Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 19(1): 917, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545297

RESUMO

BACKGROUND: The transcriptional profiles of mammals during brain development and ageing have been characterized. However the global expression patterns of transcriptome in the chicken brain have not been explored. Here, we systematically investigated the temporal expression profiles of lncRNAs and mRNAs across 8 stages (including 3 embryonic stages, 2 growth stages and 3 adult stages) in the female chicken cerebrum. RESULTS: We identified 39,907 putative lncRNAs and 14,558 mRNAs, investigated the temporal expression patterns by tracking a set of age-dependent genes and predicted potential biological functions of lncRNAs based on co-expression network. The results showed that genes with functions in development, synapses and axons exhibited a progressive decay; genes related to immune response were up-regulated with age. CONCLUSIONS: These results may reflect changes in the regulation of transcriptional networks and provide non-coding RNA gene candidates for further studies and would contribute to a comprehensive understanding of the molecular mechanisms of chicken development and may provide insights or deeper understanding regarding the regulatory mechanisms of age-dependent protein coding and non-protein coding genes in chicken. In addition, as the chicken is an important model organism bridging the evolutionary gap between mammals and other vertebrates, these high resolution data may provide a novel evidence to improve our comprehensive understanding of the brain transcriptome during vertebrate evolution.


Assuntos
Envelhecimento/genética , Encéfalo/metabolismo , Galinhas/genética , Transcriptoma , Animais , Encéfalo/crescimento & desenvolvimento , Embrião de Galinha , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
2.
J Hazard Mater ; 465: 133307, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154185

RESUMO

Decabromodiphenyl ether (BDE209) is a toxic environmental pollutant that can cause neurotoxicity, behavioral abnormalities, and cognitive impairment in animals. However, the specific mechanisms of BDE209-induced neurological injury and effective preventative and therapeutic interventions are lacking. Even though selenomethionine (Se-Met) has a significant detoxification effect and protects the nervous system, it remains unclear whether Se-Met can counteract the toxic effects of BDE209. For the in vivo test, we randomly divided 60 1-week-old hy-line white variety chicks into the Con, BDE209, Se-Met, and BDE209 +Se-Met groups. In vitro experiments were performed, exposing chick embryo brain neurons to BDE209, Se-Met, N-Acetylcysteine (NAC, a ROS inhibitor), and RSL3 (a GPX4 inhibitor). We demonstrated that BDE209 induced oxidative stress and ferroptosis in the chicken brain, which mainly manifested as mitochondrial atrophy, cristae breakage, increased Fe2+ and MDA content, decreased antioxidant enzyme activity, and the inhibition of the NRF2/GPX4 signaling pathway in the brain neurons. However, Se-Met supplementation reversed these changes by activating the NRF2/GPX4 pathway, reducing mitochondrial damage, enhancing antioxidant enzyme activity, and alleviating ferroptosis. This study provides insight into the mechanism of BDE209-related neurotoxicity and suggests Se-Met as an effective preventative and control measure against BDE209 poisoning.


Assuntos
Ferroptose , Éteres Difenil Halogenados , Selenometionina , Embrião de Galinha , Animais , Galinhas , Fator 2 Relacionado a NF-E2 , Antioxidantes , Estresse Oxidativo , Encéfalo
3.
Sci Total Environ ; 905: 166890, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37683847

RESUMO

Bisphenol A (BPA), a component of plastic products, can penetrate the blood-brain barrier and pose a threat to the nervous system. Selenium (Se) deficiency can also cause nervous system damage. Resulting from the rapid industrial development, BPA pollution and Se deficiency often coexist. However, it is unclear whether brain damage in chickens caused by BPA exposure and Se deficiency is related to the crosstalk disorder between mitophagy and apoptosis. In this study, 60 chickens (1 day old) were fed with a diet that contained 20 mg/kg BPA but was insufficient in Se (only 0.039 mg/kg) for 42 days to establish a chicken brain injury model. In vitro, the primary chicken embryo brain neurons were treated for 24 h with Se-deficient medium containing 75 µM BPA. The results showed that BPA exposure and Se deficiency inhibited the expression of the mitochondrial respiratory chain complex in brain neurons, and a large number of mitochondrial reactive oxygen species were released. Furthermore, the expression levels of mitochondrial fusion proteins (OPA1, Mfn1, and Mfn2) decreased, while the expression levels of mitochondrial fission proteins (Drp1, Mff, and Fis1) increased, thus exacerbating mitochondrial division. In addition, the results of immunofluorescence and flow cytometry analysis, as well as the elevated expressions of mitophagy related genes (PINK1, Parkin, ATG5, and LC3II/I) and pro-apoptotic markers (Bax, Cytc, Caspase3, and Caspase9) indicated that BPA exposure and Se deficiency disrupted the crosstalk homeostasis between mitophagy and apoptosis. However, this crosstalk homeostasis was restored after Mito-Tempo and Rapamycin treatment. In contrast, 3-methyladenine treatment exacerbated this crosstalk disorder. In conclusion, BPA exposure and Se deficiency can induce mitochondrial reactive oxygen species bursts and disorders of mitochondrial dynamics by destroying the mitochondrial respiratory chain complex. The result is indicative of an imbalance in mitochondrial autophagy and apoptosis crosstalk homeostasis, which damages the chicken brain.


Assuntos
Compostos Benzidrílicos , Lesões Encefálicas , Fenóis , Selênio , Embrião de Galinha , Animais , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Galinhas/metabolismo , Selênio/farmacologia , Apoptose , Homeostase
4.
Biol Trace Elem Res ; 199(4): 1584-1594, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398654

RESUMO

Cadmium (Cd), a ubiquitous environmental pollutant, has neurotoxicity to humans and animals. Quercetin (QE), the main component of flavonoids, has strong antioxidant and anti-inflammatory effects. However, little is reported about the influence of Cd exposure on necroptosis in the chicken brain and the antagonistic impacts of QE against Cd-induced brain necroptosis. The aim of this study was to ascertain the alleviative mechanism of QE on Cd-induced necroptosis in the chicken brain. Two hundred 3.5-month-old Isa hens were randomly divided into four groups, control group, QE group, Cd group, and Cd + QE co-administration group. The histopathological analysis indicated that necrosis features were observed in the Cd-intoxicated chicken brains. Meanwhile, the expression levels of RIPK1, RIPK3, and MLKL were elevated and the level of Caspase 8 was reduced in the Cd group, which further testified Cd triggered the occurrence of necroptosis in the chicken brain. Cd exposure obviously increased Cd accumulation, ROS generation, and MDA level; weakened the activities of antioxidase (SOD, GPx, and CAT); enhanced iNOS activity and NO production; promoted the expression of inflammatory factors (NF-κB, TNFα, COX-2, iNOS, PTGEs, and IL-1ß); and activated HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90). But, these Cd-caused variations were obviously attenuated in the Cd + QE group. This study indicated that QE had an alleviative effect on Cd-induced necroptosis in the chicken brain through inhibition ROS/iNOS/NF-κB pathway.


Assuntos
Cádmio , NF-kappa B , Animais , Encéfalo/metabolismo , Cádmio/toxicidade , Galinhas/metabolismo , Feminino , NF-kappa B/metabolismo , Necroptose , Quercetina/farmacologia , Espécies Reativas de Oxigênio
5.
Proteomes ; 5(3)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895884

RESUMO

Septin forms a conserved family of cytoskeletal guanosine triphosphate (GTP) binding proteins that have diverse roles in protein scaffolding, vesicle trafficking, and cytokinesis. The involvement of septins in infectious viral disease pathogenesis has been demonstrated by the upregulation of SEPT5 protein and its mRNA in brain tissues of H5N1-infected chickens, thus, providing evidence for the potential importance of this protein in the pathogenesis of neurovirulence caused by the avian influenza virus. In this study, cloning, expression, and purification of Gallus gallus SEPT5 protein was performed in Escherichia coli. The SEPT5 gene was inserted into the pRSETB expression vector, transformed in the E. coli BL21 (DE3) strain and the expression of SEPT5 protein was induced by IPTG. The SEPT5 protein was shown to be authentic as it was able to be pulled down by a commercial anti-SEPT5 antibody in a co-immunoprecipitation assay. In vivo aggregation of the recombinant protein was limited by cultivation at a reduced temperature of 16 °C. Using co-immunoprecipitation techniques, the purified recombinant SEPT5 protein was used to pull down host's interacting or binding proteins, i.e., proteins of brains of chickens infected with the H5N1 influenza virus. Interacting proteins, such as CRMP2, tubulin proteins, heat-shock proteins and other classes of septins were identified using LCMS/MS. Results from this study suggest that the codon-optimized SEPT5 gene can be efficiently expressed in the E. coli bacterial system producing authentic SEPT5 protein, thus, enabling multiple host's proteins to interact with the SEPT5 protein.

6.
Acta Histochem ; 116(5): 702-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24529545

RESUMO

Chicken D-serine dehydratase (DSD) degrades d-serine to pyruvate and ammonia. The enzyme requires both pyridoxal 5'-phosphate and Zn(2+) for its activity. d-Serine is a physiological coagonist that regulates the activity of the N-methyl-d-aspartate receptor (NMDAR) for l-glutamate. We have recently found in chickens that d-serine is degraded only by DSD in the brain, whereas it is also degraded to 3-hydroxypyruvate by d-amino acid oxidase (DAO) in the kidney and liver. In mammalian brains, d-serine is degraded only by DAO. It has not been clarified why chickens selectively use DSD for the control of d-serine concentrations in the brain. In the present study, we measured DSD activity in chicken tissues, and examined the cellular localization of DSD using a specific anti-chicken DSD antibody. The highest activity was found in kidney. Skeletal muscles and heart showed no activity. In chicken brain, cerebellum showed about 6-fold-higher activity (1.1 ± 0.3 U/g protein) than cerebrum (0.19 ± 0.03 U/g protein). At the cellular level DSD was demonstrated in proximal tubule cells of the kidney, in hepatocytes, in Bergmann-glia cells of the cerebellum and in astrocytes. The finding of DSD in glial cells seems to be important because d-serine is involved in NMDAR-dependent brain functions.


Assuntos
Encéfalo/enzimologia , Imuno-Histoquímica , Rim/enzimologia , L-Serina Desidratase/metabolismo , Fígado/enzimologia , Animais , Western Blotting , Galinhas , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa