RESUMO
Smokeless powders (SLPs) are composed of a combination of thermolabile and non-thermolabile compounds. When analysed by GC-MS, injection conditions may therefore play a fundamental role on the characterisation of forensic samples. However, no systematic investigations have ever been carried out. This casts doubt on the optimal conditions that should be adopted in advanced profiling applications (e.g. class attribution and source association), especially when a traditional split/splitless (S/SL) injector is used. Herein, a study is reported that specifically focused on the evaluation of the liner type (Ltype) and inlet temperature (Tinj). Results showed that both could affect the exhaustiveness and repeatability of the observed chemical profiles, with Ltype being particularly sensitive despite typically not being clarified in published works. Perhaps as expected, degradation effects were observed for the most thermolabile compounds (e.g. nitroglycerin) at conditions maximising the heat transfer rates (Ltype = packed and Tinj ≥ 200 °C). However, these did not seem to be as influential as, perhaps, suggested in previous studies. Indeed, the harshest injection conditions in terms of heat transfer rate (Ltype = packed and Tinj = 260 °C) were found to lead to better performances (including better overall %RSDs and LODs) compared to the mildest ones. This suggested that implementing conditions minimising heat-induced breakdowns during injection was not necessarily a good strategy for comparison purposes. The reported findings represent a concrete step forward in the field, providing a robust body of data for the development of the next generation of SLP profiling methods.
RESUMO
Considering the limited data available on tree species in Uzbekistan, this research aimed to provide new insights. We gathered plant samples from different locations within Samarkand city and thoughtfully selected 15 tree species that represent the country's flora. Using scanning electron microscopy, we conducted comprehensive analyses of pollen morphology, revealing a diverse range of variations in the shapes, dimensions, and surface characteristics displayed by pollen grains. Distinct ornamentations such as micro-echinate, reticulate, rugulate, gemmate-verrucate, and verrucate-scabrate patterns facilitated the differentiation of species. These scanning electron microscopy findings enhance our comprehension of tree species diversity, adaptation, and ecological roles. In addition, leaf extracts were analyzed using HPLC and GC-MS, revealing a plethora of bioactive compounds, including catechins, chlorogenic acid, vanillic acid, and others. Furthermore, GC-MS analysis revealed the presence of seven key compounds, including 1-hexadecyne, 2-chloroethanol, 1,6-heptadiene, 2-methyl-, 5-bromoadamantan-2-one, ethyl 3-(3-pyridyl) propenoate, bis (2-ethylhexyl) phthalate, and quercetin. This study demonstrates the effectiveness of this method in assessing the quality of leaf extracts from tree species by examining both microscopic characteristics and chemical composition. This multifaceted approach has deepened our understanding of the characteristics and chemical compositions of these trees, thus contributing to a more profound appreciation of their ecological significance and potential applications.
Assuntos
Alérgenos , Árvores , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de VarreduraRESUMO
Herbal remedies have shown great promise for improving human health. The plant Crotalaria quinquefolia is used in folk medicine to cure different diseases, including scabies, fever, discomfort, and lung infections. The present research was designed to explore bioactive compounds and evaluate the neuropharmacological effects of C. quinquefolia through in vivo and in silico approaches. Different secondary metabolites as well as the antioxidant activity were measured. Furthermore, chemical compounds were identified by HPLC and GCMS analysis. The neuropharmacological activity was examined by hole cross, hole board, open field, Y-maze, elevated plus maze, and thiopental sodium induced sleeping time tests in mice at doses of 100 mg/kg and 200 mg/kg body weight. Besides, an in-silico study was performed on proteins related to Alzheimer disease. The extract showed a significant content of secondary metabolites and antioxidant potential. The in-silico analysis showed that myricetin, quercetin, rutin, and kaempferol have good binding affinity with studied proteins, and QSAR studies revealed potential benefits for treating dementia, age-related macular degeneration, and more. The findings of the present neurological activity collectively imply that the extract has strong CNS depressant and anxiolytic activity. Therefore, C. quinquefolia can be a potential source of secondary metabolites to treat Alzheimer disease.
RESUMO
INTRODUCTION: The identification of active dietary flavonoids in food is promising for novel drug discovery. The active ingredients of duckweed (a widely recognized food and herb with abundant flavonoids) that are associated with acute myeloid leukemia (AML) have yet to be identified, and their underlying mechanisms have not been elucidated. OBJECTIVES: The objective of this study was to identify novel constituents exhibiting antileukemia activity in duckweed through the integration of chemical profiling, network pharmacology, and experimental validation. METHODS: First, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was used to characterize the primary constituents of duckweed. Subsequently, AML cell-xenograft tumor models were used to validate the anticancer effect of duckweed extract. Furthermore, network pharmacology analysis was conducted to predict the potential active compounds and drug targets against AML. Lastly, based on these findings, two monomers (apiin and luteoloside) were selected for experimental validation. RESULTS: A total of 17 compounds, all of which are apigenin and luteolin derivatives, were identified in duckweed. The duckweed extract significantly inhibited AML cell growth in vivo. Furthermore, a total of 88 targets for duckweed against AML were predicted, with key targets including PTGS2, MYC, MDM2, VEGFA, CTNNB1, CASP3, EGFR, TP53, HSP90AA1, CCND1, MMP9, TNF, and MAPK1. GO and KEGG pathway enrichment analyses indicated that these targets were primarily involved in the apoptotic signaling pathway. Lastly, both apiin and luteoloside effectively induced apoptosis through CASP3 activation, and this effect could be partially reversed by a caspase inhibitor (Z-VAD). CONCLUSION: Duckweed extract has an antileukemic effect, and apiin derived from duckweed shows potential as a treatment for AML.
Assuntos
Antineoplásicos Fitogênicos , Leucemia Mieloide Aguda , Farmacologia em Rede , Extratos Vegetais , Humanos , Animais , Leucemia Mieloide Aguda/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Araceae/química , Espectrometria de Massas em Tandem/métodos , Camundongos , Cromatografia Líquida de Alta Pressão/métodos , Apigenina/farmacologia , Apigenina/química , Luteolina/farmacologia , Luteolina/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
INTRODUCTION: Natural deep eutectic solvents (NADES) have emerged as interesting extractants to develop botanical ingredients. They are nontoxic and biodegradable, nonflammable, easy to prepare, and able to solubilize a wide range of molecules. However, NADES extracts remain difficult to analyze because the metabolites of interest stay highly diluted in the nonvolatile viscous NADES matrix. OBJECTIVE: This study presents a robust analytical workflow for the chemical profiling of NADES extracts. It is applied to Hypericum perforatum aerial parts extracted with the neutral mixture fructose/glycerol/water (3/1/1, w/w/w), and compared to the chemical profiling of a classical dry methanol extract. METHODS: Exploiting polarity differences between metabolites, the H. perforatum NADES extract was partitioned in a liquid-liquid solvent system to trap the hydrophilic NADES constituents in the lower phase. The upper phase, containing a diversity of secondary metabolites from H. perforatum, was fractionated by centrifugal partition chromatography. All fractions were chemically investigated using a 13 C NMR dereplication method which involves hierarchical clustering analysis of the whole NMR dataset, a natural metabolite database for metabolite identification, and 2D NMR analyses for validation. Liquid chromatography-mass spectrometry (LC-MS) analyses were also performed to complete the identification process. RESULTS: A range of 21 metabolites were unambiguously identified, including glycosylated flavonols, lactones, catechins, phenolic acids, lipids, and simple sugars, and 15 additional minor extract constituents were annotated by LC-MS based on exact mass measurements. CONCLUSION: The proposed identification process is rapid and nondestructive and provides good prospects to deeply characterize botanical extracts obtained in nonvolatile and viscous NADES systems.
Assuntos
Solventes Eutéticos Profundos , Hypericum , Extratos Vegetais/química , Solventes/química , Cromatografia LíquidaRESUMO
A total of 65 phenolic acid compounds were annotated or identified by UHPLC-MS/MS method, among them, 17 p-HAP (p-hydroxyacetophenone) glycosides were firstly targeted profiled based on molecular networking. Their characteristic product ions of MS/MS spectra were found and examined on the guideline of targeted isolation. As a result, a new p-HAP glycoside was thus obtained and determined as 2'-O-caffeoyl-p-HAP-4-O-ß-D-glucopyranoside (33) based on 1D and 2D NMR data. Besides, multicomponents quantitative analysis indicated the distinct regional variability in chemicals distribution of A. japonica, and meanwhile, the contents of p-HAP glycosides from A. japonica were higher than those in A. capillaris as a whole, which further suggested the potential medicinal value of A. japonica.
Assuntos
Artemisia , Espectrometria de Massas em Tandem , Glicosídeos/química , Artemisia/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Estrutura MolecularRESUMO
Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. The aerial parts of Euphorbia grantii Oliv. were extracted with methanol to give a total methanolic extract (TME), which was further fractionated into dichloromethane (DCMF) and the remaining mother liquor (MLF) fractions. Biological guided anti-inflammatory assays in vitro revealed that the DCMF showed the highest activity (IC50 6.9 ± 0.2 µg/mL and 0.29 ± 0.01 µg/mL) compared to. celecoxib (IC50 of 88.0 ± 1 µg/mL and 0.30 ± 0.01 µg/mL) on COX-1 and COX-2, respectively. Additionally, anti-LOX activity was IC50 = 24.0 ± 2.5 µg/mL vs. zileuton with IC50 of 40.0 ± 0.5 µg/mL. LC-DAD-QToF analysis of TME and the active DCMF resulted in the tentative identification and characterization of 56 phytochemical compounds, where the diterpenes were the dominated metabolites. An LPS-induced inflammatory model of ALI (10 mg/kg i.p) was used to assess the anti-inflammatory potential of DCMF in vivo at dose of 200 mg/kg and 300 mg/kg compared to dexamethasone (5 mg/kg i.p). Our treatments significantly reduced the pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and MPO), increased the activity of antioxidant enzymes (SOD, CAT, and GSH), decreased the activity of oxidative stress enzyme (MDA), and reduced the expression of inflammatory genes (p38.MAPK14 and CY450P2E1). The western blotting of NF-κB p65 in lung tissues was inhibited after orally administration of the DCMF. Histopathological study of the lung tissues, scoring, and immunohistochemistry of transforming growth factor-beta 1 (TGF-ß1) were also assessed. In both dose regimens, DCMF of E. grantii prevented further lung damage and reduced the side effects of LPS on acute lung tissue injury.
Assuntos
Lesão Pulmonar Aguda , Euphorbia , Proteína Quinase 14 Ativada por Mitógeno , Pneumonia , Animais , Ratos , NF-kappa B , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologiaRESUMO
Erigeron bonariensis is widely distributed throughout the world's tropics and subtropics. In folk medicine, E. bonariensis has historically been used to treat head and brain diseases. Alzheimer's disease (AD) is the most widespread form of dementia initiated via disturbances in brain function. Herein, the neuroprotective effect of the chemically characterized E. bonariensis ethanolic extract is reported for the first time in an AD animal model. Chemical profiling was conducted using UPLC-ESI-MS analysis. Female rats underwent ovariectomy (OVX) followed by 42 days of D-galactose (D-Gal) administration (150 mg/kg/day, i.p) to induce AD. The OVX/D-Gal-subjected rats received either donepezil (5 mg/kg/day) or E. bonariensis at 50, 100, and 200 mg/kg/day, given 1 h prior to D-Gal. UPLC-ESI-MS analysis identified 42 chemicals, including flavonoids, phenolic acids, terpenes, and nitrogenous constituents. Several metabolites, such as isoschaftoside, casticin, velutin, pantothenic acid, xanthurenic acid, C18-sphingosine, linoleamide, and erucamide, were reported herein for the first time in Erigeron genus. Treatment with E. bonariensis extract mitigated the cognitive decline in the Morris Water Maze test and the histopathological alterations in cortical and hippocampal tissues of OVX/D-Gal-subjected rats. Moreover, E. bonariensis extract mitigated OVX/D-Gal-induced Aß aggregation, Tau hyperphosphorylation, AChE activity, neuroinflammation (NF-κBp65, TNF-α, IL-1ß), and apoptosis (Cytc, BAX). Additionally, E. bonariensis extract ameliorated AD by increasing α7-nAChRs expression, down-regulating GSK-3ß and FOXO3a expression, and modulating Jak2/STAT3/NF-ĸB p65 and PI3K/AKT signaling cascades. These findings demonstrate the neuroprotective and memory-enhancing effects of E. bonariensis extract in the OVX/D-Gal rat model, highlighting its potential as a promising candidate for AD management.
Assuntos
Doença de Alzheimer , Erigeron , Fármacos Neuroprotetores , Ratos , Feminino , Animais , Ratos Wistar , Galactose/efeitos adversos , Cromatografia Líquida de Alta Pressão , Fosfatidilinositol 3-Quinases , Glicogênio Sintase Quinase 3 beta , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
Euryales Semen was a traditional Chinese medicine, which has been commonly used to treat spermatorrhea, enuresis, and frequent urination. Flavonoids were a critical ingredient in determining the function and quality of Euryales Semen. At present, no effective method has been established for the qualitative of Euryales Semen flavonoids. In this study, an ultra-high-performance liquid chromatography-quadrupole-time of flight-mass spectrometry method was established for flavonoids. By comparison with standard or literature data, 32 flavonoid compounds have been identified in Euryales Semen. Based on the qualitative results, an ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectroscopy method was developed for the main components, and the linearity, the limit of detection, limit of quantification, repeatability, precision, stability, and recovery of the method were verified. The principal component analysis and the hierarchical clustering heatmaps analysis showed that the 30 batches of samples were distinctly separated into the North Gordon Euryale and South Gordon Euryale, and the measured contents of the six flavonoids in North Gordon Euryale were more abundant than in South Gordon Euryale, especially isoquercitrin, hesperetin, and quercetin. It provided a scientific basis for the quality control of Euryales Semen and a theoretical basis for the rational utilization of Euryales Semen resources.
Assuntos
Medicamentos de Ervas Chinesas , Flavonoides , Flavonoides/análise , Espectrometria de Massas em Tandem/métodos , Sêmen/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análiseRESUMO
Qishen Gubiao granules, a traditional Chinese medicine preparation composed of nine herbs, have been widely used to prevent and treat coronavirus disease 2019 with good clinical efficacy. In the present study, an integrated strategy based on chemical profiling followed by network pharmacology and molecular docking was employed, to explore the active components and potential molecular mechanisms of Qishen Gubiao granules in the therapy of coronavirus disease 2019. Using the ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry technique, a total of 186 ingredients corresponding to eight structure types in Qishen Gubiao preparation were identified or structurally annotated with the elucidation of the fragmentation pathways in the typical compounds. The network pharmacology analysis screened 28 key compounds including quercetin, apigenin, scutellarein, luteolin and naringenin acting on 31 key targets, which possibly modulated signal pathways associated with immune and inflammatory responses in the treatment of coronavirus disease 2019. The molecular docking results observed that the top 5 core compounds had a high affinity for angiotensin-converting enzyme 2 and 3-chymotrypsin-like protease. This study proposed a reliable and feasible approach for elucidating the multi-components, multi-targets, and multi-pathways intervention mechanism of Qishen Gubiao granules against coronavirus disease 2019, providing a scientific basis for its further quality evaluation and clinical application.
Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Farmacologia em Rede , Medicina Tradicional Chinesa , Espectrometria de MassasRESUMO
In various countries, Pimpinella has been used to cure several diseases for centuries. Therefore, we focus on one of its potent species in this research. The aim of this experimental study was to document the various extracts derived from Pimpinella anisum that can effectively eradicate oral pathogens. In addition, the presence of antioxidants, antimicrobials, and cytotoxicity was determined using chromatographic testing methods. The alkaloid range was from 22.34 ± 043 mg/g, and the saponin range was from 15.1 ± 1.07 mg/g. HPLC analysis showed that the samples contained eight identified phenolic compounds. The antibacterial activity of ethanolic extract exhibited the highest inhibition region against Streptococcus iniae (43 ± 0.6 mm) and the lowest inhibition region against Staphylococcus haemolyticus (19 ± 0.2 mm) in 200 mg/mL of leaf ethanolic extracts. The antifungal activity revealed that ethanol showed the maximum inhibition zone against Aspergillus luchuensis (42.5 ± 0.19 mm) and the minimum inhibition zone against Aspergillus kawachii (15 ± 0.13 mm) in 200 mg/mL. The current study suggested that, after the isolation of individual components, P. anisum be investigated for assessing biological activity. The mixture and various combinations of these compounds may indicate a truly potent agent that is novel in its ability to combat a wide range of bacteria and oral pathogens.
Assuntos
Anti-Infecciosos , Pimpinella , Pimpinella/química , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , EtanolRESUMO
Coffee silverskin (CS) is the thin epidermis covering and protecting the coffee bean and it represents the main by-product of the coffee roasting process. CS has recently gained attention due to its high content in bioactive molecules and the growing interest in valuable reutilization of waste products. Drawing inspiration from its biological function, here its potential in cosmetic applications was investigated. CS was recovered from one of the largest coffee roasters located in Switzerland and processed through supercritical CO2 extraction, thereby generating coffee silverskin extract. Chemical profiling of this extract revealed the presence of potent molecules, among which cafestol and kahweol fatty acid esters, as well as acylglycerols, ß-sitosterol and caffeine. The CS extract was then dissolved in organic shea butter, yielding the cosmetic active ingredient SLVR'Coffee™. In vitro gene expression studies performed on keratinocytes showed an upregulation of genes involved in oxidative stress responses and skin-barrier functionality upon treatment with the coffee silverskin extract. In vivo, our active protected the skin against Sodium Lauryl Sulfate (SLS)-induced irritation and accelerated its recovery. Furthermore, this active extract improved measured as well as perceived skin hydration in female volunteers, making it an innovative, bioinspired ingredient that comforts the skin and benefits the environment.
Assuntos
Antioxidantes , Cosméticos , Humanos , Feminino , Antioxidantes/farmacologia , Pele/metabolismo , Estresse Oxidativo , AlimentosRESUMO
Honey is a widely consumed natural product, and its entomological origin can significantly influence its market value. Therefore, traceability of the entomological origin of honey should also be considered in honey quality control protocols. Although several methods exist, such as physicochemical characterization and bioactivity profiling of honey of different entomological origins, the most promising three methods for entomological authentication of honey include protein-based identification, chemical profiling, and a DNA-based method. All of these methods can be applied for reliable identification of the entomological origin of honey. However, as the honey is a complex matrix, the inconsistency of the results obtained by these methods is a pragmatic challenge, and therefore, the use of each method in all the cases is questionable. Most of these methodologies can be used for authentication of newly harvested honey and it is worth understanding the possibility of using these methods for authentication of relatively old samples. Most probably, using DNA-based methods targeting small fragments of DNA can provide the best result in old samples, however, the species-specific primers targeting short fragments are limited and not available for all species. Therefore, using universal primers in combination with a DNA metabarcoding approach can be a good solution that requires further investigation. This present article describes the applications of different methods, their pros, and their cons to identify honey based on entomological origin.
Assuntos
Produtos Biológicos , Mel , DNA/genética , Primers do DNA , Especificidade da EspécieRESUMO
Berries of blackcurrant (Ribes nigrum L.) are popular for their strong and complex aroma and their benefits for health. In Burgundy (France), the most famous blackcurrant cultivar is the "Noir de Bourgogne". A blackcurrant breeding program was conducted to obtain new varieties, more resistant to infections and climate changes. The cultivar "Noir de Bourgogne" was crossed with seven other varieties in order to create a hybrid with good agronomic properties and organoleptic properties close to the ones of "Noir de Bourgogne". Several hybrids were created, and their aromatic profiles studied. Berries of eight cultivars, among which Noir de Bourgogne and hybrids resulting from crossings, were harvested during the summer of 2020. Volatile compounds of berries were analyzed by HS-SPME-GC-MS, and principal component analysis (PCA) was used as the most useful chemometric technique. The profiles in volatile compounds of hybrids were either different from those of the two parental varieties or close to that of varieties other than Bourgogne black. In all cases, the overall aroma strength of the hybrid did not equal that of the Noir de Bourgogne cultivar.
Assuntos
Ribes , Compostos Orgânicos Voláteis , Humanos , Melhoramento Vegetal , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Estações do AnoRESUMO
The chemical composition and aroma profile of industrial essential oils (EOs) from species of rose grown in China, including the native Kushui rose (R. sertata × R. rugosa) and R. rugosa Thunb. cv. Plena, and the recently introduced Damask rose (R. damascena Mill.), were studied in comparison by means of GC/MS and GC-FID. More than 150 individual compounds were detected in Chinese rose samples, of which 112 were identified and their quantitative content determined, representing 88.7%, 96.7% and 97.9% of the total EO content, respectively. It was found that the main constituents of the Chinese rose EOs were representatives of terpenoid compounds (mono- and sesquiterpenoids, predominantly) and aliphatic hydrocarbons. Comparative chemical profiling revealed different chemical composition and aroma profiles: while the R. damascena oil showed a balance between the eleoptene and stearoptene fractions of the oil (the average ratio between the main terpene alcohols and paraffins was 2.65), in the Kushui and R. rugosa oils, the odorous liquid phase strongly dominated over the stearopten, with a ratio of 16.91 and 41.43, respectively. The most abundant terpene was citronellol, ranging from 36.69% in R. damascena to 48.32% in R. rugosa oil. In addition, the citronellol enantiomers distribution, which is an important marker for rose oil authenticity, was studied for the first time in R. rugosa oil.
Assuntos
Óleos Voláteis , Rosa , Rosa/química , Terpenos/análise , Óleos Voláteis/química , ChinaRESUMO
Shengjiang Xiexin decoction, a traditional Chinese medical formula, has been utilized to alleviate the delayed-onset diarrhea induced by irino tecan. However, the chemical constituents of this formula and the activities of its constituents remain unclear. In this study, ultrahigh-performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry was employed to comprehensively analyze the chemical constituents of Shengjiang Xiexin decoction. A total of 270 components, including flavonoids, coumarins, triterpenoids, alkaloids, diarylheptanoids and others, were identified or characterized. Multidrug resistance-associated protein 2 is an efflux transporter responsible for regulating drug absorption. A total of 20 characteristic components from the formula were selected to evaluate their effects on the function of multidrug resistance-associated protein 2 using the vesicular transport assay. Glycyrrhizic acid and glycyrrhetinic acid were identified as potential multidrug resistance-associated protein 2 inhibitors, while 9 flavonoid aglycones increased the uptake of the substrate [3 H]-estradiol 17-ß-glucuronide in the vesicles. This was the first systematic investigation of the chemical constituents from Shengjiang Xiexin decoction and the effect of its characteristic components on the transporter. The results offered a basis for further exploring the detoxification mechanisms of this formula and its interactions with other drugs.
Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Ácido Glicirretínico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Cumarínicos/análise , Diarileptanoides , Medicamentos de Ervas Chinesas/química , Estradiol , Flavonoides/análise , Glucuronídeos , Ácido Glicirrízico/análise , Espectrometria de Massas/métodos , Proteína 2 Associada à Farmacorresistência MúltiplaRESUMO
Caraway, a well-known traditional Uyghur medicine, has been used to treat vitiligo for centuries. Its biological effects on melanin synthesis of caraway have been investigated. However, beyond psoralen and isopsoralen alone, no further chemical component of caraway has been revealed. In this study, ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry was employed to comprehensively characterize the chemical components present in caraway. Based on accurate mass measurements, key fragmental ions and comparison with reference standards, 75 chemical components were identified in caraway. Moreover, a tandem mass spectrometry method was developed and validated for quantitative analysis of three pairs isomeric components, namely psoralen/isopsoralen, bavachin/isobavachalcone and bavachromene/isobavachromene in rat plasma. Psoralen, isopsoralen, bavachin, and isobavachalcone showed linearity with concentration ranging of 1.0-500.0 ng/ml. The linear ranges for bavachromene and isobavachromene were 0.2-500.0 ng/ml. The accuracies were in ranges of 85%-115% with coefficient of variation errors of less than 15%. Furthermore, the method was applied to quantify the three pairs isomeric components in rats after oral administration of caraway.
Assuntos
Carum , Medicamentos de Ervas Chinesas , Furocumarinas , Animais , Cromatografia Líquida de Alta Pressão , Ficusina , Prescrições , Ratos , Espectrometria de Massas em TandemRESUMO
The Jin-Gu-Lian capsule, a Chinese Miao herbal compound, is widely used to treat rheumatoid arthritis. In this study, a rapid, selective, and sensitive UHPLC-Orbitrap Exploris 240 MS method was developed to analyze the chemical composition of Jin-Gu-Lian capsules. A total of 88 compounds were identified, including 23 flavonoids, 23 organic acids, 14 phenylpropanoids, 12 phenols, eight alkaloids, four terpenes, three quinones, and one ketone. Among these, 21 compounds were clearly detected based on a comparison with reference standards and selected as quality control markers. Thereafter, these compounds were simultaneously determined in the Jin-Gu-Lian capsules. The established method was successfully validated and applied for the simultaneous determination of 21 biologically active compounds in Jin-Gu-Lian capsules of 27 sample batches. Quantitative data of the analytes were analyzed using multivariate statistical analysis to determine the quality of the Jin-Gu-Lian capsules. Four compounds (JGLC6 [salidroside], JGLC8 [chlorogenic acid], JGLC12 [liriodendrin], JGLC19 [quercetin]) were identified as chemical markers for quality control of Jin-Gu-Lian capsules. Altogether, the established method was validated as a novel and efficient tool, that can be used for rapid analysis of Jin-Gu-Lian capsules. Accordingly, this study serves as a reference for scientific research on traditional Chinese and ethnic medicine.
Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Flavonoides/análise , Controle de Qualidade , Espectrometria de Massas em Tandem/métodosRESUMO
Analytical scale chemical/cultivation profiling prioritized the Australian marine-derived fungus Aspergillus noonimiae CMB-M0339. Subsequent investigation permitted isolation of noonindoles A-F (5-10) and detection of eight minor analogues (i-viii) as new examples of a rare class of indole diterpene (IDT) amino acid conjugate, indicative of an acyl amino acid transferase capable of incorporating a diverse range of amino acid residues. Structures for 5-10 were assigned by detailed spectroscopic and X-ray crystallographic analysis. The metabolites 5-14 exhibited no antibacterial properties against G-ve and G+ve bacteria or the fungus Candida albicans, with the exception of 5 which exhibited moderate antifungal activity.
Assuntos
Aminoácidos , Diterpenos , Austrália , Diterpenos/farmacologia , Candida albicans , Indóis/farmacologia , Estrutura Molecular , Testes de Sensibilidade MicrobianaRESUMO
This work describes the study of the chemical profiling and α-glucosidase inhibitory activity of essential oils (EOs) from four Pinus species (P.â wallichiana, P.â patula, P.â roxburghii and P.â gerardiana). The identification and quantification of EOs metabolites were performed by GC/MS, GC-FID and 13 C-NMR. The needles of P.â wallichiana and P.â gerardiana presented the highest oil yields (0.35 % and 0.36 %, respectively). Twenty-four constituents were characterized in among samples exhibiting 93.8-97.7 % of the total EOs. The components and yields of the targeted samples were varied according to the species. Major components of the oils were α-pinene (20.5-34.1 %), ß-pinene (1.4-53.0 %), δ-3-carene (0.2-47.0 %), limonene (1.7-13.4 %), ß-phellandrene (0.2-23.4 %), ß-myrcene (1.8-7.2 %) and α-terpinolene (0.6-7.9 %). The extracted EOs showed strong α-glucosidase inhibitory activity, which was close to the positive control, acarbose. This study showed that the EOs of Pinus species may be used as natural antidiabetic.