Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.680
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 82(3): 696-708.e4, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090599

RESUMO

We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Cromossomos , DNA/metabolismo , Linfoma de Células B/metabolismo , Proteínas Nucleares/metabolismo , Prófase , Proteoma , Proteômica , Animais , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Linhagem Celular Tumoral , Galinhas , Cromatina/genética , DNA/genética , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patologia , Proteínas Nucleares/genética , Ligação Proteica , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Fatores de Tempo
2.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38828852

RESUMO

The cellular and genetic networks that contribute to the development of the zeugopod (radius and ulna of the forearm, tibia and fibula of the leg) are not well understood, although these bones are susceptible to loss in congenital human syndromes and to the action of teratogens such as thalidomide. Using a new fate-mapping approach with the Chameleon transgenic chicken line, we show that there is a small contribution of SHH-expressing cells to the posterior ulna, posterior carpals and digit 3. We establish that although the majority of the ulna develops in response to paracrine SHH signalling in both the chicken and mouse, there are differences in the contribution of SHH-expressing cells between mouse and chicken as well as between the chicken ulna and fibula. This is evidence that, although zeugopod bones are clearly homologous according to the fossil record, the gene regulatory networks that contribute to their development and evolution are not fixed.


Assuntos
Animais Geneticamente Modificados , Galinhas , Proteínas Hedgehog , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Galinhas/genética , Camundongos , Evolução Biológica , Embrião de Galinha , Ulna , Regulação da Expressão Gênica no Desenvolvimento , Fíbula/metabolismo , Rádio (Anatomia)/metabolismo , Humanos , Extremidades/embriologia
3.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828854

RESUMO

The neural plate border (NPB) of vertebrate embryos is segregated from the neural plate (NP) and epidermal regions, and comprises an intermingled group of progenitors with multiple fate potential. Recent studies have shown that, during the gastrula stage, TFAP2A acts as a pioneer factor in remodeling the epigenetic landscape required to activate components of the NPB induction program. Here, we show that chick Tfap2a has two highly conserved binding sites for miR-137, and both display a reciprocal expression pattern at the NPB and NP, respectively. In addition, ectopic miR-137 expression reduced TFAP2A, whereas its functional inhibition expanded their territorial distribution overlapping with PAX7. Furthermore, we demonstrate that loss of the de novo DNA methyltransferase DNMT3A expanded miR-137 expression to the NPB. Bisulfite sequencing revealed a markedly elevated presence of non-canonical CpH methylation within the miR-137 promoter region when comparing NPB and NP samples. Our findings show that miR-137 contributes to the robustness of NPB territorial restriction in vertebrate development.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs , Placa Neural , Fator de Transcrição AP-2 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Embrião de Galinha , Metilação de DNA/genética , Placa Neural/metabolismo , Placa Neural/embriologia , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A/metabolismo , Regiões Promotoras Genéticas/genética , Sítios de Ligação
4.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794750

RESUMO

During gonadal sex determination, the supporting cell lineage differentiates into Sertoli cells in males and pre-granulosa cells in females. Recently, single cell RNA-seq data have indicated that chicken steroidogenic cells are derived from differentiated supporting cells. This differentiation process is achieved by a sequential upregulation of steroidogenic genes and downregulation of supporting cell markers. The exact mechanism regulating this differentiation process remains unknown. We have identified TOX3 as a previously unreported transcription factor expressed in embryonic Sertoli cells of the chicken testis. TOX3 knockdown in males resulted in increased CYP17A1-positive Leydig cells. TOX3 overexpression in male and female gonads resulted in a significant decline in CYP17A1-positive steroidogenic cells. In ovo knockdown of the testis determinant DMRT1 in male gonads resulted in a downregulation of TOX3 expression. Conversely, DMRT1 overexpression caused an increase in TOX3 expression. Taken together, these data indicate that DMRT1-mediated regulation of TOX3 modulates expansion of the steroidogenic lineage, either directly, via cell lineage allocation, or indirectly, via signaling from the supporting to steroidogenic cell populations.


Assuntos
Galinhas , Processos de Determinação Sexual , Animais , Embrião de Galinha , Masculino , Feminino , Galinhas/genética , Linhagem da Célula , Fatores de Transcrição/metabolismo , Gônadas/metabolismo , Testículo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Diferenciação Sexual/genética
5.
Development ; 150(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37665168

RESUMO

Chicken embryos are a powerful and widely used animal model in developmental biology studies. Since the development of CRISPR technology, gene-edited chickens have been generated by transferring primordial germ cells (PGCs) into recipients after genetic modifications. However, low inheritance caused by competition between host germ cells and the transferred cells is a common complication and greatly reduces production efficiency. Here, we generated a gene-edited chicken, in which germ cells can be ablated in a drug-dependent manner, as recipients for gene-edited PGC transfer. We used the nitroreductase/metronidazole (NTR/Mtz) system for cell ablation, in which nitroreductase produces cytotoxic alkylating agents from administered metronidazole, causing cell apoptosis. The chicken Vasa homolog (CVH) gene locus was used to drive the expression of the nitroreductase gene in a germ cell-specific manner. In addition, a fluorescent protein gene, mCherry, was also placed in the CVH locus to visualize the PGCs. We named this system 'germ cell-specific autonomous removal induction' (gSAMURAI). gSAMURAI chickens will be an ideal recipient to produce offspring derived from transplanted exogenous germ cells.


Assuntos
Galinhas , Metronidazol , Embrião de Galinha , Animais , Galinhas/genética , Células Germinativas/metabolismo , Nitrorredutases/metabolismo
6.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747104

RESUMO

During neural circuit formation, axons navigate from one intermediate target to the next, until they reach their final target. At intermediate targets, axons switch from being attracted to being repelled by changing the guidance receptors on the growth cone surface. For smooth navigation of the intermediate target and the continuation of their journey, the switch in receptor expression has to be orchestrated in a precisely timed manner. As an alternative to changes in expression, receptor function could be regulated by phosphorylation of receptors or components of signaling pathways. We identified Cables1 as a linker between floor-plate exit of commissural axons, regulated by Slit/Robo signaling, and the rostral turn of post-crossing axons, regulated by Wnt/Frizzled signaling. Cables1 localizes ß-catenin, phosphorylated at tyrosine 489 by Abelson kinase, to the distal axon, which in turn is necessary for the correct navigation of post-crossing commissural axons in the developing chicken spinal cord.


Assuntos
Orientação de Axônios , Axônios , Orientação de Axônios/fisiologia , Axônios/metabolismo , Cones de Crescimento , Medula Espinal/metabolismo , Via de Sinalização Wnt , Animais , Galinhas
7.
Proc Natl Acad Sci U S A ; 120(8): e2216641120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780517

RESUMO

Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.


Assuntos
Centrômero , Galinhas , Animais , Masculino , Galinhas/genética , Centrômero/genética , Telômero , Heterocromatina , Sequências de Repetição em Tandem
8.
Dev Biol ; 507: 20-33, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154769

RESUMO

The neural tube, the embryonic precursor to the brain and spinal cord, begins as a flat sheet of epithelial cells, divided into non-neural and neural ectoderm. Proper neural tube closure requires that the edges of the neural ectoderm, the neural folds, to elevate upwards and fuse along the dorsal midline of the embryo. We have previously shown that members of the claudin protein family are required for the early phases of chick neural tube closure. Claudins are transmembrane proteins, localized in apical tight junctions within epithelial cells where they are essential for regulation of paracellular permeability, strongly involved in apical-basal polarity, cell-cell adhesion, and bridging the tight junction to cytoplasmic proteins. Here we explored the role of Claudin-3 (Cldn3), which is specifically expressed in the non-neural ectoderm. We discovered that depletion of Cldn3 causes folic acid-insensitive primarily spinal neural tube defects due to a failure in neural fold fusion. Apical cell surface morphology of Cldn3-depleted non-neural ectodermal cells exhibited increased membrane blebbing and smaller apical surfaces. Although apical-basal polarity was retained, we observed altered Par3 and Pals1 protein localization patterns within the apical domain of the non-neural ectodermal cells in Cldn3-depleted embryos. Furthermore, F-actin signal was reduced at apical junctions. Our data presents a model of spina bifida, and the role that Cldn3 is playing in regulating essential apical cell processes in the non-neural ectoderm required for neural fold fusion.


Assuntos
Ectoderma , Crista Neural , Embrião de Galinha , Animais , Ectoderma/metabolismo , Crista Neural/metabolismo , Galinhas/metabolismo , Claudina-3/metabolismo , Tubo Neural , Claudinas/genética , Claudinas/metabolismo , Junções Íntimas/metabolismo
9.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35980364

RESUMO

The gut has been a central subject of organogenesis since Caspar Friedrich Wolff's seminal 1769 work 'De Formatione Intestinorum'. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical-mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.


Assuntos
Sistema Nervoso Entérico , Doença de Hirschsprung , Diferenciação Celular , Sistema Nervoso Entérico/fisiologia , Humanos , Morfogênese/genética , Organogênese/fisiologia
10.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35132990

RESUMO

Despite previous intensive investigations on epiblast cell migration in avian embryos during primitive streak development before stage (st.) 4, this migration at later stages of brain development has remained uninvestigated. By live imaging of epiblast cells sparsely labeled with green fluorescence protein, we investigated anterior epiblast cell migration to form individual brain portions. Anterior epiblast cells from a broad area migrated collectively towards the head axis during st. 5-7 at a rate of 70-110 µm/h, changing directions from diagonal to parallel and forming the brain portions and abutting head ectoderm. This analysis revised the previously published head portion precursor map in anterior epiblasts at st. 4/5. Grafting outside the brain precursor region of mCherry-expressing nodes producing anterior mesendoderm (AME) or isolated AME tissues elicited new cell migration towards ectopic AME tissues. These locally convergent cells developed into secondary brains with portions that depended on the ectopic AME position in the anterior epiblast. Thus, anterior epiblast cells are bipotent for brain/head ectoderm development with given brain portion specificities. A brain portion potential map is proposed, also accounting for previous observations.


Assuntos
Gástrula , Camadas Germinativas , Animais , Aves , Encéfalo , Movimento Celular , Ectoderma/metabolismo
11.
Development ; 149(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36093878

RESUMO

The lateral plate mesoderm (LPM) is a transient tissue that produces a diverse range of differentiated structures, including the limbs. However, the molecular mechanisms that drive early LPM specification and development are poorly understood. In this study, we use single-cell transcriptomics to define the cell-fate decisions directing LPM specification, subdivision and early initiation of the forelimb mesenchyme in chicken embryos. We establish a transcriptional atlas and global cell-cell signalling interactions in progenitor, transitional and mature cell types throughout the developing forelimb field. During LPM subdivision, somatic and splanchnic LPM fate is achieved through activation of lineage-specific gene modules. During the earliest stages of limb initiation, we identify activation of TWIST1 in the somatic LPM as a putative driver of limb bud epithelial-to-mesenchymal transition. Furthermore, we define a new role for BMP signalling during early limb development, revealing that it is necessary for inducing a somatic LPM fate and initiation of limb outgrowth, potentially through activation of TBX5. Together, these findings provide new insights into the mechanisms underlying LPM development, somatic LPM fate choice and early initiation of the vertebrate limb.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Animais , Linhagem da Célula , Embrião de Galinha , Membro Anterior , Botões de Extremidades
12.
Proc Natl Acad Sci U S A ; 119(45): e2214344119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322747

RESUMO

Conventional avian genome editing is mediated by isolation, culture, and genome editing of primordial germ cells (PGCs); screening and propagating the genome-edited PGCs; and transplantation of the PGCs into recipient embryos. The PGC-mediated procedures, however, are technically difficult, and therefore, the conventional method has previously been utilized only in chickens. Here, we generated germline mosaic founder chicken and duck lines without the PGC-mediated procedures by injecting an adenovirus containing the CRISPR-Cas9 system into avian blastoderms. Genome-edited chicken and duck offspring produced from the founders carried different insertion or deletion mutations without mutations in the potential off-target sites. Our data demonstrate successful applications of the adenovirus-mediated method for production of genome-edited chicken and duck lines.


Assuntos
Galinhas , Edição de Genes , Animais , Edição de Genes/métodos , Galinhas/genética , Patos/genética , Sistemas CRISPR-Cas , Adenoviridae/genética , Células Germinativas
13.
BMC Biol ; 22(1): 131, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831263

RESUMO

BACKGROUND: Fine characterization of gene expression patterns is crucial to understand many aspects of embryonic development. The chicken embryo is a well-established and valuable animal model for developmental biology. The period spanning from the third to sixth embryonic days (E3 to E6) is critical for many organ developments. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA-FISH) enables multiplex RNA detection in thick samples including embryos of various animal models. However, its use is limited by tissue opacity. RESULTS: We optimized HCR RNA-FISH protocol to efficiently label RNAs in whole mount chicken embryos from E3.5 to E5.5 and adapted it to ethyl cinnamate (ECi) tissue clearing. We show that light sheet imaging of HCR RNA-FISH after ECi clearing allows RNA expression analysis within embryonic tissues with good sensitivity and spatial resolution. Finally, whole mount immunofluorescence can be performed after HCR RNA-FISH enabling as exemplified to assay complex spatial relationships between axons and their environment or to monitor GFP electroporated neurons. CONCLUSIONS: We could extend the use of HCR RNA-FISH to older chick embryos by optimizing HCR RNA-FISH and combining it with tissue clearing and 3D imaging. The integration of immunostaining makes possible to combine gene expression with classical cell markers, to correlate expressions with morphological differentiation and to depict gene expressions in gain or loss of function contexts. Altogether, this combined procedure further extends the potential of HCR RNA-FISH technique for chicken embryology.


Assuntos
Hibridização in Situ Fluorescente , Animais , Embrião de Galinha , Hibridização in Situ Fluorescente/métodos , Imunofluorescência/métodos , Imageamento Tridimensional/métodos , RNA/metabolismo , RNA/genética , Regulação da Expressão Gênica no Desenvolvimento
14.
Genomics ; 116(1): 110754, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061480

RESUMO

Dimorphism between male and female embryos has been demonstrated in many animal species, including chicken species. Likewise, extraembryonic membranes such as the chorioallantoic membrane (CAM) are likely to exhibit a sex-specific profile. Analysis of the previously published RNA-seq data of the chicken CAM sampled at two incubation times, revealed 783 differentially expressed genes between the CAM of male and female embryos. The expression of some of these genes is sex-dependant only at one or other stage of development, while 415 genes are sex-dependant at both developmental stages. These genes include well-known sex-determining and sex-differentiation genes (DMRT1, HEGM, etc.), and are mainly located on sex chromosomes. This study provides evidence that gene expression of extra-embryonic membranes is differentially regulated between male and female embryos. As such, a better characterisation of associated mechanisms should facilitate the identification of new sex-specific biomarkers.


Assuntos
Galinhas , Transcriptoma , Animais , Masculino , Feminino , Galinhas/genética , Membrana Corioalantoide/metabolismo , Diferenciação Sexual/genética , Regulação da Expressão Gênica no Desenvolvimento
15.
Genesis ; 62(1): e23530, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37353984

RESUMO

Sex is a biological variable important to consider in all biomedical experiments. However, doing so in avian embryos can be challenging as sex can be morphologically indistinguishable. Unlike humans, female birds are the heterogametic sex with Z and W sex chromosomes. The female-specific W chromosome has previously been identified in chick using a species-specific polymerase chain reaction (PCR) technique. We developed a novel reverse transcription quantitative PCR (RT-qPCR) technique that amplifies the W chromosome gene histidine triad nucleotide-binding protein W (HINTW) in chick, quail, and duck. Accuracy of the HINTW RT-qPCR primer set was confirmed in all three species using species-specific PCR, including a novel quail-specific HINTW PCR primer set. Bone development-related gene expression was then analyzed by sex in embryonic lower jaws of duck and quail, as adult duck beak size is known to be sexually dimorphic while quail beak size is not. Trends toward sex differences were found in duck gene expression but not in quail, as expected. With these novel RT-qPCR and PCR embryo sexing methods, sex of chick, quail, and duck embryos can now be assessed by either/both RNA and DNA, which facilitates analysis of sex as a biological variable in studies using these model organisms.


Assuntos
Galinhas , Codorniz , Animais , Humanos , Feminino , Masculino , Codorniz/genética , Patos/genética , Arcada Osseodentária
16.
Genesis ; 62(2): e23592, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38587195

RESUMO

Mesenchymal stem cells (MSCs) derived from fetal membranes (FMs) have the potential to exhibit immunosuppression, improve blood flow, and increase capillary density during transplantation. In the field of medicine, opening up new avenues for disease treatment. Chicken embryo chorioallantoic membrane (CAM), as an important component of avian species FM structure, has become a stable tissue engineering material in vivo angiogenesis, drug delivery, and toxicology studies. Although it has been confirmed that chorionic mesenchymal stem cells (Ch-MSCs) can be isolated from the outer chorionic layer of FM, little is known about the biological characteristics of MSCs derived from chorionic mesodermal matrix of chicken embryos. Therefore, we evaluated the characteristics of MSCs isolated from chorionic tissues of chicken embryos, including cell proliferation ability, stem cell surface antigen, genetic stability, and in vitro differentiation potential. Ch-MSCs exhibited a broad spindle shaped appearance and could stably maintain diploid karyotype proliferation to passage 15 in vitro. Spindle cells were positive for multifunctional markers of MSCs (CD29, CD44, CD73, CD90, CD105, CD166, OCT4, and NANOG), while hematopoietic cell surface marker CD34, panleukocyte marker CD45, and epithelial cell marker CK19 were negative. In addition, chicken Ch-MSC was induced to differentiate into four types of mesodermal cells in vitro, including osteoblasts, chondrocytes, adipocytes, and myoblasts. Therefore, the differentiation potential of chicken Ch-MSC in vitro may have great potential in tissue engineering. In conclusion, chicken Ch-MSCs may be an excellent model cell for stem cell regenerative medicine and chorionic tissue engineering.


Assuntos
Galinhas , Células-Tronco Mesenquimais , Animais , Embrião de Galinha , Membrana Corioalantoide , Diferenciação Celular/fisiologia , Células Cultivadas
17.
Dev Biol ; 495: 1-7, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565839

RESUMO

The cardiac neural crest is a subpopulation of cells arising from the caudal hindbrain. The delaminated cardiac neural crest cells migrate to the heart using the CXCR/SDF1 chemokine signaling system. These cells contribute to the formation of the cardiovascular system, including the septation of the outflow tract, which is unique to these cells. Here, we investigated the effect of ectopic expression of the cardiac neural crest gene MafB on trunk neural crest cells. First, we found that MafB has the potential to activate its own cis-regulatory element in enteric and trunk neural crest cells but not in cranial neural crest cells. Forced expression of two cardiac neural crest genes, Ets1 and Sox8, together with or without MafB, induced ectopic Sox10E2 enhancer activity in the trunk region. Finally, we uncovered that the expression of MafB, Ets1 and Sox8 can induce ectopic CXCR4 expression in the trunk neural crest cells, resulting in acquisition of responsiveness to the SDF1 signal. These results demonstrate that MafB, Ets1 and Sox8 are critical components for generation of the identity of the cardiac neural crest, especially the cell migration property.


Assuntos
Sistema Cardiovascular , Crista Neural , Crista Neural/metabolismo , Coração , Movimento Celular/genética , Regulação da Expressão Gênica no Desenvolvimento
18.
Physiol Genomics ; 56(6): 445-456, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497118

RESUMO

Based on next-generation sequencing, we established a repertoire of differentially overexpressed genes (DoEGs) in eight adult chicken tissues: the testis, brain, lung, liver, kidney, muscle, heart, and intestine. With 4,499 DoEGs, the testis had the highest number and proportion of DoEGs compared with the seven somatic tissues. The testis DoEG set included the highest proportion of long noncoding RNAs (lncRNAs; 1,851, representing 32% of the lncRNA genes in the whole genome) and the highest proportion of protein-coding genes (2,648, representing 14.7% of the protein-coding genes in the whole genome). The main significantly enriched Gene Ontology terms related to the protein-coding genes were "reproductive process," "tubulin binding," and "microtubule cytoskeleton." Using real-time quantitative reverse transcription-polymerase chain reaction, we confirmed the overexpression of genes that encode proteins already described in chicken sperm [such as calcium binding tyrosine phosphorylation regulated (CABYR), spermatogenesis associated 18 (SPATA18), and CDK5 regulatory subunit associated protein (CDK5RAP2)] but whose testis origin had not been previously confirmed. Moreover, we demonstrated the overexpression of vertebrate orthologs of testis genes not yet described in the adult chicken testis [such as NIMA related kinase 2 (NEK2), adenylate kinase 7 (AK7), and CCNE2]. Using clustering according to primary sequence homology, we found that 1,737 of the 2,648 (67%) testis protein-coding genes were unique genes. This proportion was significantly higher than the somatic tissues except muscle. We clustered the other 911 testis protein-coding genes into 495 families, from which 47 had all paralogs overexpressed in the testis. Among these 47 testis-specific families, eight contained uncharacterized duplicated paralogs without orthologs in other metazoans except birds: these families are thus specific for chickens/birds.NEW & NOTEWORTHY Comparative next-generation sequencing analysis of eight chicken tissues showed that the testis has highest proportion of long noncoding RNA and protein-coding genes of the whole genome. We identified new genes in the chicken testis, including orthologs of known mammalian testicular genes. We also identified 47 gene families in which all the members were overexpressed, if not exclusive, in the testis. Eight families, organized in duplication clusters, were unknown, without orthologs in metazoans except birds, and are thus specific for chickens/birds.


Assuntos
Galinhas , RNA Longo não Codificante , Testículo , Animais , Masculino , Galinhas/genética , Testículo/metabolismo , RNA Longo não Codificante/genética , Sequenciamento de Nucleotídeos em Larga Escala , Perfilação da Expressão Gênica/métodos , Especificidade de Órgãos/genética , Ontologia Genética , Família Multigênica
19.
BMC Genomics ; 25(1): 296, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509464

RESUMO

BACKGROUND: Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS: We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS: We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION: Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Locos de Características Quantitativas , Genômica , Peso Corporal/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , China
20.
BMC Genomics ; 25(1): 634, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918701

RESUMO

BACKGROUND: Previous studies have demonstrated the role of N6-methyladenosine (m6A) RNA methylation in various biological processes, our research is the first to elucidate its specific impact on LCAT mRNA stability and adipogenesis in poultry. RESULTS: The 6 100-day-old female chickens were categorized into high (n = 3) and low-fat chickens (n = 3) based on their abdominal fat ratios, and their abdominal fat tissues were processed for MeRIP-seq and RNA-seq. An integrated analysis of MeRIP-seq and RNA-seq omics data revealed 16 differentially expressed genes associated with to differential m6A modifications. Among them, ELOVL fatty acid elongase 2 (ELOVL2), pyruvate dehydrogenase kinase 4 (PDK4), fatty acid binding protein 9 (PMP2), fatty acid binding protein 1 (FABP1), lysosomal associated membrane protein 3 (LAMP3), lecithin-cholesterol acyltransferase (LCAT) and solute carrier family 2 member 1 (SLC2A1) have ever been reported to be associated with adipogenesis. Interestingly, LCAT was down-regulated and expressed along with decreased levels of mRNA methylation methylation in the low-fat group. Mechanistically, the highly expressed ALKBH5 gene regulates LCAT RNA demethylation and affects LCAT mRNA stability. In addition, LCAT inhibits preadipocyte proliferation and promotes preadipocyte differentiation, and plays a key role in adipogenesis. CONCLUSIONS: In conclusion, ALKBH5 mediates RNA stability of LCAT through demethylation and affects chicken adipogenesis. This study provides a theoretical basis for further understanding of RNA methylation regulation in chicken adipogenesis.


Assuntos
Adenosina , Adipogenia , Homólogo AlkB 5 da RNA Desmetilase , Galinhas , Fosfatidilcolina-Esterol O-Aciltransferase , Estabilidade de RNA , Animais , Adipogenia/genética , Galinhas/genética , Galinhas/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Feminino , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Metilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa