Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Virol ; 98(8): e0032724, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39082785

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly infectious disease afflicting domestic pigs and wild boars. It exhibits an alarming acute infection fatality rate of up to 100%. Regrettably, no commercial vaccines or specific drugs for combating this disease are currently available. This study evaluated the anti-ASFV activities in porcine alveolar macrophages, 3D4/21 cells, and PK-15 cells of four bis-benzylisoquinoline alkaloids (BBAs): cepharanthine (CEP), tetrandrine, fangchinoline, and iso-tetrandrine. Furthermore, we demonstrated that CEP, which exhibited the highest selectivity index (SI = 81.31), alkalized late endosomes/lysosomes, hindered ASFV endosomal transport, disrupted virus uncoating signals, and thereby inhibited ASFV internalization. Additionally, CEP disrupted ASFV DNA synthesis, leading to the inhibition of viral replication. Moreover, berbamine was labeled with NBD to synthesize a fluorescent probe to study the cellular location of these BBAs. By co-staining with Lyso-Tracker and lysosome-associated membrane protein 1, we demonstrated that BBAs target the endolysosomal compartments for the first time. Our data together indicated that BBAs are a class of natural products with significant inhibitory effects against ASFV infection. These findings suggest their potential efficacy as agents for the prevention and control of ASF, offering valuable references for the identification of potential drug targets.IMPORTANCEThe urgency and severity of African swine fever (ASF) underscore the critical need for effective interventions against this highly infectious disease, which poses a grave threat to domestic pigs and wild boars. Our study reveals the potent anti-African swine fever virus (ASFV) efficacy of bis-benzylisoquinoline alkaloids (BBAs), particularly evident in the absence of progeny virus production under a 5 µM concentration treatment. The structural similarity among cepharanthine, tetrandrine, fangchinoline, and iso-tetrandrine, coupled with their analogous inhibitory stages and comparable selectivity indexes, strongly suggests a shared antiviral mechanism within this drug category. Further investigation revealed that BBAs localize to lysosomes and inhibit the internalization and replication of ASFV by disrupting the endosomal/lysosomal function. These collective results have profound implications for ASF prevention and control, suggesting the potential of the investigated agents as prophylactic and therapeutic measures. Furthermore, our study offers crucial insights into identifying drug targets and laying the groundwork for innovative interventions.


Assuntos
Vírus da Febre Suína Africana , Antivirais , Benzilisoquinolinas , Endossomos , Lisossomos , Internalização do Vírus , Replicação Viral , Animais , Vírus da Febre Suína Africana/efeitos dos fármacos , Vírus da Febre Suína Africana/fisiologia , Internalização do Vírus/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Replicação Viral/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/virologia , Suínos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/virologia , Antivirais/farmacologia , Linhagem Celular , Febre Suína Africana/virologia , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo , Guanina/análogos & derivados , Guanina/farmacologia , Alcaloides/farmacologia , Macrófagos Alveolares/virologia , Macrófagos Alveolares/efeitos dos fármacos , Benzodioxóis
2.
J Med Virol ; 96(1): e29382, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38235833

RESUMO

Japanese encephalitis (JE) caused by JE virus (JEV), remains a global public health concern. Currently, there is no specific antiviral drug approved for the treatment of JE. While vaccines are available for prevention, they may not cover all at-risk populations. This underscores the urgent need for prophylaxis and potent anti-JEV drugs. In this context, a high-content JEV reporter system expressing Nanoluciferase (Nluc) was developed and utilized for a high-throughput screening (HTS) of a commercial antiviral library to identify potential JEV drug candidates. Remarkably, this screening process led to the discovery of five drugs with outstanding antiviral activity. Further mechanism of action analysis revealed that cepharanthine, an old clinically approved drug, directly inhibited virus replication by blocking GTP binding to the JEV RNA-dependent RNA polymerase. Additionally, treatment with cepharanthine in mice models alleviated JEV infection. These findings warrant further investigation into the potential anti-JEV activity of cepharanthine as a new therapeutic approach for the treatment of JEV infection. The HTS method employed here proves to be an accurate and convenient approach that facilitates the rapid development of antiviral drugs.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Camundongos , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
3.
J Infect Chemother ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39197667

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health threat. Although several effective vaccines and therapeutics have been developed, continuous emergence of new variants necessitates development of drugs with different mechanisms of action. Recent studies indicate that cepharanthine, a chemical derivative purified from Stephania cepharantha, inhibits SARS-CoV-2 replication in vitro. METHODS: This study examined the in vivo effects of cepharanthine using a Syrian hamster SARS-CoV-2 infection model. To evaluate the prophylactic and therapeutic effects, cepharanthine was intranasally administered before or after SARS-CoV-2 infection. Effects were assessed by monitoring body weight changes, lung pathology, lung viral load, and inflammatory response in the lungs. RESULTS: Pre-infection administration of cepharanthine resulted in less weight loss, reduced virus titers, alleviated histopathological severity, and decreased lung inflammation. Furthermore, post-infection administration of cepharanthine also exhibited therapeutic effects. CONCLUSIONS: This study demonstrated that both prophylactic and therapeutic administration of cepharanthine reduces the pathogenesis of COVID-19 in a Syrian hamster SARS-CoV-2 infection model. Our findings suggest that cepharanthine is a potential therapeutic agent against COVID-19.

4.
BMC Pulm Med ; 24(1): 444, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261812

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a group of chronic interstitial pulmonary diseases characterized by myofibroblast proliferation and extracellular matrix (ECM) deposition. However, current treatments are not satisfactory. Therefore, more effective therapies need to be explored. Cepharanthine (CEP) is a naturally occurring alkaloid that has recently been reported to have multiple pharmacological effects, particularly in chronic inflammation. METHODS: For in vivo experiments, first, a pulmonary fibrosis murine model was generated via tracheal injection of bleomycin (BLM). Second, the clinical manifestations and histopathological changes of the mice were used to verify that treatment with CEP might significantly reduce BLM-induced fibrosis. Furthermore, flow cytometric analysis was used to analyze the changes in the number of M2 macrophages in the lung tissues before and after treatment with CEP to explore the relationship between macrophage M2 polarization and pulmonary fibrosis. In vitro, we constructed two co-culture systems (THP-1 and MRC5 cells, RAW264.7 and NIH 3T3 cells), and measured the expression of fibrosis-related proteins to explore whether CEP could reduce pulmonary fibrosis by regulating macrophage M2 polarization and fibroblast activation. RESULTS: The results showed that the intranasal treatment of CEP significantly attenuated the symptoms of pulmonary fibrosis induced by BLM in a murine model. Our findings also indicated that CEP treatment markedly reduced the expression of fibrosis markers, including TGF-ß1, collagen I, fibronectin and α-SMA, in the mouse lung. Furthermore, in vitro studies demonstrated that CEP attenuated pulmonary fibrosis by inhibiting fibroblast activation through modulating macrophage M2 polarization and reducing TGF-ß1 expression. CONCLUSIONS: This study demonstrated the potential and efficacy of CEP in the treatment of pulmonary fibrosis. In particular, this study revealed a novel mechanism of CEP in inhibiting fibroblast activation by regulating macrophage M2 polarization and reducing the expression of fibrosis-associated factors. Our findings open a new direction for future research into the treatment of pulmonary fibrosis.


Assuntos
Benzilisoquinolinas , Bleomicina , Modelos Animais de Doenças , Macrófagos , Animais , Benzilisoquinolinas/farmacologia , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , Pulmão/patologia , Pulmão/efeitos dos fármacos , Humanos , Células RAW 264.7 , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fator de Crescimento Transformador beta1/metabolismo , Células NIH 3T3 , Benzodioxóis
5.
Brief Bioinform ; 22(2): 1378-1386, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33423067

RESUMO

Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core. CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.


Assuntos
Antivirais/farmacologia , Benzilisoquinolinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Transcriptoma , Animais , Chlorocebus aethiops , Homeostase , Humanos , Células Vero
6.
Pharmacol Res ; 194: 106830, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37343647

RESUMO

Drug combination therapy is a highly effective approach for enhancing the therapeutic efficacy of anti-cancer drugs and overcoming drug resistance. However, the innumerable possible drug combinations make it impractical to screen all synergistic drug pairs. Moreover, biological insights into synergistic drug pairs are still lacking. To address this challenge, we systematically analyzed drug combination datasets curated from multiple databases to identify drug pairs more likely to show synergy. We classified drug pairs based on their MoA and discovered that 110 MoA pairs were significantly enriched in synergy in at least one type of cancer. To improve the accuracy of predicting synergistic effects of drug pairs, we developed a suite of machine learning models that achieve better predictive performance. Unlike most previous methods that were rarely validated by wet-lab experiments, our models were validated using two-dimensional cell lines and three-dimensional tumor slice culture (3D-TSC) models, implying their practical utility. Our prediction and validation results indicated that the combination of the RTK inhibitors Lapatinib and Pazopanib exhibited a strong therapeutic effect in breast cancer by blocking the downstream PI3K/AKT/mTOR signaling pathway. Furthermore, we incorporated molecular features to identify potential biomarkers for synergistic drug pairs, and almost all potential biomarkers found connections between drug targets and corresponding molecular features using protein-protein interaction network. Overall, this study provides valuable insights to complement and guide rational efforts to develop drug combination treatments.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Fosfatidilinositol 3-Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos
7.
Sep Purif Technol ; 309: 123038, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36593875

RESUMO

With the outbreak of the new coronavirus disease 2019 (COVID-19), the rapid spread of the virus has brought huge economic losses and life threats to the world. So far, we have entered the third year of the epidemic and there is an urgent need to provide more anti-viral treatment along with vaccination. Recent studies have confirmed that Cepharanthine (CEP) has strong antiviral efficacy, which is a potential drug against COVID-19. As a natural active alkaloid, the development of CEP-incorporated products is dependent on the extraction, purification and identification of CEP. This review gives a brief introduction of CEP, including its origin and classification, and its conventional and novel extraction techniques. In addition, the purification and identification techniques are summarized. In the last, the future research directions are proposed. It can be found from this review that the extraction from plants is still the main way to obtain CEP, and it is necessary to use innovative techniques and their hybrid extractions to extract CEP. More efficient extraction and purification techniques should be used to extract CEP in the future. This review provides a basis for the development of novel extraction and purification techniques and industrial utilization of CEP.

8.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446681

RESUMO

Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.


Assuntos
Alcaloides , Benzilisoquinolinas , COVID-19 , Humanos , SARS-CoV-2 , Benzilisoquinolinas/farmacologia , Alcaloides/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico
9.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770726

RESUMO

Cepharanthine (CEP), a bisbenzylisoquinoline alkaloid from tubers of Stephania, protects against some inflammatory diseases. Aconitate decarboxylase 1 (ACOD1) is also known as immune-responsive gene 1 (IRG1), which plays an important immunometabolism role in inflammatory diseases by mediating the production of itaconic acid. ACOD1 exhibits abnormal expression in ulcerative colitis (UC). However, whether CEP can combat UC by affecting ACOD1 expression remains unanswered. This study was designed to explore the protective effects and mechanisms of CEP in treating colitis through in vitro and in vivo experiments. In vitro assays indicated that CEP inhibited LPS-induced secretion of pro-inflammatory cytokines and ACOD1 expression in RAW264.7 macrophages. Additionally, in the mouse model of DSS-induced colitis, CEP decreased macrophage infiltration and ACOD1 expression in colon tissue. After treatment with antibiotics (Abx), the expression of ACOD1 changed with the composition of gut microbiota. Correlation analysis also revealed that Family-XIII-AD3011-group and Rumini-clostridium-6 were positively correlated with ACOD1 expression level. Additionally, data of the integrative Human Microbiome Project (iHMP) showed that ACOD1 was highly expressed in the colon tissue of UC patients and this expression was positively correlated with the severity of intestinal inflammation. Collectively, CEP can counter UC by modulating gut microbiota and inhibiting the expression of ACOD1. CEP may serve as a potential pharmaceutical candidate in the treatment of UC.


Assuntos
Benzilisoquinolinas , Colite Ulcerativa , Colite , Animais , Camundongos , Humanos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Macrófagos , Colo/metabolismo , Benzilisoquinolinas/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colite/metabolismo , Camundongos Endogâmicos C57BL
10.
Molecules ; 28(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36677811

RESUMO

Pulmonary fibrosis (PF) is one of the sequelae of Corona Virus Disease 2019 (COVID-19), and currently, lung transplantation is the only viable treatment option. Hence, other effective treatments are urgently required. We investigated the therapeutic effects of an approved botanical drug, cepharanthine (CEP), in a cell culture model of transforming growth factor-ß1 (TGF-ß1) and bleomycin (BLM)-induced pulmonary fibrosis rat models both in vitro and in vivo. In this study, CEP and pirfenidone (PFD) suppressed BLM-induced lung tissue inflammation, proliferation of blue collagen fibers, and damage to lung structures in vivo. Furthermore, we also found increased collagen deposition marked by α-smooth muscle actin (α-SMA) and Collagen Type I Alpha 1 (COL1A1), which was significantly alleviated by the addition of PFD and CEP. Moreover, we elucidated the underlying mechanism of CEP against PF in vitro. Various assays confirmed that CEP reduced the viability and migration and promoted apoptosis of myofibroblasts. The expression levels of myofibroblast markers, including COL1A1, vimentin, α-SMA, and Matrix Metallopeptidase 2 (MMP2), were also suppressed by CEP. Simultaneously, CEP significantly suppressed the elevated Phospho-NF-κB p65 (p-p65)/NF-κB p65 (p65) ratio, NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels, and elevated inhibitor of NF-κB Alpha (IκBα) degradation and reversed the progression of PF. Hence, our study demonstrated that CEP prevented myofibroblast activation and treated BLM-induced pulmonary fibrosis in a dose-dependent manner by regulating nuclear factor kappa-B (NF-κB)/ NLRP3 signaling, thereby suggesting that CEP has potential clinical application in pulmonary fibrosis in the future.


Assuntos
COVID-19 , Fibrose Pulmonar , Animais , Ratos , Bleomicina , Colágeno/metabolismo , COVID-19/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Pulmão , Miofibroblastos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
11.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298919

RESUMO

Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) induces a severe cytokine storm that may cause acute lung injury/acute respiratory distress syndrome (ALI/ARDS) with high clinical morbidity and mortality in infected individuals. Cepharanthine (CEP) is a bisbenzylisoquinoline alkaloid isolated and extracted from Stephania cepharantha Hayata. It exhibits various pharmacological effects, including antioxidant, anti-inflammatory, immunomodulatory, anti-tumor, and antiviral activities. The low oral bioavailability of CEP can be attributed to its poor water solubility. In this study, we utilized the freeze-drying method to prepare dry powder inhalers (DPI) for the treatment of acute lung injury (ALI) in rats via pulmonary administration. According to the powder properties study, the aerodynamic median diameter (Da) of the DPIs was 3.2 µm, and the in vitro lung deposition rate was 30.26; thus, meeting the Chinese Pharmacopoeia standard for pulmonary inhalation administration. We established an ALI rat model by intratracheal injection of hydrochloric acid (1.2 mL/kg, pH = 1.25). At 1 h after the model's establishment, CEP dry powder inhalers (CEP DPIs) (30 mg/kg) were sprayed into the lungs of rats with ALI via the trachea. Compared with the model group, the treatment group exhibited a reduced pulmonary edema and hemorrhage, and significantly reduced content of inflammatory factors (TNF-α, IL-6 and total protein) in their lungs (p < 0.01), indicating that the main mechanism of CEP underlying the treatment of ALI is anti-inflammation. Overall, the dry powder inhaler can deliver the drug directly to the site of the disease, increasing the intrapulmonary utilization of CEP and improving its efficacy, making it a promising inhalable formulation for the treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Benzilisoquinolinas , COVID-19 , Ratos , Animais , Administração por Inalação , Inaladores de Pó Seco , COVID-19/metabolismo , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Benzilisoquinolinas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/análise , Tamanho da Partícula , Pós/análise
12.
Biochem Biophys Res Commun ; 614: 219-224, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35636221

RESUMO

Cepharanthine is an alkaloid that isolated from Stephania cepharantha Hayata, however,its analgesic properties are unclear and the molecular targets that mediating Cepharanthine-induced analgesia are not explored yet. In the current study, mice pain models including hot plate, acetic acid-induced writhing and formalin tests were conducted to evaluate the antinociceptive actions of Cepharanthine. [3H]-ligand competitive binding assay was applied to determine the binding affinity and selectivity of Cepharanthine at κ, µ and δ opioid receptors. Cepharanthine-induced constipation was investigated using the small intestinal transit test. The results showed that intraperitoneal injection of Cepharanthine produced potent antinociception with an ED50 value of 24.5 mg/kg in the acetic acid-induced writhing test. In the formalin test, Cepharanthine produced moderate antinociception with the maximum analgesic activity of 42.6 ± 11.3% in phase I and 60.1 ± 7.7% in phase Ⅱ, respectively. Cepharanthine had no effects in the hot plate test. In vitro radioligand binding assay, Cepharanthine exhibited a high affinity for µ opioid receptors with a Ki value of 80 nM, without binding to κ and δ opioid receptors. Correspondingly, Cepharanthine-mediated antinociceptive effects were antagonized by pretreatment with opioid receptor antagonist naloxone. Cepharanthine also decreased the small intestine propulsion rates in the small intestinal transit test. Together, this study firstly demonstrates that Cepharanthine produces potent antinociception in acetic acid-induced visceral pain and moderate antinociception in formalin-induced inflammatory pain, and its mechanism of action may be through activation of µ opioid receptors.


Assuntos
Receptores Opioides delta , Receptores Opioides mu , Acetatos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/farmacologia , Animais , Benzilisoquinolinas , Modelos Animais de Doenças , Camundongos , Dor/tratamento farmacológico , Receptores Opioides kappa/metabolismo
13.
Acta Pharmacol Sin ; 43(1): 177-193, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34294886

RESUMO

Inhibition of autophagy has been accepted as a promising therapeutic strategy in cancer, but its clinical application is hindered by lack of effective and specific autophagy inhibitors. We previously identified cepharanthine (CEP) as a novel autophagy inhibitor, which inhibited autophagy/mitophagy through blockage of autophagosome-lysosome fusion in human breast cancer cells. In this study we investigated whether and how inhibition of autophagy/mitophagy by cepharanthine affected the efficacy of chemotherapeutic agent epirubicin in triple negative breast cancer (TNBC) cells in vitro and in vivo. In human breast cancer MDA-MB-231 and BT549 cells, application of CEP (2 µM) greatly enhanced cepharanthine-induced inhibition on cell viability and colony formation. CEP interacted with epirubicin synergistically to induce apoptosis in TNBC cells via the mitochondrial pathway. We demonstrated that co-administration of CEP and epirubicin induced mitochondrial fission in MDA-MB-231 cells, and the production of mitochondrial superoxide was correlated with mitochondrial fission and apoptosis induced by the combination. Moreover, we revealed that co-administration of CEP and epirubicin markedly increased the generation of mitochondrial superoxide, resulting in oxidation of the actin-remodeling protein cofilin, which promoted formation of an intramolecular disulfide bridge between Cys39 and Cys80 as well as Ser3 dephosphorylation, leading to mitochondria translocation of cofilin, thus causing mitochondrial fission and apoptosis. Finally, in mice bearing MDA-MB-231 cell xenografts, co-administration of CEP (12 mg/kg, ip, once every other day for 36 days) greatly enhanced the therapeutic efficacy of epirubicin (2 mg/kg) as compared with administration of either drug alone. Taken together, our results implicate that a combination of cepharanthine with chemotherapeutic agents could represent a novel therapeutic strategy for the treatment of breast cancer.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Epirubicina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/química , Benzilisoquinolinas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Epirubicina/química , Humanos , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
14.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558061

RESUMO

Cepharanthine is an active ingredient separated and extracted from Stephania cepharantha Hayata, a Menispermaceae plant. As a bisbenzylisoquinoline alkaloid, cepharanthine has various pharmacological properties, including antioxidant, anti-inflammatory, immunomodulatory, antitumoral, and antiviral effects. Following the emergence of coronavirus disease 2019 (COVID-19), cepharanthine has been found to have excellent anti-COVID-19 activity. In this review, the important physicochemical properties and pharmacological effects of cepharanthine, particularly the antiviral effect, are systematically described. Additionally, the molecular mechanisms and novel dosage formulations for the efficient, safe, and convenient delivery of cepharanthine are summarized.


Assuntos
Alcaloides , Benzilisoquinolinas , COVID-19 , Humanos , Benzilisoquinolinas/farmacologia , Alcaloides/química , Antivirais/farmacologia
15.
Molecules ; 27(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35566097

RESUMO

Cepharanthine (CEP) has excellent anti-SARS-CoV-2 properties, indicating its favorable potential for COVID-19 treatment. However, its application is challenged by its poor dissolubility and oral bioavailability. The present study aimed to improve the bioavailability of CEP by optimizing its solubility and through a pulmonary delivery method, which improved its bioavailability by five times when compared to that through the oral delivery method (68.07% vs. 13.15%). An ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) method for quantification of CEP in rat plasma was developed and validated to support the bioavailability and pharmacokinetic studies. In addition, pulmonary fibrosis was recognized as a sequela of COVID-19 infection, warranting further evaluation of the therapeutic potential of CEP on a rat lung fibrosis model. The antifibrotic effect was assessed by analysis of lung index and histopathological examination, detection of transforming growth factor (TGF)-ß1, interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and hydroxyproline level in serum or lung tissues. Our data demonstrated that CEP could significantly alleviate bleomycin (BLM)-induced collagen accumulation and inflammation, thereby exerting protective effects against pulmonary fibrosis. Our results provide evidence supporting the hypothesis that pulmonary delivery CEP may be a promising therapy for pulmonary fibrosis associated with COVID-19 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Fibrose Pulmonar , Animais , Benzilisoquinolinas , Disponibilidade Biológica , Bleomicina/farmacologia , COVID-19/complicações , Cromatografia Líquida , Humanos , Pulmão , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/etiologia , Ratos , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta1/metabolismo
16.
Saudi Pharm J ; 30(12): 1683-1690, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601507

RESUMO

Background: It was demonstrated that cepharanthine (CEP), derived from Stephania cepharantha hayata, is a potent inhibitor of the ABCC10 transmembrane protein. It is approved to be a natural product or remedy. The present study focuses on investigating whether cepharanthine effectively reduces hyperlipidemia and obesity in an experimental hyperlipidemic rat model. Method: Four groups of Wistar rats were assigned randomly to the following groups: a high-fat high sucrose diet (HFHS), normal-fat diet (NFD), HFHS plus cepraranthine (10 mg/kg) (HFHS-C), and a HFHS diet with atorvastatin (HFHS-A). The responses of rats were observed on the basis of serum and hepatic biochemical parameters, food intake, and body weight after CEP treatment, and assessing the histopathological modifications by the optical microscope in the liver and its cells. Results: Significant improvement in the serum total cholesterol (TC), serum triglycerides (TG), and serum low-density lipoprotein (LDL) levels were observed following CEP treatment. We have also observed significant improvement in the structure of liver tissue and reduced-fat droplets in the cytoplasm. Moreover, CEP had a significant effect in preventing the gain in body weight of animals, and food intake was not significantly affected. Conclusion: Our research results revealed that CEP significantly improved dyslipidemia and prevented the accumulation of fatty deposits in the rats' liver tissue fed an HFHS diet. In addition, CEP exerted an anti-obesity effect.

17.
AAPS PharmSciTech ; 22(7): 245, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611770

RESUMO

The aim of this article was to design a self-emulsifying drug delivery system (SEDDS) of loaded cepharanthine (CEP) to improve the oral bioavailability in rats. Based on the solubility determination and pseudo-ternary phase diagram, isopropyl palmitate (IPP) was chosen as the oil phase. Meanwhile, Cremophor RH40 and Macrogol 200 (PEG 200) were chosen as the emulsifier and co-emulsifier, respectively. This prescription was further optimized by using central composite design of response surface methodology. The optimized condition was CEP:IPP:Cremophor RH40:PEG 200=3.6:30.0:55.3:11.1 in mass ratio with maximum drug loading (36.21 mg/mL) and the minimum particle size (36.70 nm). The constructed CEP-SEDDS was characterized by dynamic light scattering, transmission electron microscopy, in vitro release and stability studies. The dissolution level of CEP-SEDDS was nearly 100% after 30 min in phosphate-buffered saline (PBS, pH 6.8) which was higher than that of the pure CEP (approximately 20%). In addition, in vivo pharmacokinetic study in rats showed that CEP-SEDDS dramatically improved bioavailability compared with active pharmaceutical ingredient (API) (the relative bioavailability was 203.46%). In this study, CEP-SEDDS was successfully prepared to enhance the oral bioavailability which might facilitate to increase its better clinical application. Graphical abstract.


Assuntos
Sistemas de Liberação de Medicamentos , Administração Oral , Animais , Benzilisoquinolinas , Disponibilidade Biológica , Emulsões , Ratos , Solubilidade
18.
BMC Vet Res ; 16(1): 345, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948186

RESUMO

BACKGROUND: Porcine circovirus type 2 (PCV2) is an immunosuppressive pathogen with high prevalence rate in pig farms. It has caused serious economic losses to the global pig industry. Due to the rapid mutation of PCV2 strain and co-infection of different genotypes, vaccination could not eradicate the infection of PCV2. It is necessary to screen and develop effective new compounds and explore their anti-apoptotic mechanism. The 13 natural compounds were purchased, with a clear plant origin, chemical structure and content and specific biological activities. RESULTS: The maximum no-cytotoxic concentration (MNTC) and 50% cytotoxic concentration (CC50) of 13 tested compounds were obtained by the cytopathologic effect (CPE) assay and (3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in PK-15 cells. The results of qPCR and Western blot showed that, compared with the PCV2 infected group, the expression of Cap in Paeonol (0.4 mg/mL and 0.2 mg/mL), Cepharanthine (0.003 mg/mL, 0.0015 mg/mL and 0.00075 mg/mL) and Curcumin (0.02 mg/mL, 0.001 mg/mL and 0.005 mg/mL) treated groups were significantly lowered in a dose-dependent manner. The results of Annexin V-FITC/PI, JC-1, Western blot and ROS analysis showed that the expression of cleaved caspase-3 and Bax were up-regulated Bcl-2 was down-regulated in Cepharanthine or Curcumin treated groups, while ROS and MMP value were decreased at different degrees and the apoptosis rate was reduced. In this study, Ribavirin was used as a positive control. CONCLUSIONS: Paeonol, Cepharanthine and Curcumin have significant antiviral effect. And the PCV2-induced Mitochondrial apoptosis was mainly remitted by Cepharanthine and Curcumin.


Assuntos
Apoptose/efeitos dos fármacos , Benzilisoquinolinas/farmacologia , Circovirus/efeitos dos fármacos , Curcumina/farmacologia , Acetofenonas/farmacologia , Acetofenonas/toxicidade , Animais , Antivirais/farmacologia , Antivirais/toxicidade , Benzilisoquinolinas/toxicidade , Linhagem Celular , Infecções por Circoviridae/tratamento farmacológico , Curcumina/toxicidade , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Suínos
19.
Drug Dev Ind Pharm ; 46(2): 200-208, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31933388

RESUMO

Objectives: Stability issues are inevitable problems that are encountered in nanosuspension (NS) technology developments and in the industrial application of pharmaceuticals. This study aims to assess the stability of wet-milled cepharanthine NSs and elucidate the stabilization mechanisms of different stabilizers.Methods: The aggregation state was examined via scanning electron microscopy, laser diffraction, and rheometry. The zeta potential, stabilizer adsorption, surface tension, and drug-stabilizer interactions were employed to elucidate the stabilization mechanisms.Results: The results suggest that croscarmellose sodium (CCS), D-α-tocopherol polyethylene glycol 1000 succinate (TPGS), or polyvinyl pyrrolidone VA64 (PVP VA64) alone was able to prevent nanoparticle aggregation for at least 30 days. Attempts to evaluate the stability mechanisms of different stabilization systems revealed that CCS improved the steric-kinetic stabilization of the NSs, attributed to its high viscosity, swelling capacity, and physical barrier effects. In contrast, the excellent physical stability of TPGS systems was mainly due to the reduced surface tension and higher crystallinity. PVP VA64 can adsorb onto the surfaces of nanoparticles and stabilize the NS via steric forces.Conclusion: This study demonstrated the complex effects of CCS, TPGS, and PVP VA64 on cepharanthine NS stability and presented an approach for the rational design of stable NSs.


Assuntos
Benzilisoquinolinas/química , Nanopartículas/química , Suspensões/química , Adsorção , Carboximetilcelulose Sódica/química , Estabilidade de Medicamentos , Excipientes/química , Nanotecnologia/métodos , Polietilenoglicóis/química , Povidona/química , Vitamina E/química
20.
J Asian Nat Prod Res ; 22(4): 370-385, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30693808

RESUMO

Mutant p53 is primarily responsible for ineffectiveness of many anticancer drugs. The present study showed that cepharanthine alone or combined with 5-fluorouracil effectively controlled the growth of HT-29 human colorectal cancer cells harboring mutant p53 both in vitro and in vivo. The combination of cepharanthine and 5-fluorouracil additively induced apoptotic and necrotic cell death. Their combination significantly upregulated the expression of BAK and cleaved PARP in tumor tissues. Moreover, cepharanthine could prevent 5-fluorouracil-induced BCRP and MRP1 expression. These findings suggest that cepharanthine is a promising agent for treating patients with colorectal cancer containing p53 mutation.


Assuntos
Neoplasias Colorretais , Fluoruracila , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Apoptose , Benzilisoquinolinas , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Proteínas de Neoplasias , Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa