Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Cell Rep ; 43(3): 66, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341387

RESUMO

KEY MESSAGE: We used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud differentiation stages and overexpression of CpFPA1 in Arabidopsis resulted in earlier flowering. Wintersweet (Chimonanthus praecox), a rare winter-flowering woody plant, is well known for its unique blooming time, fragrance and long flowering period. However, the molecular mechanism of flowering in C. praecox remains poorly unclear. In this study, we used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud (FB) differentiation stages (FB.Apr, FB.May and FB.Nov) in C. praecox. The results showed that a total of 952 differential expressed genes (DEGs) and 40 differential expressed proteins (DEPs) were identified. Gene ontology (GO) enrichment revealed that DEGs in FB.Apr/FB.May comparison group were mainly involved in metabolic of biological process, cell and cell part of cellular component and catalytic activity of molecular function. In the EuKaryotic Orthologous Groups (KOG) functional classification, DEPs were predicted mainly in the function of general function prediction only (KOG0118), post-translational modification, protein turnover and chaperones. The autonomous pathway genes play an essential role in the floral induction. Based on transcriptome and proteome correlation analysis, six candidate genes associated with the autonomous pathway were identified, including FPA1, FPA2a, FPA2b, FCA, FLK, FY. Furthermore, CpFPA1 was isolated and functionally characterized, and ectopic expression of CpFPA1 in Arabidopsis Columbia (Col-0) resulted in earlier flowering. These data could contribute to understand the function of CpFPA1 for floral induction and provide information for further research on the molecular mechanisms of flowering in wintersweet.


Assuntos
Arabidopsis , Transcriptoma , Transcriptoma/genética , Proteoma/genética , Proteoma/metabolismo , Flores/genética , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteômica , Regulação da Expressão Gênica de Plantas
2.
Mol Biol Rep ; 50(11): 9107-9119, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749345

RESUMO

BACKGROUND: Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae. METHODS AND RESULTS: We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius. CONCLUSION: Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.


Assuntos
Arabidopsis , Calycanthaceae , Calycanthaceae/genética , Calycanthaceae/química , Calycanthaceae/metabolismo , Filogenia , Flores/metabolismo , Folhas de Planta/metabolismo , Genes de Plantas , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36835618

RESUMO

Chimonanthus praecox (wintersweet) is highly valued ornamentally and economically. Floral bud dormancy is an important biological characteristic in the life cycle of wintersweet, and a certain period of chilling accumulation is necessary for breaking floral bud dormancy. Understanding the mechanism of floral bud dormancy release is essential for developing measures against the effects of global warming. miRNAs play important roles in low-temperature regulation of flower bud dormancy through mechanisms that are unclear. In this study, small RNA and degradome sequencing were performed for wintersweet floral buds in dormancy and break stages for the first time. Small RNA sequencing identified 862 known and 402 novel miRNAs; 23 differentially expressed miRNAs (10 known and 13 novel) were screened via comparative analysis of breaking and other dormant floral bud samples. Degradome sequencing identified 1707 target genes of 21 differentially expressed miRNAs. The annotations of the predicted target genes showed that these miRNAs were mainly involved in the regulation of phytohormone metabolism and signal transduction, epigenetic modification, transcription factors, amino acid metabolism, and stress response, etc., during the dormancy release of wintersweet floral buds. These data provide an important foundation for further research on the mechanism of floral bud dormancy in wintersweet.


Assuntos
MicroRNAs , MicroRNAs/genética , Flores/genética , Reguladores de Crescimento de Plantas/metabolismo , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Dormência de Plantas/genética
4.
Plant J ; 108(6): 1662-1678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34624152

RESUMO

Wintersweet (Chimonanthus praecox) is one of the most important ornamental plants. Its color is mainly determined by the middle tepals. However, the molecular mechanisms underlying the intriguing flower color development among different wintersweet groups are still largely unknown. In addition, wintersweet belongs to magnoliids, and the phylogenetic position of magnoliids remains to be determined conclusively. Here, the whole genome of red flower wintersweet, a new wintersweet type, was sequenced and assembled with high quality. The genome comprised 11 super-scaffolds (chromosomes) with a total size of 737.03 Mb. Based on the analyses of the long branch attraction, incomplete lineage sorting, sparse taxon sampling, and other factors, we suggest that a bifurcating tree may not fully represent the complex early diversification of the angiosperms and that magnoliids are most likely sister to the eudicots. The wintersweet genome appears to have undergone two whole-genome duplication (WGD) events: a recent WGD event representing an independent event specific to the Calycanthaceae and an ancient WGD event shared by Laurales. By integrating genomic, transcriptomic, and metabolomic data, CpANS1 and the transcription factor CpMYB1 were found to play key roles in regulating tepal color development, whereas CpMYB1 needs to form a complex with bHLH and WD40 to fully perform its regulatory function. The present study not only provides novel insights into the evolution of magnoliids and the molecular mechanism for flower color development, but also lays the foundation for subsequent functional genomics study and molecular breeding of wintersweet.


Assuntos
Calycanthaceae/fisiologia , Flores/fisiologia , Pigmentação/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Antocianinas/genética , Antocianinas/metabolismo , Calycanthaceae/genética , Flores/genética , Mutação da Fase de Leitura , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Laurales/genética , Laurales/fisiologia , Anotação de Sequência Molecular , Filogenia , Pigmentação/genética , Sequenciamento Completo do Genoma
5.
Molecules ; 27(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36080337

RESUMO

To search for efficient agricultural antifungal lead compounds, 39 Chimonanthus praecox derivatives were designed, synthesized, and evaluated for their antifungal activities. The structures of target compounds were fully characterized by 1H NMR, 13C NMR, and MS spectra. The preliminary bioassays revealed that some compounds exhibited excellent antifungal activities in vitro. For example, the minimum inhibitory concentration (MIC) of compound b15 against Phytophthora infestans was 1.95 µg mL-1, and the minimum inhibitory concentration (MIC) of compound b17 against Sclerotinia sclerotiorum was 1.95 µg mL-1. Therefore, compounds b15 and b17 were identified as the most promising candidates for further study.


Assuntos
Calycanthaceae , Phytophthora infestans , Antifúngicos/química , Calycanthaceae/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
6.
Pestic Biochem Physiol ; 167: 104620, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32527423

RESUMO

The fatty acid composition of the kernel of Chimonanthus praecox cv. Luteus (FKC) was analyzed by gas chromatography-mass spectrometry (GC-MS), its ability to kill Pomacea canaliculata was detected, and the degree of damage and physiological and biochemical effects of an FKC soaking treatment on the hepatopancreas tissue of P. canaliculata were evaluated. In total, 16 fatty acids were detected in FKC, among which 13 were qualitatively identified; octadecadienoic acid (56.76%) and palmitic acid (17.03%) had the highest contents. After 48 h of treatment with FKC, the hepatopancreas of P. canaliculata had a large area of necrosis. The contents of soluble sugar, soluble protein, and albumin (Alb) in the hepatopancreas of P. canaliculata decreased with increasing FKC concentration. The content of malondialdehyde (MDA) and the activities of cereal third transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (AKP), and acetylcholinesterase (AChE) increased with increasing FKC concentration. The results showed that FKC has an obvious negative effect on the hepatopancreas cell structure and physiological function of P. canaliculata, i.e., has strong molluscicidal activity.


Assuntos
Ácidos Graxos , Moluscocidas , Animais , Aspartato Aminotransferases , Hepatopâncreas , Caramujos
7.
Int J Mol Sci ; 19(10)2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30360370

RESUMO

Wintersweet (Chimonanthus praecox) is a well-known traditional fragrant plant and a winter-flowering deciduous shrub that originated in China. The five different developmental stages of wintersweet, namely, flower-bud period (FB), displayed petal stage (DP), open flower stage (OF), later blooming period (LB), and wilting period (WP) were studied using a scanning electron microscope (SEM) to determine the distribution characteristics of aroma-emitting nectaries. Results showed that the floral scent was probably emitted from nectaries distributed on the adaxial side of the innermost and middle petals, but almost none on the abaxial side. The nectaries in different developmental periods on the petals differ in numbers, sizes, and characteristics. Although the distribution of nectaries on different rounds of petals showed a diverse pattern at the same developmental periods, that of the nectaries on the same round of petals showed some of regularity. The nectary is concentrated on the adaxial side of the petals, especially in the region near the axis of the lower part of the petals. Based on transcriptional sequence and phylogenetic analysis, we report one nectary development related gene CpCRC (CRABS CLAW), and the other four YABBY family genes, CpFIL (FILAMENTOUS FLOWER), CpYABBY2, CpYABBY5-1, and CpYABBY5-2 in C. praecox (accession no. MH718960-MH718964). Quantitative RT-PCR (qRT-PCR) results showed that the expression characteristics of these YABBY family genes were similar to those of 11 floral scent genes, namely, CpSAMT, CpDMAPP, CpIPP, CpGPPS1, CpGPPS2, CpGPP, CpLIS, CpMYR1, CpFPPS, CpTER3, and CpTER5. The expression levels of these genes were generally higher in the lower part of the petals than in the upper halves in different rounds of petals, the highest being in the innermost petals, but the lowest in the outer petals. Relative expression level of CpFIL, CpCRC, CpYABBY5-1, and CpLIS in the innermost and middle petals in OF stages is significant higher than that of in outer petals, respectively. SEM and qRT-PCR results in C. praecox showed that floral scent emission is related to the distribution of nectaries.


Assuntos
Calycanthaceae/química , Flores/química , Néctar de Plantas/química , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química
8.
Molecules ; 21(8)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27527132

RESUMO

High-speed counter-current chromatography (HSCCC) has been successfully used for the separation of eight compounds from Chimonanthus praecox flowers. Firstly, the crude extract of Chimonanthus praecox flowers was dissolved in a two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-H2O (5:5:3:7, v/v) and divided into two parts: the upper phase (part I) and the lower phase (part II). Then, HSCCC was applied to separate the phenolic acids from part I and part II, respectively. Considering the broad polarity range of target compounds in part I, a stepwise elution mode was established. Two optimal solvent systems of petroleum ether-ethyl acetate-methanol-H2O-formic acid (FA) (5:5:3:7:0.02, 5:5:4.3:5.7:0.02, v/v) were employed in this separation. Five phenylpropanoids and two flavonoids were successfully separated from 280 mg of part I, including 8.7 mg of 3,4-dihydroxy benzoic acid (a, 95.3% purity), 10.9 mg of protocatechualdehyde (b, 96.8% purity), 11.3 mg of p-coumaric acid (c, 98.9% purity), 12.2 mg of p-hydroxybenzaldehyde (d, 95.9% purity), 24.7 mg of quercetin (e, 97.3% purity), 33.8 mg of kaempferol (f, 96.8% purity), and 24.6 mg of 4-hydroxylcinnamic aldehyde (g, 98.0% purity). From 300 mg of part II, 65.7 mg of rutin (h, 98.2% purity), 7.5 mg of 3,4-dihydroxy benzoic acid (a, 77.4% purity), and 4.7 mg of protocatechualdehyde (b, 81.6% purity) were obtained using the solvent system EtOAc-n-butanol (n-BuOH)-FA-H2O (4:1:0.5:5, v/v). The structures of the eight pure compounds were confirmed by electrospray ionization-mass spectrometry (ESI-MS), ¹H-NMR and (13)C-NMR. To the best of our knowledge, compounds a-d and f were the first separated and reported from the Chimonanthus praecox flower extract.


Assuntos
Calycanthaceae/química , Flores/química , Fenóis/química , Fenóis/isolamento & purificação , Cromatografia Líquida , Distribuição Contracorrente , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
9.
Int J Mol Sci ; 16(11): 26978-90, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26569231

RESUMO

Plants synthesize and accumulate a series of stress-resistance proteins to protect normal physiological activities under adverse conditions. Chimonanthus praecox which blooms in freezing weather accumulates late embryogenesis abundant proteins (LEAs) in flowers, but C. praecox LEAs are little reported. Here, we report a group of five LEA genes of C. praecox (CpLEA5, KT727031). Prokaryotic-expressed CpLEA5 was employed in Escherichia coli to investigate bioactivities and membrane permeability at low-temperature. In comparison with the vacant strains, CpLEA5-containing strains survived in a 20% higher rate; and the degree of cell membrane damage in CpLEA5-containing strains was 55% of that of the vacant strains according to a conductivity test, revealing the low-temperature resistance of CpLEA5 in bacteria. CpLEA5 was also expressed in Pichia pastoris. Interestingly, besides low-temperature resistance, CpLEA5 conferred high resistance to salt and alkali in CpLEA5 overexpressing yeast. The CpLEA5 gene was transferred into Arabidopsis thaliana to also demonstrate CpLEA5 actions in plants. As expected, the transgenic lines were more resistant against low-temperature and drought while compared with the wild type. Taken together, CpLEA5-conferred resistances to several conditions in prokaryote and eukaryotes could have great value as a genetic technology to enhance osmotic stress and low-temperature tolerance.


Assuntos
Adaptação Biológica/genética , Temperatura Baixa , Pressão Osmótica , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Traqueófitas/genética , Traqueófitas/metabolismo , Sequência de Aminoácidos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Secas , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência
10.
Life (Basel) ; 14(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38398691

RESUMO

Mitochondrial genome sequencing is a valuable tool for investigating mitogenome evolution, species phylogeny, and population genetics. Chimonanthus praecox (L.) Link, also known as "La Mei" in Chinese, is a famous ornamental and medical shrub belonging to the order Laurales of the Calycanthaceae family. Although the nuclear genomes and chloroplast genomes of certain Laurales representatives, such as Lindera glauca, Laurus nobilis, and Piper nigrum, have been sequenced, the mitochondrial genome of Laurales members remains unknown. Here, we reported the first complete mitogenome of C. praecox. The mitogenome was 972,347 bp in length and comprised 60 unique coding genes, including 40 protein-coding genes (PCGs), 17 tRNA genes, and three rRNA genes. The skewness of the PCGs showed that the AT skew (-0.0096233) was negative, while the GC skew (0.031656) was positive, indicating higher contents of T's and G's in the mitochondrial genome of C. praecox. The Ka/Ks ratio analysis showed that the Ka/Ks values of most genes were less than one, suggesting that these genes were under purifying selection. Furthermore, there is a substantial abundance of dispersed repeats in C. praecox, constituting 16.98% of the total mitochondrial genome. A total of 731 SSR repeats were identified in the mitogenome, the highest number among the eleven available magnoliids mitogenomes. The mitochondrial phylogenetic analysis based on 29 conserved PCGs placed the C. praecox in Lauraceae, and supported the sister relationship of Laurales with Magnoliales, which was congruent with the nuclear genome evidence. The present study enriches the mitogenome data of C. praecox and promotes further studies on phylogeny and plastid evolution.

11.
Plants (Basel) ; 13(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39339546

RESUMO

Chimonanthus praecox (Calycanthaceae family) is a unique ornamental and economic flowering tree in China, and after thousands of years of cultivation, it has produced several varieties and varietal types. Notably, male sterility is common in flowering plants and is an important tool for the genetic improvement in plants and optimization using hybrid plant technology; however, there have been no reports on male-sterile material or related studies on C. praecox. To our knowledge, this is the first time that C. praecox male sterility is dissected unveiling the involvement of key metabolic pathways. Notably, male sterility in C. praecox was observed during the budding period and likely occurred during the premature stage of pollen cell maturation. Additionally, differentially expressed genes in the starch and sucrose metabolism pathway and the plant hormone signal transduction pathway showed regular expression trends. This study reports on significant genetic differences that contribute to male sterility in C. praecox and provides a basis for further research and breeding strategies.

12.
J Fungi (Basel) ; 10(2)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38392817

RESUMO

Chimonanthus praecox is an aromatic plant that flowers in winter. The composition of the floral volatiles of C. praecox is influenced by different blooming stages, circadian rhythms and species. However, the relationship between floral volatiles and plant endophytic fungi has not received much research attention. Here, we used high-throughput sequencing technology to compare and analyze the changes in the structure and diversity of the endophytic fungal communities in C. praecox under different circadian rhythms (7:00 a.m., 1:00 p.m., and 7:00 p.m.) and in different blooming stages (unopened flowers and opened flowers). The endophytic fungi of C. praecox consisted of nine phyla, 34 classes, 79 orders, 181 families, 293 genera, and 397 species, and Ascomycota was the dominant phylum. Under a diurnal rhythm, the diversity (Chao1 and Shannon indices) of endophytic fungi gradually decreased in the unopened flowers, while an increasing and then decreasing trend was found for the opened flowers. In the different blooming stages, the endophytic fungal diversity was significantly higher at 7:00 a.m. in the unopened flowers compared to the opened flowers. Humidity was the key factors that significantly affected the endophytic fungal diversity and community. Moreover, 11 endophytic fungi were significantly positively or negatively correlated with seven floral volatiles. In conclusion, the community structure and diversity of endophytic fungi in C. praecox were affected by the different blooming stages and circadian rhythms, and a correlation effect related to floral volatiles was found, but there are other possible reasons that were not tested. This study provides a theoretical basis for elucidating the interrelationships between endophytic fungi, floral volatiles, and environmental factors in C. praecox.

13.
PeerJ ; 12: e17238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650650

RESUMO

Floral color and scent profiles vary across species, geographical locations, and developmental stages. The exclusive floral color and fragrance of Chimonanthus praecox is contributed by a range of endogenous chemicals that distinguish it from other flowers and present amazing ornamental value. This comprehensive review explores the intricate interplay of environmental factors, chemicals and genes shaping the flower color and fragrance of Chimonanthus praecox. Genetic and physiological factors control morpho-anatomical attributes as well as pigment synthesis, while environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Specific genes control pigment synthesis, and environmental factors such as temperature, light intensity, and soil composition influence flower characteristics. Physiological processes including plant hormone contribute to flower color and fragrance. Hormones, notably ethylene, exert a profound influence on varioustraits. Pigment investigations have spotlighted specific flavonoids, including kaempferol 3-O-rutinoside, quercetin, and rutin. Red tepals exhibit unique composition with cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside being distinctive components. Elucidating the molecular basis of tepal color variation, particularly in red and yellow varieties, involves the identification of crucial regulatory genes. In conclusion, this review unravels the mysteries of Chimonanthus praecox, providing a holistic understanding of its flower color and fragrance for landscape applications. This comprehensive review uniquely explores the genetic intricacies, chemical and environmental influences that govern the mesmerizing flower color and fragrance of Chimonanthus praecox, providing valuable insights for its landscape applications. This review article is designed for a diverse audience, including plant geneticists, horticulturists, environmental scientists, urban planners, and students, offering understandings into the genetic intricacies, ecological significance, and practical applications of Chimonanthus praecox across various disciplines. Its appeal extends to professionals and enthusiasts interested in plant biology, conservation, and industries dependent on unique floral characteristics.


Assuntos
Calycanthaceae , Flores , Odorantes , Flores/genética , Calycanthaceae/genética , Calycanthaceae/metabolismo , Calycanthaceae/química , Odorantes/análise , Pigmentação/genética , Cor , Regulação da Expressão Gênica de Plantas
14.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 252-268, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258645

RESUMO

The elucidation of resources pertaining to the Chimonanthus praecox varieties and the establishment of a fingerprint serve as crucial underpinnings for advancing scientific inquiry and industrial progress in relation to C. praecox. Employing the SSR molecular marker technology, an exploration of the genetic diversity of 175 C. praecox varieties (lines) in the Yanling region was conducted, and an analysis of the genetic diversity among these varieties was carried out using the UPDM clustering method in NTSYSpc 2.1 software. We analyzed the genetic structure of 175 germplasm using Structure v2.3.3 software based on a Bayesian model. General linear model (GLM) association was utilized to analyze traits and markers. The genetic diversity analysis revealed a mean number of alleles (Na) of 6.857, a mean expected heterozygosity (He) of 0.496 3, a mean observed heterozygosity (Ho) of 0.503 7, a mean genetic diversity index of Nei՚s of 0.494 9, and a mean Shannon information index of 0.995 8. These results suggest that the C. praecox population in Yanling exhibits a rich genetic diversity. Additionally, the population structure and the UPDM clustering were examined. In the GLM model, a total of fifteen marker loci exhibited significant (P < 0.05) association with eight phenotypic traits, with the explained phenotypic variation ranging from 14.90% to 36.03%. The construction of fingerprints for C. praecox varieties (lines) was accomplished by utilizing eleven primer pairs with the highest polymorphic information content, resulting in the analysis of 175 SSR markers. The present study offers a thorough examination of the genetic diversity and SSR molecular markers of C. praecox in Yanling, and establishes a fundamental germplasm repository of C. praecox, thereby furnishing theoretical underpinnings for the selection and cultivation of novel and superior C. praecox varieties, varietal identification, and resource preservation and exploitation.


Assuntos
Variação Genética , Teorema de Bayes , Biomarcadores , Fenótipo , Análise por Conglomerados
15.
Plant Physiol Biochem ; 196: 893-902, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36878163

RESUMO

Wintersweet (Chimonanthus praecox), a Magnoliidae tree, is popular for its unique fragrant aroma and winter-flowering characteristics, which is widely used in gardens and pots, or for cut flowers, essential oil, medicine, and edible products. MIKCC-type of MADS-box gene family play a crucial role in plant growth and development process, particularly in controlling flowering time and floral organ development. Although MIKCC-type genes have been well studied in many plant species, the study of MIKCC-type is poorly in C. praecox. In this study, we identified 30 MIKCC-type genes of C. praecox on gene structures, chromosomal location, conserved motifs, phylogenetic relationships based on bioinformatics tools. Phylogenetic relationships analysis with Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa Japonica), Amborella trichopoda and tomato (Solanum lycopersicum) showed that CpMIKCCs were divided into 13 subclasses, each subclass containing 1 to 4 MIKCC-type genes. The Flowering locus C (FLC) subfamily was absent in C. praecox genome. CpMIKCCs were randomly distributed into eleven chromosomes of C. praecox. Besides, the quantitative RT-PCR (qPCR) was performed for the expression pattern of several MIKCC-type genes (CpFUL, CpSEPs and CpAGL6s) in seven bud differentiation stages and indicated that they were involved in dormancy breaking and bud formation. Additionally, overexpression of CpFUL in Arabidopsis Columbia-0 (Col-0) resulted in early flowering and showed difference in floral organs, leaves and fruits. These data could provide conducive information for understanding the roles of MIKCC-type genes in the floral development and lay a foundation for screening candidate genes to validate function.


Assuntos
Arabidopsis , Proteínas de Domínio MADS , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Arabidopsis/genética , Flores/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Front Plant Sci ; 13: 1010896, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226291

RESUMO

Chimonanthus praecox (wintersweet) is an important cut flower and pot plant with a high ornamental and economic value in China. The development of dwarf wintersweet varieties has become an important research topic for the wintersweet industry. The lack of natural dwarf germplasm has hindered research into the molecular mechanisms of developing dwarf wintersweet, limiting its cultivation. After a long-term investigation and collection of germplasm resources of C. praecox, we obtained the germplasm of a dwarf C. praecox (dw). Here, the dwarf and normal C. praecox (NH) were used to identify the types of hormones regulating dw formation using phenotypic identification and endogenous hormone determination. Differentially expressed genes in the dw and NH groups were screened using transcriptome analysis. The functions of key genes in the dwarf trait were verified by heterologous expression. It was found that the internode length and cell number were significantly reduced in dw than in NH, and the thickness of the xylem and pith was significantly decreased. The dwarfness of dw could be recovered by exogenous gibberellic acid (GA) application, and endogenous GA levels showed that the GA4 content of dw was substantially lower than that of NH. Transcriptome differential gene analysis showed that the elevated expression of the CpGA2ox gene in the GA synthesis pathway and that of CpGAI gene in the signal transduction pathway might be the key mechanisms leading to dwarfing. Combined with the results of weighted gene co-expression network analysis, we selected the CpGAI gene for analysis and functional verification. These results showed that CpGAI is a nuclear transcriptional activator. Overexpression of CpGAI in Populus tomentosa Carr. showed that CpGAI could lead to the dwarfing in poplar. We analyzed the dwarfing mechanism of C. praecox, and the results provided a reference for dwarf breeding of wintersweet.

17.
Genes (Basel) ; 12(9)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34573437

RESUMO

Zinc-finger proteins are important transcription factors in plants, responding to adversity and regulating the growth and development of plants. However, the roles of the BBX gene family of zinc-finger proteins in wintersweet (Chimonanthus praecox) have yet to be elucidated. In this study, a group IV subfamily BBX gene, CpBBX19, was identified and isolated from wintersweet. Quantitative real-time PCR (qRT-PCR) analyses revealed that CpBBX19 was expressed in all tissues and that expression was highest in cotyledons and inner petals. CpBBX19 was also expressed in all flower development stages, with the highest expression detected in early initiating bloom, followed by late initiating bloom and bloom. In addition, the expression of CpBBX19 was induced by different abiotic stress (cold, heat, NaCl, and drought) and hormone (ABA and MeJA) treatments. Heterologous expression of CpBBX19 in Arabidopsis thaliana (Arabidopsis) enhanced the tolerance of this plant to salt and drought stress as electrolyte leakage and malondialdehyde (MDA) concentrations in transgenic Arabidopsis after stress treatments were significantly lower than those in wild-type (WT) plants. In conclusion, this research demonstrated that CpBBX19 plays a role in the abiotic stress tolerance of wintersweet. These findings lay a foundation for future studies on the BBX gene family of wintersweet and enrich understanding of the molecular mechanism of stress resistance in wintersweet.


Assuntos
Arabidopsis/fisiologia , Calycanthaceae/genética , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética , Arabidopsis/genética , Calycanthaceae/efeitos dos fármacos , Cotilédone/genética , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Estresse Fisiológico/genética
18.
Plants (Basel) ; 10(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371606

RESUMO

The NAC (NAM, ATAFs, CUC) family of transcription factors (TFs) play a pivotal role in regulating all processes of the growth and development of plants, as well as responses to biotic and abiotic stresses. Yet, the functions of NACs from non-model plant species remains largely uncharacterized. Here, we characterized the stress-responsive effects of a NAC gene isolated from wintersweet, an ornamental woody plant that blooms in winter when temperatures are low. CpNAC68 is clustered in the NAM subfamily. Subcellular localization and transcriptional activity assays demonstrated a nuclear protein that has transcription activator activities. qRT-PCR analyses revealed that CpNAC68 was ubiquitously expressed in old flowers and leaves. Additionally, the expression of CpNAC68 is induced by disparate abiotic stresses and hormone treatments, including drought, heat, cold, salinity, GA, JA, and SA. Ectopic overexpression of CpNAC68 in Arabidopsis thaliana enhanced the tolerance of transgenic plants to cold, heat, salinity, and osmotic stress, yet had no effect on growth and development. The survival rate and chlorophyll amounts following stress treatments were significantly higher than wild type Arabidopsis, and were accompanied by lower electrolyte leakage and malondialdehyde (MDA) amounts. In conclusion, our study demonstrates that CpNAC68 can be used as a tool to enhance plant tolerance to multiple stresses, suggesting a role in abiotic stress tolerance in wintersweet.

19.
Mitochondrial DNA B Resour ; 5(3): 3469-3471, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33458206

RESUMO

Chimonanthus praecox, a deciduous shrub tree, is endemic to China and widely cultivated in the world as a popular garden and ornamental plant. Here, we have reported its complete chloroplast genome with a length of 153,181 bp, containing a large single copy (LSC) region of 86,916 bp, a small single copy (SSC) region of 19,767 bp and two identical inverted repeat regions (IRs) of 23,249 bp. The overall GC contents of the plastome were 39.27%. A total of 114 unique genes were successfully annotated consisting of 80 protein-coding genes, 30 tRNA genes and four rRNA genes. Sixteen genes each possessed one intron and three genes had two introns. The ML phylogenetic analysis supports Chimonanthus as sister to Calycanthus. This result will be helpful for genetic breeding and population genetics of C. praecox, DNA barcoding of Chimonanthus, and phylogenetic studies of Calycanthaceae.

20.
Genome Biol ; 21(1): 200, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778152

RESUMO

BACKGROUND: Wintersweet (Chimonanthus praecox), an important ornamental plant, has evolved unique fragrant aroma and winter-flowering properties, which are critical for its successful sexual reproduction. However, the molecular mechanisms underlying these traits are largely unknown in this species. In addition, wintersweet is also a typical representative species of the magnoliids, where the phylogenetic position of which relative to eudicots and monocots has not been conclusively resolved. RESULTS: Here, we present a chromosome-level wintersweet genome assembly with a total size of 695.36 Mb and a draft genome assembly of Calycanthus chinensis. Phylogenetic analyses of 17 representative angiosperm genomes suggest that Magnoliids and eudicots are sister to monocots. Whole-genome duplication signatures reveal two major duplication events in the evolutionary history of the wintersweet genome, with an ancient one shared by Laurales, and a more recent one shared by the Calycantaceae. Whole-genome duplication and tandem duplication events have significant impacts on copy numbers of genes related to terpene and benzenoid/phenylpropanoid (the main floral scent volatiles) biosynthesis, which may contribute to the characteristic aroma formation. An integrative analysis combining cytology with genomic and transcriptomic data reveals biological characteristics of wintersweet, such as floral transition in spring, floral organ specification, low temperature-mediated floral bud break, early blooming in winter, and strong cold tolerance. CONCLUSIONS: These findings provide insights into the evolutionary history of wintersweet and the relationships among the Magnoliids, monocots, and eudicots; the molecular basis underlying floral scent biosynthesis; and winter flowering, and highlight the utility of multi-omics data in deciphering important ornamental traits in wintersweet.


Assuntos
Evolução Biológica , Calycanthaceae/genética , Flores/fisiologia , Genoma de Planta , Compostos Fitoquímicos/biossíntese , Cromossomos de Plantas , Odorantes , Filogenia , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa