Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 886
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2312596121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437555

RESUMO

Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.


Assuntos
5-Metilcitosina , DNA , Cristalização , Catálise , Cristalografia
2.
J Biol Chem ; 300(3): 105679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272219

RESUMO

Reactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas. We found that MVK suppressed PI3K-Akt signaling, which regulates processes involved in cellular homeostasis, including cell proliferation, autophagy, and glucose metabolism. Interestingly, MVK inhibits the interaction between the epidermal growth factor receptor and PI3K. Cys656 in the SH2 domain of the PI3K p85 subunit, which is the covalently binding site of MVK, is important for this interaction. Suppression of PI3K-Akt signaling by MVK reversed epidermal growth factor-induced negative regulation of autophagy and attenuated glucose uptake. Furthermore, we analyzed the effects of the 23 RCS compounds with structures similar to MVK and showed that their analogs also suppressed PI3K-Akt signaling in a manner that correlated with their similarities to MVK. Our study demonstrates the mechanism of MVK and its analogs in suppressing PI3K-Akt signaling and modulating physiological functions, providing a model for future studies analyzing environmental reactive species.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Butanonas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
3.
J Biol Chem ; 299(3): 102899, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639030

RESUMO

Metallothioneins (MTs) are essential mammalian metal chaperones. MT isoform 1 (MT1) is expressed in the kidneys and isoform 3 (MT3) is expressed in nervous tissue. For MTs, the solution-based NMR structure was determined for metal-bound MT1 and MT2, and only one X-ray diffraction structure on a crystallized mixed metal-bound MT2 has been reported. The structure of solution-based metalated MT3 is partially known using NMR methods; however, little is known about the fluxional de novo apo-MT3 because the structure cannot be determined by traditional methods. Here, we used cysteine modification coupled with electrospray ionization mass spectrometry, denaturing reactions with guanidinium chloride, stopped-flow methods measuring cysteine modification and metalation, and ion mobility mass spectrometry to reveal that apo-MT3 adopts a compact structure under physiological conditions and an extended structure under denaturing conditions, with no intermediates. Compared with apo-MT1, we found that this compact apo-MT3 binds to a cysteine modifier more cooperatively at equilibrium and 0.5 times the rate, providing quantitative evidence that many of the 20 cysteines of apo-MT3 are less accessible than those of apo-MT1. In addition, this compact apo-MT3 can be identified as a distinct population using ion mobility mass spectrometry. Furthermore, proposed structural models can be calculated using molecular dynamics methods. Collectively, these findings provide support for MT3 acting as a noninducible regulator of the nervous system compared with MT1 as an inducible scavenger of trace metals and toxic metals in the kidneys.


Assuntos
Metalotioneína 3 , Cisteína/química , Metais , Isoformas de Proteínas , Humanos
4.
Chemistry ; 30(12): e202303717, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38072903

RESUMO

Organic-inorganic hybrid multifunctional materials have shown significant application in lighting and sensor fields, owing to their prominent performance and diversity structures. Herein, we synthesized two multifunctional compounds: (propyl-quinuclidone)2 CdBr4 (1) and (F-butyl-quinuclidone)2 CdBr4 (2). By introducing light-emitting organic cation with flexible long chain, 1 and 2 exhibit excellent transition properties and bright blue-white fluorescence. Then, combine fluorescence lifetime and first-principal calculation, providing evidence for the electron transfer emission. Subsequently, investigated the impact of substituent carbon chain length (methyl to butyl), structural rigidity (C-C to C-F) and halide framework (Cl to I) on the fluorescence properties. Results indicate that Cd⋅⋅⋅Cd distance and structural rigidity play an important role in fluorescence. Overall, our research provides valuable insight and example for chemical modifications enhance compound performance.

5.
Pharm Res ; 41(7): 1443-1454, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951451

RESUMO

PURPOSE: Chemical modifications in monoclonal antibodies can change hydrophobicity, charge heterogeneity as well as conformation, which eventually can impact their physical stability. In this study, the effect of the individual charge variants on physical stability and aggregation propensity in two different buffer conditions used during downstream purification was investigated. METHODS: The charge variants were separated using semi-preparative cation exchange chromatography and buffer exchanged in the two buffers with pH 6.0 and 3.8. Subsequently each variant was analysed for size heterogeneity using size exclusion chromatography and dynamic light scattering, conformational stability, colloidal stability, and aggregation behaviour under accelerated stability conditions. RESULTS: Size variants in each charge variant were similar in both pH conditions when analyzed without extended storage. However, conformational stability was lower at pH 3.8 than pH 6.0. All charge variants showed similar apparent melting temperature at pH 6.0. In contrast, at pH 3.8 variants A3, A5, B2, B3 and B4 display lower Tm, suggesting reduced conformational stability. Further, A2, A3 and A5 exhibit reduced colloidal stability at pH 3.8. In general, acidic variants are more prone to aggregation than basic variants. CONCLUSION: Typical industry practice today is to examine in-process intermediate stability with acidic species and basic species taken as a single category each. We suggest that perhaps stability evaluation needs to be performed at specie level as different acidic or basic species have different stability and this knowledge can be used for clever designing of the downstream process to achieve a stable product.


Assuntos
Anticorpos Monoclonais , Estabilidade Proteica , Anticorpos Monoclonais/química , Concentração de Íons de Hidrogênio , Estabilidade de Medicamentos , Conformação Proteica , Agregados Proteicos , Cromatografia por Troca Iônica/métodos , Interações Hidrofóbicas e Hidrofílicas , Cromatografia em Gel , Coloides/química , Produtos Biológicos/química , Humanos , Soluções Tampão
6.
J Pineal Res ; 76(4): e12960, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747028

RESUMO

Natural products, known for their environmental safety, are regarded as a significant basis for the modification and advancement of fungicides. Melatonin, as a low-cost natural indole, exhibits diverse biological functions, including antifungal activity. However, its potential as an antifungal agent has not been fully explored. In this study, a series of melatonin derivatives targeting the mitogen-activated protein kinase (Mps1) protein of fungal pathogens were synthesized based on properties of melatonin, among which the trifluoromethyl-substituted derivative Mt-23 exhibited antifungal activity against seven plant pathogenic fungi, and effectively reduced the severity of crop diseases, including rice blast, Fusarium head blight of wheat and gray mold of tomato. In particular, its EC50 (5.4 µM) against the rice blast fungus Magnaporthe oryzae is only one-fourth that of isoprothiolane (22 µM), a commercial fungicide. Comparative analyzes revealed that Mt-23 simultaneously targets the conserved protein kinase Mps1 and lipid protein Cap20. Surface plasmon resonance assays showed that Mt-23 directly binds to Mps1 and Cap20. In this study, we provide a strategy for developing antifungal agents by modifying melatonin, and the resultant melatonin derivative Mt-23 is a commercially valuable, eco-friendly and broad-spectrum antifungal agent to combat crop disease.


Assuntos
Antifúngicos , Melatonina , Melatonina/farmacologia , Melatonina/química , Melatonina/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/química , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química
7.
Macromol Rapid Commun ; 45(10): e2400015, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38414279

RESUMO

This research presents a new approach to facilely fabricating a multifunctional film using polyvinyl alcohol (PVA) as the base material. The film is modified chemically to incorporate various desirable properties such as high transparency, UV-shielding, antibacterial activity, and fluorescence. The fabrication process of this film is straightforward and efficient. The modified film showed exceptional UV-blocking capability, effectively blocking 100% of UV radiation. It also exhibits strong antibacterial properties. Additionally, the film emitted bright blue fluorescence, which can be useful in various optical and sensing applications. Despite the chemical modification, the film retained the excellent properties of PVA, including high transparency (90%) at 550 nm and good mechanical strength. Furthermore, it demonstrated remarkable stability even under harsh conditions such as exposure to long-term UV radiation, extreme temperatures (-40 or 120 °C), or immersion in different solvents. Overall, this work showcases a promising strategy to develop versatile, structurally stable, transparent, and flexible polymer films with multiple functionalities. These films have potential applications in various fields that require protection, such as packaging materials, biomedical devices, and optical components.


Assuntos
Antibacterianos , Álcool de Polivinil , Raios Ultravioleta , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/síntese química , Álcool de Polivinil/química , Fluorescência , Polímeros/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos
8.
Bioorg Chem ; 144: 107162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308999

RESUMO

Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.


Assuntos
Materiais Biomiméticos , Materiais Biomiméticos/química , Proteínas , Peptídeos/química
9.
Environ Res ; 248: 118309, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301763

RESUMO

In recent years, the increasing detection of emerging pollutants (particularly antibiotics, such as sulfonamides) in agricultural soils and water bodies has raised growing concern about related environmental and health problems. In the current research, sulfadiazine (SDZ) adsorption was studied for three raw and chemically modified clays. The experiments were carried out for increasing doses of the antibiotic (0, 1, 5, 10, 20, and 40 µmol L-1) at ambient temperature and natural pH with a contact time of 24 h. The eventual fitting to Freundlich, Langmuir and Linear adsorption models, as well as residual concentrations of antibiotics after adsorption, was assessed. The results obtained showed that one of the clays (HJ1) adsorbed more SDZ (reaching 99.9 % when 40 µmol L-1 of SDZ were added) than the other clay materials, followed by the acid-activated AM clay (which reached 99.4 % for the same SDZ concentration added). The adsorption of SDZ followed a linear adsorption isotherm, suggesting that hydrophobic interactions, rather than cation exchange, played a significant role in SDZ retention. Concerning the adsorption data, the best adjustment corresponded to the Freundlich model. The highest Freundlich KF scores were obtained for the AM acid-treated and raw HJ1 clays (606.051 and 312.969 Ln µmol1-n kg-1, respectively). The Freundlich n parameter ranged between 0.047 and 1.506. Regarding desorption, the highest value corresponded to the AM clay, being generally <10 % for raw clays, <8 % for base-activated clays, and <6 % for acid-activated clays. Chemical modifications contributed to improve the adsorption capacity of the AM clay, especially when the highest concentrations of the antibiotic were added. The results of this research can be considered relevant as regard environmental and public health assessment since they estimate the feasibility of three Tunisian clays in SDZ removal from aqueous solutions.


Assuntos
Antibacterianos , Sulfadiazina , Argila , Adsorção , Tunísia
10.
Environ Res ; 259: 119447, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908660

RESUMO

The worldwide demand for antibiotics has experienced a notable surge, propelled by the repercussions of the COVID-19 pandemic and advancements in the global healthcare sector. A prominent challenge confronting humanity is the unregulated release of antibiotic-laden wastewater into the environment, posing significant threats to public health. The adoption of affordable carbon-based adsorbents emerges as a promising strategy for mitigating the contamination of antibiotic wastewater. Here, we report the synthesis of novel porous carbons (MPC) through a direct pyrolysis of MIL-53-NH2(Al) and tannic acid (TANA) under N2 atmosphere at 800 °C for 4 h. The effect of TANA amount ratios (0%-20%, wt wt-1) on porous carbon structure and adsorption performance was investigated. Results showed that TANA modification resulted in decreased surface area (1,600 m2 g-1-949 m2 g-1) and pore volume (2.3 cm3 g-1-1.7 cm3 g-1), but supplied hydroxyl functional groups. Adsorption kinetic, intraparticle diffusion, and isotherm were examined, indicating the best fit of Elovich and Langmuir models. 10%-TANA-MPC obtained an ultrahigh adsorption capacity of 564.4 mg g-1, which was approximately 2.1 times higher than that of unmodified porous carbon. 10%-TANA-MPC could be easily recycled up to 5 times, and after reuse, this adsorbent still remained highly stable in morphology and surface area. The contribution of H bonding, pore-filling, electrostatic and π-π interactions to chloramphenicol adsorption was clarified. It is recommended that TANA-modified MIL-53-NH2(Al)-derived porous carbons act as a potential adsorbent for removal of pollutants effectively.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38728602

RESUMO

Rapid control of the content of Parkinson's drugs in biological fluids and pharmaceutical formulations is of great importance because changes in the concentration of these drugs affect their bioavailability and biopharmaceutical properties. Therefore, we presented a simple and convenient method for the ratiometric detection of carbidopa and levodopa for carbon dots (CDs) dual-fluorescent emission. Dual-emission CDs were prepared from chitosan using a microwave method, following which the surface was chemically modified with terephthalaldehyde. CDs had two strong well-separated peaks at 445 and 510 nm. The relative measurement of carbidopa and levodopa was based on the static extinction of CDs at 445 nm and increase at 510 nm, respectively. The linear range for carbidopa measurement was 2.5-300 nM, with a limit of detection (LOD) of 2.1 nM, and a relative standard deviation (RSD) of 1.68%. Further, the linear range for levodopa measurement was equal to 3.0-400 nM, with LOD and RSD% of 2.8 nM and 3.5%, respectively. Also, selectivity of ratiometric sensor in the presence of interferences was investigated, which showed that the recovery of carbidopa and levodopa in serum and urine samples has changed between 96.80% and 116.24% with RSD% 0.11-0.77. CDs also provided good results for the determination of carbidopa and levodopa in real samples, and had high selectivity in the presence of possible interferences.

12.
Biosci Biotechnol Biochem ; 88(6): 630-636, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38553959

RESUMO

N-Methylisothiazolinone (MIT) is a thiol group modifier and antimicrobial agent. Arthrobacter sarcosine oxidase (SoxA), a diagnostic enzyme for assaying creatinine, loses its activity upon the addition of MIT, and its inactivation mechanism remains unclear. In this study, SoxA was chemically modified using MIT (mo-SoxA), and its structural and chemical properties were characterized. Spectral analysis data, oxygen consumption rates, and reactions were compared between intact SoxA and mo-SoxA. These demonstrate that the oxidative half-reaction toward oxygen is inhibited by MIT modification. The oxidase activity of mo-SoxA was approximately 2.1% of that of intact SoxA, and its dehydrogenase activity was approximately 4.2 times higher. The C-to-S mutants revealed that cooperative modification of 2 specific cysteine residues caused a drastic change in the enzyme reaction mode. Based on the modeled tertiary structures, the putative entrance for oxygen uptake is predicted to be blocked by the chemical modification of the 2 cysteine residues.


Assuntos
Arthrobacter , Oxigênio , Sarcosina Oxidase , Tiazóis , Arthrobacter/enzimologia , Oxigênio/metabolismo , Oxigênio/química , Sarcosina Oxidase/metabolismo , Sarcosina Oxidase/química , Sarcosina Oxidase/genética , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Oxirredução , Cisteína/química , Cisteína/metabolismo , Modelos Moleculares , Cinética
13.
Chem Pharm Bull (Tokyo) ; 72(2): 226-233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38417868

RESUMO

Vizantin, 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose, has been developed as a safe immunostimulator on the basis of a structure-activity relationship study with trehalose 6,6'-dicorynomycolate. Our recent study indicated that vizantin acts as an effective Toll-like receptor-4 (TLR4) partial agonist to reduce the lethality of an immune shock caused by lipopolysaccharide (LPS). However, because vizantin has low solubility in water, the aqueous solution used in in vivo assay systems settles out in tens of minutes. Here, vizantin was chemically modified in an attempt to facilitate the preparation of an aqueous solution of the drug. This paper describes the concise synthesis of a water-soluble vizantin analogue in which all the hydroxyl groups of the sugar unit were replaced by sulfates. The vizantin derivative displayed micelle-forming ability in water and potent TLR-4 partial agonist activity.


Assuntos
Glicolipídeos , Lipopolissacarídeos , Trealose/análogos & derivados , Lipopolissacarídeos/farmacologia
14.
Chem Biodivers ; : e202400783, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888110

RESUMO

A novel polysaccharide, Inonotus obliquus polysaccharide (IOP), was extracted using a microwave extraction method and subsequently subjected to modifications through sulfation, carboxymethylation, phosphorylation, and acetylation. Its physical and chemical properties were analyzed using various chemical techniques, including high-pressure liquid chromatography, ultraviolet light, Fourier-transform infrared spectroscopy, X-ray diffraction, Congo red test, and scanning electron microscopy. The antioxidant capacity was assessed using DPPH, ABTS, and hydroxyl radical assays, as well as by measuring the reducing power. Additionally, hypoglycemic activity was evaluated through α-glucosidase and α-amylase assays. The results indicated that the chemical modifications effectively altered the physical and chemical properties, as well as the biological activities of IOP. Compared to the unmodified IOP, the derivatives exhibited reduced sugar content, uronic acid content, and molecular weight, while demonstrating varying levels of antioxidant and hypoglycemic capabilities. Notably, the carboxymethylated IOP (IOP-C) displayed lower molecular weight, higher ABTS free radical scavenging rate, greater reducing ability, and increased α-amylase inhibition rate. Therefore, IOP-C shows promise as a potential edible antioxidant and hypoglycemic agent.

15.
Bioprocess Biosyst Eng ; 47(2): 249-261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197955

RESUMO

ß-galactosidase has been immobilized onto novel alginate/tea waste gel beads (Alg/TW) via covalent binding. Alg/TW beads were subjected to chemical modification through amination with polyethyleneimine (PEI) followed by activation with glutaraldehyde (GA). Chemical modification parameters including PEI concentration, PEI pH, and GA concentration were statistically optimized using Response Surface methodology (RSM) based on Box-Behnken Design (BBD). Analysis of variance (ANOVA) results confirmed the great significance of the model that had F value of 37.26 and P value < 0.05. Furthermore, the R2 value (0.9882), Adjusted R2 value (0.9617), and predicted R2 value (0.8130) referred to the high correlation between predicted and experimental values, demonstrating the fitness of the model. In addition, the coefficient of variation (CV) value was 2.90 that pointed to the accuracy of the experiments. The highest immobilization yield (IY) of ß-galactosidase (75.1%) was given under optimized conditions of PEI concentration (4%), PEI pH (9.5), and GA concentration (2.5%). Alg/TW beads were characterized by FT-IR, TGA, and SEM techniques at each step of immobilization process. Moreover, the immobilized ß-galactosidase revealed a very good reusability as it could be reused for 15 and 20 consecutive cycles keeping 99.7 and 72.1% of its initial activity, respectively. In conclusion, the environmental waste (tea waste) can be used in modern technological industries such as the food and pharmaceutical industry.


Assuntos
Alginatos , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Microesferas , Concentração de Íons de Hidrogênio , Alginatos/química , Chá , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , beta-Galactosidase/química
16.
Molecules ; 29(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38998973

RESUMO

Nucleic acid chemistry is a huge research area that has received new impetus due to the recent explosive success of oligonucleotide therapy. In order for an oligonucleotide to become clinically effective, its monomeric parts are subjected to modifications. Although a large number of redesigned natural nucleic acids have been proposed in recent years, the vast majority of them are combinations of simple modifications proposed over the past 50 years. This review is devoted to the main modifications of the sugar phosphate backbone of natural nucleic acids known to date. Here, we propose a systematization of existing knowledge about modifications of nucleic acid monomers and an acceptable classification from the point of view of chemical logic. The visual representation is intended to inspire researchers to create a new type of modification or an original combination of known modifications that will produce unique oligonucleotides with valuable characteristics.


Assuntos
Ácidos Nucleicos , Fosfatos Açúcares , Ácidos Nucleicos/química , Fosfatos Açúcares/química , Fosfatos Açúcares/metabolismo , Oligonucleotídeos/química , Conformação de Ácido Nucleico
17.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999051

RESUMO

The adsorption of copper ions and Reactive Red 120 azo dye (RR-120) as models of water pollutants on unmodified halloysite (H-NM), as well as halloysites modified with sulfuric acid (H-SA) and (3-aminopropyl)triethoxysilane (H-APTES), was investigated. The results showed that adsorption of both the adsorbates was pH-dependent and increased with the increase in halloysite dosage. The adsorption kinetics were evaluated and the results demonstrated that the adsorption followed the pseudo-second-order model. The adsorption isotherms of Cu(II) ions and RR-120 dye on the halloysites were described satisfactorily by the Langmuir model. The maximum adsorption capacities for the Cu(II) ions were 0.169, 0.236, and 0.507 mmol/g, respectively, for H-NM, H-SA, and H-APTES indicating that the NH2-functionalization rather than the surface area of the adsorbents was responsible for the enhanced adsorption. The adsorption capacities for RR-120 dye were found to be 9.64 µmol/g for H-NM, 75.76 µmol/g for H-SA, and 29.33 µmol/g for H-APTES. The results demonstrated that APTES-functionalization and sulfuric acid activation are promising modifications, and both modified halloysites have good application potential for heavy metals as well as for azo dye removal.

18.
Molecules ; 29(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893457

RESUMO

The fibers from four wheat varieties (FT, XW 26, XW 45, and KW 1701) were selected and chemically modified with NaOH, epichlorohydrin, and dimethylamine to improve the adsorption capacity for anionic dye. The structure of the fibers with or without modification was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectrometry. The modified products were studied from the aspects of adsorption capacities, adsorption kinetics, and thermodynamics to provide a reference for the utilization of wheat bran. By SEM, more porous and irregular structures were found on the modified fibers. The XRD results showed that the crystals from the original fibers were destroyed in the modification process. The changes in fibers' infrared spectra before and after modification suggested that quaternary ammonium salts were probably formed in the modification process. The maximum adsorption capacity of wheat bran fibers for Congo red within 120 min was 20 mg/g for the unmodified fiber (XW 26) and 93.46 mg/g for the modified one (XW 45). The adsorption kinetics of Congo red by modified wheat bran fiber was in accord with the pseudo-second-order kinetic model at 40 °C, 50 °C, and 60 °C, indicating that the adsorption process might be mainly dominated by chemisorption. The adsorption was more consistent with the Langmuir isothermal adsorption model, implying that this process was monolayer adsorption. The thermodynamic parameters suggested that the adsorption occurred spontaneously, and the temperature increase was favorable to the adsorption. As mentioned above, this study proved that the wheat bran fiber could possess good adsorption capacities for anion dye after chemical modification.


Assuntos
Corantes , Fibras na Dieta , Termodinâmica , Adsorção , Fibras na Dieta/análise , Corantes/química , Cinética , Triticum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Vermelho Congo/química
19.
J Sci Food Agric ; 104(5): 2669-2678, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37994149

RESUMO

BACKGROUND: The relative low stability, reusability and activity of enzymes made the industrial production of vitamin E succinate (VES) can only be performed with complex processes and high cost using chemical methods. To address these issues, in the present study, an ionic liquids (ILs) modification strategy was developed to improve the activity and stability of lipases in VES synthesis. RESULTS: The results showed that the [1-butyl-3-methyl imidazole] [N-acetyl-l-proline] ILs modified Candida rugosa lipase (CRL) has the highest modification degree (48.28%), activity (774 U g-1 ), thermostability and solvent tolerance in three selected modifiers. Additionally, after reaction condition optimization, the highest yield of VES can be improved to 95.18% at 45 °C for 15 h, which was significantly improved compared to some previous studies. CONCLUSION: In the present study, a high-efficiency VES synthesis strategy was successfully developed via modification of lipase. Moreover, the mechanism by which ILs modification can enhance the activity and stability of lipase was investigated via both experimental and computational-aided methods. Molecular dynamics simulation suggested that ILs modification changed the geometry of Phe344 from flat to upright, which significantly reshaped and enhanced the size of substrate binding pocket of CRL. It is also agreement with our circular dichroism and fluorescence spectroscopy results, which suggested that the modification changed the secondary structure of CRL to a certain extent. The larger pocket also endowed the suitable binding pose of succinate, which made the hydrogen bonds between succinate and active site Ser209 become stronger, and thus improving the yield of VES. © 2023 Society of Chemical Industry.


Assuntos
Líquidos Iônicos , Lipase , Lipase/química , Líquidos Iônicos/química , alfa-Tocoferol , Ácido Succínico , Succinatos , Estabilidade Enzimática , Enzimas Imobilizadas/química
20.
J Sci Food Agric ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855916

RESUMO

BACKGROUND: Garlic is a promising source of antimicrobial peptide separation, and chemical modification is an effective method for activity improvement. The present study aimed to improve the antifungal activity of a peptide extracted from garlic. Chemical modifications were conducted, and the structure-activity relationship and antifungal mechanism were investigated. RESULTS: The results indicated that the cationic charge induced by Lys residue at the N-terminal was important for the antimicrobial activity, and the modified sequence exhibited significant antifungal activity with low mammalian toxicity and a low tendency of drug resistance (p < 0.05). The structure-activity relationship analysis revealed that the modified active peptide had a predominant α-helical structure and an inner cyclic correlation. Transcriptomic analysis showed that peptide KMLKKLFR (Lys-Met-Leu-Lys-Lyse-Leu-Phe-Arg) affected the rRNA processing and carbon metabolism process of Candida albicans. In addition, the membrane potential study indicated a non-membrane destruction mechanism, and molecular docking analysis and a DNA interaction assay suggested promising inner targets. CONCLUSION: The results of the present study indicate that chemical modification by amino acid substitution was effective for antimicrobial activity improvement. The present study would benefit future antimicrobial peptide development and suggests that garlic is a great source of antibacterial peptides and peptide template separations for coping with antibiotic resistance. © 2024 Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa