RESUMO
Assessment of natural background levels (NBLs) of compositional groundwater parameters helps to identify the potential threats to groundwater resources. This study is the first attempt to apply the pre-selection-based BRIDGE (Background cRiteria for the IDentification of Groundwater thrEshold) methodology to calculate the NBLs and threshold values (TVs) of major groundwater constituents in the southwest Bengal Basin, Bangladesh. A database consisting of 78 groundwater samples was used to assess the NBLs and associated TVs of the major groundwater parameters (EC, Ca2+, Mg2+, Na+, K+, Cl-, NO3-, SO42-, PO43-, Mn2+, and Fe2+). NBLs were derived based on 90th and 97.7th percentiles. The status of regional groundwater resources was assessed by applying 90th percentile NBL on a regional dataset (n = 196). Results revealed the "poor" chemical status of shallow aquifers denoting heavy deterioration of the groundwater quality due to anthropogenic interventions. Nitrate contamination and salinization were identified as the major threats to the deep groundwater of the southwest Bengal Basin. Finally, to verify the chemical status of groundwater in a heavily urbanized area, derived TVs were applied throughout the experimental site Khulna. Twenty-five deep groundwater samples were collected for this purpose. Though most of the parameters exhibited "good" chemical status, nitrate demonstrated anthropogenic groundwater contamination in Khulna City. Thus, the developed TVs would provide an early warning system of pollution. On a national scale, it is expected to facilitate the sustainable groundwater management of the country and contribute to achieving the Sustainable Development Goals (SDG) of the United Nations (UN) in Bangladesh.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Nitratos , Bangladesh , Poluentes Químicos da Água/análiseRESUMO
The study focused on selected trace elements (As, Cd, Cr, Hg, Ni, Pb) monitored in surface waters of the Venice Lagoon catchment basin (North East Italy) over the period 2000-2015. The monitoring was undertaken to verify the achievement of the quality objectives set by the European and national legislations. The available results have been analyzed to evaluate the chemical status of water bodies. The limit of quantification (LOQ) of the applied analytic techniques appears critical for the adequate water monitoring; for some parameters, the percentage of not visible values due to non-satisfactory LOQ was higher in the beginning of the period; the subsequent improvement of LOQ allowed assessing the respect of environmental quality standards (EQSs). The study analyzes time trends in single stations and the differences between detected concentrations in the considered stations. Moreover, maximum concentrations and water flows have been considered to understand the potential correlation. Cumulated frequency curves for the most critical parameters have been built to identify situation of potential overtaking of the EQSs in force. The most polluted sampling stations of the drainage basin for the six trace elements were found in Cuori and Fiumazzo rivers. Although LOQs changed over time, the recorded trends show a quality improvement and a good compliance with respect to EQSs set by European legislation, while considering EQSs set by local special legislation, the objectives are not yet satisfied. Arsenic is ubiquitous; thus, it can be supposed to be originated as a background environmental concentration, while nickel appears of industrial origin according to its point and local presence.
Assuntos
Monitoramento Ambiental , Oligoelementos/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Itália , Mercúrio , Metais Pesados/análise , RiosRESUMO
We report the development and application of a prototype tool for integrated assessment of chemical status in aquatic environments based on substance- and matrix-specific environmental assessment criteria (thresholds). The Chemical Status Assessment Tool (CHASE) integrates data on hazardous substances in water, sediments and biota as well as bio-effect indicators and is based on a substance- or bio-effect-specific calculation of a 'contamination ratio' being the ratio between an observed concentration and a threshold value. Values <1.0 indicate areas potentially 'unaffected', while values >1.0 indicate areas potentially 'affected'. These ratios are combined within matrices, i.e. for water, sediment and biota and for biological effects. The overall assessment used a 'one out, all out principle' with regard to each matrix. The CHASE tool was tested in the Baltic Sea and the North Sea in 376 assessment units. In the former, the chemical status was >1.0 in practically all areas indicating that all areas assessed were potentially affected. The North Sea included areas classified as unaffected or affected. The CHASE tool can in combination with temporal trend assessments of individual substances be advantageous for use in remedial action plans and, in particular, for the science-based evaluation of the status and for determining which specific substances are responsible for a status as potentially affected.
Assuntos
Monitoramento Ambiental/economia , Poluentes Químicos da Água/análise , Países Bálticos , Meio Ambiente , Substâncias Perigosas/análise , Mar do Norte , Oceanos e Mares , Água do Mar/químicaRESUMO
Water management decisions are complex ever since they are dependent on adopted politics, social objectives, environmental impacts, and economic determinants. To adequately address hydric resources issues, it is crucial to rely on scientific data and models guiding decision-makers. The present study brings a new methodology, consisting of a combined GIS-MCDA, to prioritize catchments that require environmental interventions to improve surface water quality. A Portuguese catchment, Ave River Basin, was selected to test this methodology due to the low water quality. First, it was calculated the contamination risk of each catchment, based on a GIS-MCDA using point source pressures, landscape metrics, and diffuse emissions as criteria. This analysis was compared to local data of ecological and chemical status through ANOVA and the Tukey test. The results showed the efficiency of the method since the contamination risk was lower for catchments under a good status and higher in catchments with a lower classification. In a second task, it was calculated the intervention complexity using a different GIS-MCDA. For this approach, it was chosen five criteria that condition environmental interventions, population density, slope, percentage of burned areas, Strahler order, and the number of effluent discharge sites. Both multicriteria methods were combined in a graphical analysis to rank the catchments intervention priority, subdividing the prioritization into four categories from 1st to 4th, giving a higher preference for catchments with high contamination risk and low intervention complexity. As a result, catchments with a good status were dominantly placed under low intervention priority, and catchments with a lower ecological status were classified as a high priority, 1st and 2nd. In total, 248 catchments were spatially ranked, which is an essential finding for decision-makers, that are willing to safeguard the catchment water quality.
Assuntos
Rios , Qualidade da Água , Técnicas de Apoio para a Decisão , Monitoramento Ambiental , Sistemas de Informação GeográficaRESUMO
According to the water framework directive (WFD), the chemical status should be determined for each water body in a basin through monitoring and evaluation studies, and the gap between the status of water bodies and good water status should be revealed in river basin management plans. In this context, the methodology starting with the evaluation of the monitoring results of the priority substances (PSs) until the end of determining the measures to achieve good condition in surface waters was given in this study. The key aim was to provide a useful methodology defined as a matrix for determining the sources of pollutants that caused this gap. This matrix was applied to the most polluted sub-basin of Küçük Menderes Basin located on the western part of the Turkey. Monitoring studies were carried out in 21 water bodies for a 1-year period for 45 PSs and monitoring results were compared with environmental quality standards (EQS). It was determined that 13 of 45 PSs in 15 water bodies exceeded the EQS. The common PSs in the basin were lead, nickel, fluoranthene, benzo(a)pyrene, C10-13 chloroalkanes, and 4-nonylphenols and average rates of exceeding the EQS were 58.3%, 36.4%, 91.5%, 99.9%, 74.8%, and 49.4%, respectively. The detailed emission inventory of each water body in the basin has been made. Potential sources of PSs were searched via the matrix formed and a total number of 420 basic and supplementary measures were proposed to improve the water quality of the sub-basin.
Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Rios , Turquia , Poluentes Químicos da Água/análise , Qualidade da ÁguaRESUMO
Groundwater resources are of utmost importance in sustaining water related ecosystems, including humans. The long-lasting impacts from anthropogenic activities require early actions, owing to the natural time lag in groundwater formation and renewal. The European Union (EU) policy, within the implementation of the Water Framework Directive (WFD), requires Member States to identify and reverse any significant and sustained upward trend in the concentration of pollutants, defining specific protection measures to be included in the River Basin Management Plans (RBMP). In Italy, official guidelines for trend and trend reversal assessment have been published recently. Statistical methods, such as the Mann-Kendall test for trend analysis and the Sen's method for estimating concentration scenarios, should be applied at the fixed terms stated by the WFD implementation cycles to identify upward trends, while the Pettitt test is proposed for the identification of trend reversal. In this paper, we present an application of a slightly modified version of the Italian Guidelines to a groundwater body in Northern Italy featuring nitrate pollution and discuss its advantages and limitations. In addition to Pettitt test, for the trend reversal analysis, we apply the Mann-Kendall test in two sections and compare the results. We conclude that this method seems more reliable than Pettitt test to identify a reversal point in quality time series. The overall procedure can be easily applied to any groundwater body defined at risk across Europe, for the assessment of the upward trends of pollutants and their reversal, even with little chemical monitoring data. Although focused on the EU legislative framework, this procedure may be relevant for a wider context, allowing to individuate upward trend as early warning for contamination processes in an integrated water resources management context.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Humanos , Itália , Nitratos/análise , Água , Poluentes Químicos da Água/análiseRESUMO
We propose and exemplify a framework to assess Natural Background Levels (NBLs) of target chemical species in large-scale groundwater bodies based on the context of Object Oriented Spatial Statistics. The approach enables one to fully exploit the richness of the information content embedded in the probability density function (PDF) of the variables of interest, as estimated from historical records of chemical observations. As such, the population of the entire distribution functions of NBL concentrations monitored across a network of monitoring boreholes across a given aquifer is considered as the object of the spatial analysis. Our approach starkly differs from previous studies which are mainly focused on the estimation of NBLs on the basis of the median or selected quantiles of chemical concentrations, thus resulting in information loss and limitations related to the need to invoke parametric assumptions to obtain further summary statistics in addition to those considered for the spatial analysis. Our work enables one to (i) assess spatial dependencies among observed PDFs of natural background concentrations, (ii) provide spatially distributed kriging predictions of NBLs, as well as (iii) yield a robust quantification of the ensuing uncertainty and probability of exceeding given threshold concentration values via stochastic simulation. We illustrate the approach by considering the (probabilistic) characterization of spatially variable NBLs of ammonium and arsenic detected at a monitoring network across a large scale confined groundwater body in Northern Italy.
RESUMO
Quantification of the (spatially distributed) natural contributions to the chemical signature of groundwater resources is an emerging issue in the context of competitive groundwater uses as well as water regulation and management frameworks. Here, we illustrate a geostatistically-based approach for the characterization of spatially variable Natural Background Levels (NBLs) of target chemical species in large-scale groundwater bodies yielding evaluations of local probabilities of exceedance of a given threshold concentration. The approach is exemplified by considering three selected groundwater bodies and focusing on the evaluation of NBLs of ammonium and arsenic, as detected from extensive time series of concentrations collected at monitoring boreholes. Our study is motivated by the observation that reliance on a unique NBL value as representative of the natural geochemical signature of a reservoir can mask the occurrence of localized areas linked to diverse strengths of geogenic contributions to the groundwater status. We start from the application of the typical Pre-Selection (PS) methodology to the scale of each observation borehole to identify local estimates of NBL values. The latter are subsequently subject to geostatistical analysis to obtain estimates of their spatial distribution and the associated uncertainty. A multimodel framework is employed to interpret available data. The impact of alternative variogram models on the resulting spatial distributions of NBLs is assessed through probabilistic weights based on model identification criteria. Our findings highlight that assessing possible impacts of anthropogenic activities on groundwater environments with the aim of designing targeted solutions to restore a good groundwater quality status should consider a probabilistic description of the spatial distribution of NBLs. The latter is useful to provide enhanced information upon which one can then build decision-making protocols embedding the quantification of the associated uncertainty.
Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Monitoramento AmbientalRESUMO
Contamination of aquatic ecosystems is considered as one of the main threats to global freshwater biodiversity. Within the European Water Framework Directive (EU-WFD) a particular attention is dedicated to assess ecological risks of surface water contamination and mitigation of chemical pressures on aquatic ecosystems. In this work, we evaluated ecological risks of surface water contamination for fish populations in four EU-WFD rivers through an integrative approach investigating three Lines of Evidence (chemical contamination, biomarker responses as early warning signals of contamination impacting individuals and ecological analyses as an indicator of fish community disturbances). This work illustrates through 4 case studies the complementary role of biomarkers, chemical and ecological analyses which, used in combination, provide fundamental information to understand impacts of chemical pressures that can affect fish population dynamics. We discuss the limitations of this approach and future improvements needed within the EU-WFD to assess ecological risk of river contamination for fish populations.
Assuntos
Monitoramento Ambiental/métodos , Peixes/metabolismo , Rios/química , Poluição da Água/efeitos adversos , Poluição da Água/análise , Animais , Biodiversidade , União Europeia , Medição de Risco , Poluição da Água/legislação & jurisprudência , Poluição da Água/prevenção & controleRESUMO
Freshwater wetlands provide crucial ecosystem services, though are subject to anthropogenic/natural stressors that provoke negative impacts on these ecosystems, services and values. The European Union Water Framework Directive aims to achieve good status of surface waters by 2015, through implementation of Catchment Management Plans. Implementation of Catchment Management Plans is costly, though associated benefits from improvements in surface water status are less well known. This paper establishes a functional relationship between surface water status and cultural ecosystem service values of freshwater systems. Hence, we develop a bio-economic valuation approach in which we relate ecological status and chemical status of surface waters (based on local physio-chemical and benthic macro-invertebrates survey data) to willingness-to-pay (using benefit-function transfer). Results for the Pateira de Fermentelos freshwater wetland (Portugal) show that the current status of surface waters is good from a chemical though only moderate from an ecological perspective. The current cultural ecosystem service value of the wetland is estimated at 1.54 m/yr- increasing to 2.02 m/yr in case good status of surface waters is obtained. Taking into account ecosystem services and values in decision making is essential to avoid costs from externalities and capture benefits from spill-overs--leading to more equitable, effective and efficient water resources management.
Assuntos
Conservação dos Recursos Naturais/métodos , Cultura , Abastecimento de Água/normas , Áreas Alagadas , Monitoramento Ambiental , Política Ambiental/tendências , Água Doce , Portugal , Poluição da Água , Recursos HídricosRESUMO
A critical review of the last 25 years of dioxin policy in the Elbe river catchment is presented along seven main theses of the River Basin Community (RBC)-Elbe background document "Pollutants" for the Management Plan 2016-2021. In this period, polychlorinated dibenzodioxins/-furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) will play a major role: (i) as new priority substances for which environmental quality standards (EQSs) need to be derived (Directive 2013/39/EC); (ii) in the search for innovative solutions in sediment remediation (i.e., respecting the influence of mechanical processes; Flood Risk Directive 2007/60/EC); and (iii) as indicators at the land-sea interface (Marine Strategy Framework Directive 2008/56/EC). In the Elbe river catchment, aspects of policy and science are closely connected, which became particularly obvious in a classic example of dioxin hot spot contamination, the case of the Spittelwasser creek. Here, the "source-first principle" of the first cycle of the European Water Framework Directive (WFD) had to be confirmed in a controversy on the dioxin hot spots with Saxony-Anhalt's Agency for Contaminated Sites (LAF). At the Spittelwasser site, the move from "inside the creek" to "along the river banks" goes parallel to a general paradigm shift in retrospective risk assessment frameworks and remediation techniques for organic chemicals (Ortega-Calvo et al. 2015). With respect to dioxin, large-scale stabilization applying activated carbon additions is particularly promising. Another important aspect is the assessment of the ecotoxicology of dioxins and dl- PCBs in context of sediment mobility and flood risk assessment, which has been studied in the project framework FloodSearch. Currently, the quality goals of the WFD to reach a "good chemical status" are not met in many catchment areas because substances such as mercury do and others probably will (PCDD/Fs and dl-PCB) exceed biota-EQS values catchment area-wide. So far, relating biota-EQS values to sediment-EQSs is not possible. To overcome these limitations, the DioRAMA project was initiated, which has led to improved approaches for the assessment of dioxin-contaminated sediment using in vitro bioassays and to a robust dataset on the interrelation between dioxins and dioxin-like compounds in sediments and biota.
RESUMO
Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse biological effects nor clearly shows whether mitigation measures are needed. Thus, the question which mixtures are present and which have associated combined effects becomes central for defining adequate monitoring and assessment strategies. Here we describe the vision of the international, EU-funded project SOLUTIONS, where three routes are explored to link the occurrence of chemical mixtures at specific sites to the assessment of adverse biological combination effects. First of all, multi-residue target and non-target screening techniques covering a broader range of anticipated chemicals co-occurring in the environment are being developed. By improving sensitivity and detection limits for known bioactive compounds of concern, new analytical chemistry data for multiple components can be obtained and used to characterise priority mixtures. This information on chemical occurrence will be used to predict mixture toxicity and to derive combined effect estimates suitable for advancing environmental quality standards. Secondly, bioanalytical tools will be explored to provide aggregate bioactivity measures integrating all components that produce common (adverse) outcomes even for mixtures of varying compositions. The ambition is to provide comprehensive arrays of effect-based tools and trait-based field observations that link multiple chemical exposures to various environmental protection goals more directly and to provide improved in situ observations for impact assessment of mixtures. Thirdly, effect-directed analysis (EDA) will be applied to identify major drivers of mixture toxicity. Refinements of EDA include the use of statistical approaches with monitoring information for guidance of experimental EDA studies. These three approaches will be explored using case studies at the Danube and Rhine river basins as well as rivers of the Iberian Peninsula. The synthesis of findings will be organised to provide guidance for future solution-oriented environmental monitoring and explore more systematic ways to assess mixture exposures and combination effects in future water quality monitoring.
Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Recursos Hídricos/estatística & dados numéricos , Qualidade da Água/normasRESUMO
The estimation of natural background levels (NBLs) of dissolved concentrations of target chemical species in subsurface reservoirs relies on a proper assessment of the effects of forcing terms driving flow and transport processes taking place within the system and whose dynamics drive background concentration values. We propose coupling methodologies based on (a) global statistical analyses and (b) numerical modeling of system dynamics to distinguish between the impacts of different types of external forcing components influencing background concentration values. We focus on the joint application of a statistical methodology based on Component Separation and experimental/numerical modeling studies of groundwater flow and transport for the NBL estimation of selected chemical species in potentially contaminated coastal aquifers. We consider a site which is located in Calabria, Italy, and constitutes a typical example of a Mediterranean coastal aquifer which has been subject to intense industrial development. Our study is keyed to the characterization of NBLs of manganese and sulfate and is geared to the proper identification of the importance of a natural external forcing (i.e., seawater intrusion) on NBL assessment. Results from the Component Separation statistical approach are complemented by numerical simulations of the advective-dispersive processes that could influence the distribution of chemical species (i.e., sulfate) within the system. Estimated NBLs for manganese are consistent with the geochemical composition of soil samples. While Component Separation ascribes the largest detected sulfate concentrations to anthropogenic sources, our numerical modeling analysis suggests that they are mainly related to the natural process of seawater intrusion. Our results indicate that the use of statistical methodologies in complex groundwater systems should be assisted by a detailed characterization of the dynamics of natural (and/or induced) processes to distinguish effective anthropogenic contamination from natural conditions and to define realistic environmental clean-up goals.