies addressing the impact of cephalosporin and quinolone resistance on hospital length of stay and mortality in spontaneous bacterial peritonitis (SBP). We aim to describe the shifting epidemiology of SBP at our institution and its impact on clinical outcomes. METHODS: We performed a single-center retrospective cohort study of all cases of SBP from 2005 to 2015 at a transplant center. Cases were identified using hospital billing data. Patient data were confirmed using the electronic medical record. Univariate and multivariate logistic regression and Cox proportional hazards models were used to identify factors that were associated with prolonged hospital length of stay and reduced survival. Culture-positive cases (N = 56) were compared to culture-negative cases (N = 104). Subpopulation analysis of the culture-positive cases compared ceftriaxone-resistant (N = 25) to ceftriaxone-susceptible (N = 31) cases. RESULTS: We identified 160 cases of SBP (56 culture positive and 104 culture negative; 21 nosocomial, 79 hospital associated, and 60 community acquired). Forty-five percent (N = 25 total, 13 hospital associated and 6 nosocomial) of bacterial isolates were resistant to ceftriaxone, with 37.5% (N = 21) being gram positive, including 8 methicillin-resistant staphylococcus and 6 vancomycin-resistant enterococcus. Multivariate analysis identified hospital-associated SBP, age, alcoholic cirrhosis, and MELD-Na score as variables associated with worse survival (P < 0.05), with a trend toward worse survival in culture-positive cases (P = 0.123). Only MELD-Na was associated with prolonged length of stay. CONCLUSIONS: The burden of resistant pathogens causing SBP is significant, notably in hospital-associated SBP. Culture-positive SBP may represent a higher risk group compared to culture-negative SBP.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Ceftriaxona/uso terapêutico , Farmacorresistência Bacteriana , Cirrose Hepática/epidemiologia , Peritonite/tratamento farmacológico , Quinolonas/uso terapêutico , Adulto , Idoso , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Infecções Bacterianas/mortalidade , Boston/epidemiologia , Feminino , Humanos , Tempo de Internação , Cirrose Hepática/diagnóstico , Cirrose Hepática/mortalidade , Masculino , Pessoa de Meia-Idade , Peritonite/diagnóstico , Peritonite/microbiologia , Peritonite/mortalidade , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
17.
Acta Vet Hung ; 67(4): 477-488, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842593

RESUMO

The spread of antimicrobial-resistant bacteria in wildlife must be viewed as a major concern with serious implications for human and animal health. Escherichia coli and enterococcal isolates were recovered from faecal samples of 49 wild rabbits (Oryctolagus cuniculus) on specific media and were characterised using biochemical and molecular tests. For all isolates, antimicrobial susceptibility testing was performed, and resistance genes were detected by PCR. Molecular typing of isolates was carried out by pulsed-field gel-electrophoresis, and E. coli strains were also tested for the presence of intimin (eae) gene characteristic of rabbit enteropathogenic E. coli. A total of 34 E. coli and 36 enterococci [E. hirae (52.8%) and E. faecalis (47.2%)] were obtained. For E. coli, resistance to tetracycline (94%), streptomycin (62%), ciprofloxacin (47%), trimethoprim-sulphamethoxazole (35%) and chloramphenicol (6%) was observed. Resistance to third-generation cephalosporins was detected in one E. coli strain that carried the blaCMY-2 and blaTEM-1 genes. Class 1 integrons were detected in eight isolates. For enterococci, resistance to tetracycline (63.9%), erythromycin (30.5%), streptomycin (18.2%), and chloramphenicol (5.5%) was detected. The tet(M)+tet(L), erm(B) and ant (6)-Ia genes were identified in thirteen, seven and three resistant Enterococcus strains, respectively. Molecular typing showed a high diversity among our strains. Wild rabbits could represent a reservoir of E. coli, and enterococci carrying antimicrobial resistance genes and E. coli additionally carrying the eae gene of enteropathogenic pathotypes could both contaminate the environment. our finding seems to represent the first report of eae-positive E. coli in wild rabbits.


Assuntos
Adesinas Bacterianas/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus/efeitos dos fármacos , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/veterinária , Adesinas Bacterianas/metabolismo , Animais , Enterococcus/genética , Enterococcus/patogenicidade , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/microbiologia , Prevalência , Coelhos , Tunísia/epidemiologia , Virulência/genética
18.
Emerg Infect Dis ; 24(10): 1874-1881, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226162

RESUMO

By collecting and analyzing diapers, we identified a >6-fold increase in carriage of extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae for healthy preschool children in Sweden (p<0.0001). For 6 of the 50 participating preschools, the carriage rate was >40%. We analyzed samples from 334 children and found 56 containing >1 ESBL producer. The prevalence in the study population increased from 2.6% in 2010 to 16.8% in 2016 (p<0.0001), and for 6 of the 50 participating preschools, the carriage rate was >40%. Furthermore, 58% of the ESBL producers were multidrug resistant, and transmission of ESBL-producing and non-ESBL-producing strains was observed at several of the preschools. Toddlers appear to be major carriers of ESBL producers in Sweden.


Assuntos
Portador Sadio , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Pré-Escolar , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/transmissão , Feminino , Seguimentos , Genoma Bacteriano , Humanos , Lactente , Masculino , Testes de Sensibilidade Microbiana , Vigilância da População , Prevalência , Suécia/epidemiologia , beta-Lactamases/genética
19.
Trop Med Int Health ; 23(4): 415-424, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29575455

RESUMO

OBJECTIVE: Antimicrobial-resistant bacteria may be transmitted between farm workers and livestock. This study aimed to determine and compare the prevalence and the genetic determinants of cefotaxime-resistant and ESBL-producing Escherichia coli in faecal isolates from workers and pigs at 100 farms in northern Vietnam. METHODS: Farmers were interviewed about antimicrobial usage in livestock. Escherichia coli isolated on MacConkey agar containing 2 mg/l of cefotaxime (CTX) were tested for susceptibility to different cephalosporins by disc diffusion and screened for occurrence of ESBL-encoding genes by PCR. RESULTS: Antimicrobial usage was widespread and included classes regarded of critical or high importance in human medicine. Dosages were 0.5-2 times higher than recommended, and antimicrobials were often administered right until slaughter. Prevalence of CTX-resistant E. coli was 86% in farm workers and 89% in pigs. In 76% of farms, CTX-resistant E. coli were shared by pigs and farm workers. ESBL-producing E. coli were detected from pigs and workers at 66 and 69 farms, respectively. The ESBL phenotype was mainly mediated by CTX-M and to a lesser extent by TEM. Occurrence of blaCTX-M was similar in E. coli from pigs (66.7%) and humans (68.5%). CONCLUSION: The high occurrence of ESBL-producing E. coli in pig farmers and pigs could present a risk for spillover of these bacteria from pig farms into the community. Genomic studies are needed to elucidate reservoirs and transmission routes of ESBL-producing E. coli at livestock farms.


Assuntos
Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Fazendeiros , Suínos/microbiologia , Resistência beta-Lactâmica , Criação de Animais Domésticos/métodos , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Cefotaxima/administração & dosagem , Cefotaxima/farmacologia , Cefotaxima/uso terapêutico , Cefalosporinas/administração & dosagem , Cefalosporinas/uso terapêutico , Reservatórios de Doenças , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Fazendas , Humanos , Gado/microbiologia , Testes de Sensibilidade Microbiana , Exposição Ocupacional , Fenótipo , Reação em Cadeia da Polimerase , Inquéritos e Questionários , Zoonoses/tratamento farmacológico , beta-Lactamases/metabolismo
20.
J Appl Microbiol ; 124(3): 667-681, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247576

RESUMO

AIMS: ß-lactamase inhibitor resistance (BLIR) among the uropathogenic Escherichia coli (UPEC) minimizes treatment options. This study aimed to identify inhibitor-resistant TEM (IRT) ß-lactamase that impart BLIR phenotype and explore non-ß-lactams as alternative therapeutics. METHODS AND RESULTS: Thirty BLIR UPEC isolates were detected by Kirby-Bauer disc diffusion technique using ß-lactam-ß-lactamase inhibitor combination. Conjugal transfer of BLIR was successful from 17 isolates. PCR and sequencing of the TEM ß-lactamases from the transconjugants indicated 14 TEM-84 (IRT) and three novel IRT variants (pUE184TEM, pUE203TEM, pUE210TEM). Three-dimensional models of the latter were predicted and validated. Molecular docking of selected non-ß-lactams (morin, catechin, naringenin triacetate) with the variants using AutoDock 4.2 showed comparable docking scores with significant hydrogen bond and hydrophobic interactions. Molecular dynamics simulation study confirmed stability of the non-ß-lactams inside the catalytic pocket of the enzymes. Moreover, all three non-ß-lactams were found to inhibit the purified TEM ß-lactamase variants in vitro. Microbroth dilution method indicated naringenin triacetate 64 µg ml-1 in combination with ceftazidime (CAZ) 30 µg ml-1 to be most effective against the BLIR transconjugants. CONCLUSIONS: BLIR phenotypes were primarily attributed to the production of IRT ß-lactamases. Administration of the non-ß-lactams with CAZ demonstrated an alternative therapeutic strategy against the IRT ß-lactamase producers. SIGNIFICANCE AND IMPACT OF THE STUDY: This study indicates high risk of transmission of IRT ß-lactamases and suggests ß-lactam-non-ß-lactam combination therapy to combat BLIR.


Assuntos
Antibacterianos/farmacologia , Escherichia coli Uropatogênica/efeitos dos fármacos , Inibidores de beta-Lactamases/farmacologia , Ceftazidima/farmacologia , Cefalosporinas/farmacologia , Análise por Conglomerados , Flavanonas/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Fenótipo , Reação em Cadeia da Polimerase , Resistência beta-Lactâmica/genética , beta-Lactamases/genética , beta-Lactamas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa