Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Pestic Biochem Physiol ; 199: 105771, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458679

RESUMO

Among the six-membered heterocycles, the pyrazine ring is poorly explored in crop protection and does not feature in any product listed in the current IRAC MoA classification. In an effort to identify new leads for internal research, we synthesized a series of N-(5-phenylpyrazin-2-yl)-benzamide derivatives and evaluated them for their insecticidal activity. N-(5-phenylpyrazin-2-yl)-benzamide derivatives 3 were prepared using an automated two-step synthesis protocol. These compounds were tested for their initial biological activity against a wide range of sucking and chewing insect pests and found to be active against lepidopterans only. More detailed experiments, including symptomology studies on the diamondback moth, Plutella xylostella (L.) and the Egyptian cotton leafworm, Spodoptera littoralis (Boisduval) showed that analog 3q causes severe abnormalities in the lepidopteran cuticle leading to larval mortality. Compound 3q shows strong potency against both P. xylostella and S. littoralis, whereas analog 3i shows better potency against S. littoralis causing also impaired cuticular structure and death of the larvae. Additionally, P. xylostella genetic studies showed that compound 3q resistance is linked to Chitin Synthase 1. Our studies show that N-(5-phenylpyrazin-2-yl)-benzamide derivatives 3, and in particular analogs 3i and 3q, act as insect growth modulator insecticides. Conformational similarities with lufenuron are discussed.


Assuntos
Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Mariposas/genética , Larva , Insetos , Spodoptera , Quitina
2.
Pestic Biochem Physiol ; 195: 105560, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666596

RESUMO

Fructose 1, 6-diphosphate (FDP) is an endogenous intermediate in the glycolytic pathway, as well as an allosteric activator of phosphofructokinase (PFK). Based on the role in promoting glycolysis, FDP has been widely used as a therapeutic agent for mitigating the damage of endotoxemia and ischemia/reperfusion in clinical practice. However, the effect of exogenous FDP-induced glycolysis activation on insect carbohydrate metabolism and chitin synthesis remains largely unclear. Here, we investigated for the first time the effects of FDP-Na, an allosteric activator of PFK, on the growth and development of Hyphantria cunea larvae, a serious defoliator in agriculture and forestry, especially on glycolysis and chitin synthesis. The results showed that FDP-Na significantly restrained the growth and development of H. cunea larvae and resulted in larval lethality. After treatment with FDP-Na, hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) were significantly activated, and HcHK2, HcPFK, HcPK were dramatically upregulated, which suggested that FDP-Na enhanced glycolysis in H. cunea larvae. Meanwhile, FDP-Na also distinctly impacted chitin biosynthesis by disturbing transcriptions of genes in the chitin synthesis pathway, resulting in changes of chitin contents in the midgut and epidermis of H. cunea larvae. Therefore, we considered that FDP-Na caused the growth and development arrest, and impacted chitin biosynthesis, probably by disturbing in vivo glycolysis and carbohydrate metabolism in H. cunea larvae. The findings provide a new perspective on the mechanism by which glycolysis regulates insect growth and development, and lay the foundation for exploring the potential application of glycolysis activators in pest control as well.


Assuntos
Difosfatos , Mariposas , Animais , Larva , Glicólise , Fosfofrutoquinases , Quitina/farmacologia
3.
Pestic Biochem Physiol ; 186: 105178, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35973767

RESUMO

Spodoptera exigua (Lepidoptera, Noctuidae) has been responsible for causing considerable and widespread agricultural losses worldwide. Owing to strong selective pressure, S. exigua showed increased resistance to Lufenuron (LUF). Consequently, RNA interference (RNAi)-based insecticides had more benefits than chemical insecticides. Therefore, to enhance the insecticidal activity of LUF to S. exigua, in the present study, we aimed to elucidate the impact of double-stranded RNAs (dsRNAs) on S. exigua larval susceptibility to LUF. First, the transcriptome of S. exigua was sequenced following the treatment with LUF. By comparing the upregulated and downregulated GO enrichment, chitin binding and chitin metabolic processes were the significantly enriched pathways. According to transcriptome sequencing, 8 genes associated with chitin biosynthesis, 8 chitin degradation genes, and 17 cuticle protein genes were obtained. UDP-N-acetylglucosamine pyrophosphorylase (UAP) and Chitin synthase A (CHSA) showed significantly downregulated expression after treatment with different sublethal doses of LUF. Downregulation of UAP increased mortality from 31.97% to 47.91% when the larvae were exposed to LUF. A significant increase in the mortality of S. exigua from 30.63% to 50.19% was observed following LUF administration after dsCHSA. In addition, the expression analysis of genes associated with chitin biosynthesis was significantly changed after LUF treatment, dsRNAs-RNAi, and their combination (LUF-dsRNAs). Significant differences were observed in the chitin content between the control group at 72 h after treatments. Results of the present study can help further elucidate the understanding of the combined effects of RNAi and LUF on S. exigua. Additionally, this research provides a suitable foundation for future studies with the aim to develop an efficient method of delivery for large-scale pest control in the fields.


Assuntos
Quitina Sintase , Inseticidas , Animais , Benzamidas , Quitina/farmacologia , Quitina Sintase/genética , Quitina Sintase/metabolismo , Fluorocarbonos , Inseticidas/metabolismo , Inseticidas/farmacologia , Larva/genética , Larva/metabolismo , Nucleotidiltransferases , RNA de Cadeia Dupla/farmacologia , Spodoptera
4.
Pestic Biochem Physiol ; 188: 105273, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464378

RESUMO

The chitin metabolic pathway is one of the most lucrative targets for designing pest management regimes. Inhibition of the chitin synthesis pathway causes detrimental effects on the normal growth and development of insects. Phospho-N-acetylglucosamine mutase (AGM) and UDP-N-acetylglucosamine pyrophosphorylase (UAP) are two key chitin biosynthesis enzymes in insects including Helicoverpa armigera, a pest of global significance. In the present study, we have identified, cloned and recombinantly expressed AGM and UAP from H. armigera (HaAGM and HaUAP). Biochemical characterization of recombinant HaAGM and HaUAP exhibited high affinities for their natural substrates N-acetyl glucosamine-6-phosphate (Km 38.72 ± 2.41) and N-acetyl glucosamine-1-phosphate (Km 3.66 ± 0.13), respectively. In the coupled enzyme-catalytic assay, HaAGM and HaUAP yielded the end-products, inorganic pyrophosphate and UDP-GlcNAc, confirming their active participation in the chitin synthesis pathway of H. armigera. Gene expression profiling revealed that HaAGM and HaUAP genes were expressed in all developmental stages and key tissues. These genes also showed substantial responses towards the moulting hormone 20-hydroxyecdysone and chitin biosynthesis inhibitor, novaluron. Remarkably, the RNAi-mediated knockdown of either HaAGM or HaUAP led to severe developmental deformities and significant mortality ranging from 65.61 to 72.54%. Overall findings suggest that HaAGM and HaUAP play crucial roles in the ecdysis and survival of H. armigera. Further, these genes could serve as potential targets for designing pest management strategies for H. armigera.


Assuntos
Muda , Mariposas , Animais , Muda/genética , Quitina , Ecdisterona/farmacologia , Glucosamina , Mariposas/genética
5.
J Insect Sci ; 21(4)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333649

RESUMO

Chitin deacetylases (CDAs) are chitin-degrading enzymes that play a key role in insect molting. In this study, we identified and characterized four full-length cDNAs of CDAs from Sogatella furcifera (Horváth). Developmental expression showed that SfCDA1 and SfCDA2 were expressed at all nymph developmental stages, SfCDA3 and SfCDA4 were mainly expressed in the third-instar to fifth-instar nymph stages, whereas tissue-specific analyses indicated that four CDA genes were mainly high expressed in the integument and head during the fifth-instar nymph. RNA interference (RNAi) results revealed that SfCDA1, SfCDA2, and SfCDA4 are associated with molting defect and high mortality with nymph-adult molting. Furthermore, transcripts of chitin synthase 1 variants (SfCHS1, SfCHS1a, and SfCHS1b) were significantly downregulated and causing significant changes in the expression levels of trehalases (TRE1 and TRE2) in the SfCDA1, SfCDA2, and SfCDA4 dsRNA treatment groups. By contrast, no significant phenotypic characteristics were observed after dsSfCDA3 injection. Taken together, our results suggest that SfCDA1, SfCDA2, and SfCDA4 play a vital role in nymph-adult transition, and these genes could regulate chitin biosynthesis expression levels.


Assuntos
Amidoidrolases/genética , Hemípteros , Animais , Quitina/biossíntese , Quitina/genética , DNA Complementar , Genes de Insetos , Hemípteros/genética , Proteínas de Insetos/genética , Muda/genética , Ninfa/genética , Filogenia , Interferência de RNA , Asas de Animais/crescimento & desenvolvimento
6.
Insect Mol Biol ; 29(1): 38-47, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31260146

RESUMO

The chitin biosynthesis pathway is an important physiology process in arthropods. However, few microRNAs (miRNAs) involved in the regulation of the chitin biosynthesis pathway in insects have been reported until now. In this study, four groups of samples that either upregulated or downregulated the chitin biosynthesis pathway were collected for deep sequencing, and a total of 15 unique mature miRNAs with significantly different expression levels were found, including 11 known miRNAs and four novel miRNAs. Subsequently, we showed that miR-2703 and its new target gene chitin synthase 1a are important for ecdysone-induced chitin biosynthesis in Nilaparvata lugens, a serious insect pest of rice. The nymphs showed an obvious moulting defect phenotype, lower survival rate and significantly reduced chitin content after miR-2703 feeding or injection. Furthermore, we found that the transcription level of miR-2703 was not repressed by 20-hydroxyecdysone signalling after Broad-Complex (BR-C) double-stranded RNA (dsRNA) injection compared with the repressed levels after green fluorescent protein dsRNA injection, suggesting that the involvement of miR-2703 in the 20-hydroxyecdysone pathway contributes to BR-C activity. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in response to 20-hydroxyecdysone signalling.


Assuntos
Quitina Sintase/genética , Quitina/biossíntese , Hemípteros/genética , MicroRNAs , Animais , Quitina/genética , Ecdisterona , Hemípteros/enzimologia , Hemípteros/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Muda/genética , Ninfa/crescimento & desenvolvimento , Interferência de RNA , RNA de Cadeia Dupla , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927773

RESUMO

Meloidogyne incognita is a devastating plant parasitic nematode that causes root knot disease in a wide range of plants. In the present study, we investigated host-induced RNA interference (RNAi) gene silencing of chitin biosynthesis pathway genes (chitin synthase, glucose-6-phosphate isomerase, and trehalase) in transgenic tobacco plants. To develop an RNAi vector, ubiquitin (UBQ1) promoter was directly cloned, and to generate an RNAi construct, expression of three genes was suppressed using the GATEWAY system. Further, transgenic Nicotiana benthamiana lines expressing dsRNA for chitin synthase (CS), glucose-6-phosphate isomerase (GPI), and trehalase 1 (TH1) were generated. Quantitative PCR analysis confirmed endogenous mRNA expression of root knot nematode (RKN) and revealed that all three genes were more highly expressed in the female stage than in eggs and in the parasitic stage. In vivo, transformed roots were challenged with M. incognita. The number of eggs and root knots were significantly decreased by 60-90% in RNAi transgenic lines. As evident, root galls obtained from transgenic RNAi lines exhibited 0.01- to 0.70-fold downregulation of transcript levels of targeted genes compared with galls isolated from control plants. Furthermore, phenotypic characteristics such as female size and width were also marginally altered, while effect of egg mass per egg number in RNAi transgenic lines was reduced. These results indicate the relevance and significance of targeting chitin biosynthesis genes during the nematode lifespan. Overall, our results suggest that further developments in RNAi efficiency in commercially valued crops can be applied to employ RNAi against other plant parasitic nematodes.


Assuntos
Quitina/biossíntese , Nicotiana/genética , Controle de Pragas/métodos , Plantas Geneticamente Modificadas , Tylenchoidea/genética , Animais , Quitina Sintase/genética , Feminino , Glucose-6-Fosfato Isomerase/genética , Interferência de RNA , Nicotiana/parasitologia , Trealase/genética
8.
Adv Exp Med Biol ; 1142: 169-207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31102247

RESUMO

Chitin is a structural constituent of extracellular matrices including the cuticle of the exoskeleton and the peritrophic matrix (PM) of the midgut in arthropods. Chitin chains are synthesized through multiple biochemical reactions, organized in several hierarchical levels and associated with various proteins that give their unique physicochemical characteristics of the cuticle and PM. Because, arthropod growth and morphogenesis are dependent on the capability of remodeling chitin-containing structures, chitin biosynthesis and degradation are highly regulated, allowing ecdysis and regeneration of the cuticle and PM. Over the past 20 years, much progress has been made in understanding the physiological functions of chitinous matrices. In this chapter, we mainly discussed the biochemical processes of chitin biosynthesis, modification and degradation, and various enzymes involved in these processes. We also discussed cuticular proteins and PM proteins, which largely determine the physicochemical properties of the cuticle and PM. Although rapid advances in genomics, proteomics, RNA interference, and other technologies have considerably facilitated our research in chitin biosynthesis, modification, and metabolism in recent years, many aspects of these processes are still partially understood. Further research is needed in understanding how the structural organization of chitin synthase in plasma membrane accommodate chitin biosynthesis, transport of chitin chain across the plasma membrane, and release of the chitin chain from the enzyme. Other research is also needed in elucidating the roles of chitin deacetylases in chitin organization and the mechanism controlling the formation of different types of chitin in arthropods.


Assuntos
Artrópodes , Quitina/metabolismo , Amidoidrolases , Animais , Quitina Sintase
9.
Bull Entomol Res ; 108(3): 388-399, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28920565

RESUMO

RNA interference (RNAi) is a very effective technique for studying gene function and may be an efficient method for controlling pests. Trehalose-6-phosphate synthase (TPS), which plays a key role in the synthesis of trehalose and insect development, was cloned in Tribolium castaneum (Herbst) (TcTPS) and the putative functions were studied using RNAi via the injection of double-stranded RNA (dsRNA) corresponding to conserved TPS and trehalose-6-phosphate phosphatase domains. Expression analyses show that TcTPS is expressed higher in the fat body, while quantitative real-time polymerase chain reaction results show that the expression of four trehalase isoforms was significantly suppressed by dsTPS injection. Additionally, the expression of six chitin synthesis-related genes, such as hexokinase 2 and glutamine-fructose-6-phosphate aminotransferase, was suppressed at 48 and 72 h post-dsTPS-1 and dsTPS-2 RNA injection, which were two dsTPS fragments that had been designed for two different locations in TcTPS open reading frame, and that trehalose content and trehalase 1 activity decreased significantly at 72 h post-dsRNA injection. Furthermore, T. castaneum injected with dsTPS-1 and dsTPS-2 RNA displayed significantly lower levels of chitin and could not complete the molting process from larvae to pupae, revealing abnormal molting phenotypes. These results demonstrate that silencing TPS gene leads to molting deformities and high mortality rates via regulation of gene expression in the chitin biosynthetic pathway, and may be a promising approach for pest control in the future.


Assuntos
Quitina/biossíntese , Glucosiltransferases/metabolismo , Controle de Pragas/métodos , Interferência de RNA , Tribolium/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Glucose/metabolismo , Glucosiltransferases/genética , Trealose/metabolismo , Tribolium/genética
10.
Pestic Biochem Physiol ; 143: 173-180, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183589

RESUMO

To accomplish consistent, long-term, integrated management (IPM) of the Colorado potato beetle, Leptinotarsa decemlineata (Say), research assessing the potential of novel, IPM-compatible insecticides is essential. Novaluron is a potent benzoylurea insecticide. In the present paper, we found that novaluron ingestion by the fourth-instar larvae inhibited foliage consumption, reduced larval fresh weight, and delayed development period, in a dose dependent manner. Most of the resulting larvae fail to pupate, and died at prepupae stage, with larvicidal activity comparable with those of cyhalothrin and spinosad but lower than those of fipronil and abamectin. Moreover, many surviving pupae that fed novaluron failed to emerge as adults, in a dose dependent pattern. Furthermore, feeding of novaluron significantly decreased chitin contents in body carcass (without midgut) and integument specimen, whereas the chitin concentration in the midgut peritrophic matrix was not affected. Furthermore, uridine diphosphate-N-acetylglucosamine-pyrophosphorylase gene (LdUAP1) and chitin synthase Aa (LdChSAa), which were mainly responsible for chitin biosynthesis in ectodermally-derived tissues, were surpressed and activated respectively after novaluron ingestion. Therefore, novaluron is an effective benzoylurea insecticide to L. decemlineata fourth-instar larvae. It inhibited chitin biosynthesis in ectodermally-derived tissues, disrupted ecdysis, impaired pupation and adult emergence, and led to death in juvenile life stages.


Assuntos
Quitina/biossíntese , Besouros/efeitos dos fármacos , Inseticidas/toxicidade , Compostos de Fenilureia/toxicidade , Animais , Quitina Sintase/metabolismo , Besouros/metabolismo , Ingestão de Alimentos , Larva/efeitos dos fármacos , Larva/metabolismo
11.
BMC Biotechnol ; 16(1): 67, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27596613

RESUMO

BACKGROUND: RNA interference is a very effective approach for studies on gene function and may be an efficient method for controlling pests. Trehalase is a key gene in the chitin biosynthesis pathway in insects. Five trehalase genes have been cloned in Tribolium castaneum, though it is not known whether the detailed functions of these trehalases can be targeted for pest control. RESULTS: The functions of all five trehalase genes were studied using RNAi, and the most important results showed that the expression of all 12 genes decreased significantly from 12 to 72 h compared with the control groups, except GP1 at 72 h, when the expression of the TcTre2 gene was suppressed. The results also revealed different abnormal phenotypes, and the observed mortality rates ranged from 17 to 42 %. The qRT-PCR results showed that the expression of TPS, GS, two GP, CHS1a and CHS1b genes decreased significantly, while that of the CHS2 gene decreased or increased after RNAi after the five trehalases were silenced at 48 h. In addition, TPS gene expression decreased from 12 to 72 h after dsTcTre injection. CONCLUSIONS: These results demonstrate that silencing of any individual trehalase gene, especially Tre1-4 and Tre2 gene can lead to moulting deformities and a high mortality rate through the regulation of gene expression in the chitin biosynthesis pathway and may be a potential approach for pest control in the future.


Assuntos
Quitina/biossíntese , Regulação da Expressão Gênica/genética , Interferência de RNA , Trealase/genética , Tribolium/enzimologia , Tribolium/genética , Animais , Quitina/genética , Técnicas de Silenciamento de Genes , Engenharia Metabólica/métodos , Complexos Multienzimáticos/genética , Transdução de Sinais/genética
12.
Insect Biochem Mol Biol ; 164: 104058, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072083

RESUMO

Chitin, a natural polymer of N-acetylglucosamine chains, is a principal component of the apical extracellular matrix in arthropods. Chitin microfibrils serve as structural components of natural biocomposites present in the extracellular matrix of a variety of invertebrates including sponges, molluscs, nematodes, fungi and arthropods. In this review, we summarize the frontier advances of insect chitin synthesis. More specifically, we focus on the chitin synthase (CHS), which catalyzes the key biosynthesis step. CHS is also known as an attractive insecticidal target in that this enzyme is absent in mammals, birds or plants. As no insect chitin synthase structure have been reported so far, we review recent studies on glycosyltransferase domain structures derived from fungi and oomycetes, which are conserved in CHS from all species containing chitin. Auxiliary proteins, which coordinate with CHS in chitin biosynthesis and assembly, are also discussed.


Assuntos
Artrópodes , Quitina Sintase , Animais , Quitina Sintase/metabolismo , Insetos/genética , Insetos/metabolismo , Artrópodes/metabolismo , Invertebrados/metabolismo , Fungos , Quitina/metabolismo , Mamíferos/metabolismo
13.
Pest Manag Sci ; 80(6): 2839-2850, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38323792

RESUMO

BACKGROUND: Insects utilize trehalases (TREs) to regulate energy metabolism and chitin biosynthesis, which are essential for their growth, development, and reproduction. TREs can therefore be used as potential targets for future insecticide development. However, the roles of TREs in Frankliniella occidentalis (Pergande), a serious widespread agricultural pest, remain unclear. RESULTS: Three TRE genes were identified in F. occidentalis and cloned, and their functions were then investigated via feeding RNA interference (RNAi) and virus-induced gene silencing (VIGS) assays. The results showed that silencing FoTRE1-1 or FoTRE1-2 significantly decreased expression levels of FoGFAT, FoPGM, FoUAP, and FoCHS, which are members of the chitin biosynthesis pathway. Silencing FoTRE1-1 or FoTRE2 significantly down-regulated FoPFK and FoPK, which are members of the energy metabolism pathway. These changes resulted in 2-fold decreases in glucose and glycogen content, 2-fold increases in trehalose content, and 1.5- to 2.0-fold decreases in chitinase activity. Furthermore, knocking down FoTRE1-1 or FoTRE1-2 resulted in deformed nymphs and pupae as a result of hindered molting. The VIGS assay for the three FoTREs revealed that FoTRE1-1 or FoTRE2 caused shortened ovarioles, and reduced egg-laying and hatching rates. CONCLUSION: The results suggest that FoTRE1-1 and FoTRE1-2 play important roles in the growth and development of F. occidentalis, while FoTRE1-1 and FoTRE2 are essential for its reproduction. These three genes could be candidate targets for RNAi-based management and control of this destructive agricultural pest. © 2024 Society of Chemical Industry.


Assuntos
Proteínas de Insetos , Interferência de RNA , Trealase , Animais , Trealase/genética , Trealase/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/enzimologia , Ninfa/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-37018937

RESUMO

Raw materials or bioactive ingredients trigger mechanisms to assimilate nutrients and activate metabolic pathways that promote growth, immune function, or energy storage. Our understanding of these processes at a molecular level remains limited in aquaculture, especially in shrimp. Here, hepatopancreas proteomics and haemolymph metabolomics were used to investigate the post-prandial response of black tiger shrimps (Penaeus monodon) fed a conventional fishmeal diet (FM); a diet supplemented with the microbial biomass Novacq™ (NV); krill meal (KM); or, fasted (FS). Using FM as a control, a 2-fold change in abundance threshold was implemented to determine the significance of proteins and metabolites. NV fed shrimp showed preference for energy derived from carbohydrates indicated by a strong signature of glycoconjugate metabolism and activation of the amino- and nucleotide sugar metabolic pathway. KM activated the glyoxylate and dicarboxylate pathway that denoted shrimp preference for lipidic energy. KM also influenced energy generation by the TCA cycle inferred from higher abundance of the metabolites succinic semialdehyde, citric acid, isocitrate, alpha ketoglutarate and ATP and downregulation of the enzyme isocitrate dehydrogenase that catalyses oxidative decarboxylation of isocitrate. FS shrimp displayed down-regulation of oxidative phosphorylation and resorted to internal lipid reserves for energy homeostasis displaying a strong signature of autophagy. Pyrimidine metabolism was the preferred energy strategy in this group. Our study also provided evidence that during fasting or consumption of specific ingredients, shrimp share common pathways to meet their energy requirements, however, the intensity at which these pathways were impacted was diet dependent.


Assuntos
Penaeidae , Animais , Isocitratos/metabolismo , Hepatopâncreas/metabolismo , Dieta , Metabolismo Energético , Quitina/metabolismo , Glicoconjugados/metabolismo , Autofagia , Imunidade
15.
Insect Biochem Mol Biol ; 149: 103845, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165873

RESUMO

Chitin, the major structural polysaccharide in arthropods such as insects and mites, is a linear polymer of N-acetylglucosamine units. The growth and development of insects are intimately coupled with chitin biosynthesis. The membrane-bound ß-glycosyltransferase chitin synthase is known to catalyze the key polymerization step of N-acetylglucosamine. However, the additional proteins that might assist chitin synthase during chitin biosynthesis are not well understood. Recently, fatty acid binding protein (Fabp) has been suggested as a candidate that interacts with the chitin synthase Krotzkopf verkehrt (Kkv) in Drosophila melanogaster. Here, using split-ubiquitin membrane yeast two-hybrid and pull-down assays, we have demonstrated that the Fabp-B splice variant physically interacts with Kkv in vitro. The global knockdown of Fabp in D. melanogaster using RNA interference (RNAi) induced lethality at the larval stage. Moreover, in tissue-specific RNAi experiments, silenced Fabp expression in the epidermis and tracheal system caused a lethal larval phenotype. Fabp knockdown in the wings resulted in an abnormal wing development and uneven cuticular surface. In addition to reducing the chitin content in the first longitudinal vein of wings, Fabp silencing also caused the loss of procuticle laminate structures. This study revealed that Fabp plays an important role in chitin synthesis and contributes to a comprehensive understanding of the complex insect chitin biosynthesis.


Assuntos
Quitina Sintase , Drosophila melanogaster , Acetilglucosamina , Animais , Quitina , Quitina Sintase/genética , Drosophila melanogaster/genética , Proteínas de Ligação a Ácido Graxo/genética , Insetos , Larva/genética , Interferência de RNA , Ubiquitinas/genética
16.
Insect Sci ; 29(3): 614-630, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34351065

RESUMO

Krotzkopf verkehrt (kkv) is a key enzyme that catalyzes the synthesis of chitin, an important component of the Drosophila epidermis, trachea, and other tissues. Here, we report the use of comprehensive RNA interference (RNAi) analyses to search for kkv transcriptional regulators. A cell-based RNAi screen identified 537 candidate kkv regulators on a genome-wide scale. Subsequent use of transgenic Drosophila lines expressing RNAi constructs enabled in vivo validation, and we identified six genes as potential kkv transcriptional regulators. Weakening of the kkvDsRed signal, an in vivo reporter indicating kkv promoter activity, was observed when the expression of Akirin, NFAT, 48 related 3 (Fer3), or Autophagy-related 101(Atg101) was knocked down in Drosophila at the 3rd-instar larval stage; whereas we observed disoriented taenidial folds on larval tracheae when Lines (lin) or Autophagy-related 3 (Atg3) was knocked down in the tracheae. Fer3, in particular, has been shown to be an important factor in the activation of kkv transcription via specific binding with the kkv promoter. The genes involved in the chitin synthesis pathway were widely affected by the downregulation of Fer3. Furthermore, Atg101, Atg3, Akirin, Lin, NFAT, Pnr, and Abd-A showed that the potential complex mechanism of kkv transcription is regulated by an interaction network with bithorax complex components. Our study revealed the hitherto unappreciated diversity of modulators impinging on kkv transcription and opens new avenues in the study of kkv regulation and chitin biosynthesis.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Quitina/metabolismo , Quitina Sintase/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Interferência de RNA
17.
J Econ Entomol ; 114(4): 1709-1715, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34104951

RESUMO

Halyomorpha halys, (the brown marmorated stink bug, BMSB), is a high-concern invasive species causing severe damage to orchards in many countries outside its native Asian range. Control options matching both effectiveness and sustainability are currently lacking. Inhibitors of chitin biosynthesis might be exploited for integrated management programs because of the overall better ecotoxicological profile in comparison with most neurotoxic insecticides used so far against BMSB. In this study, the activity of triflumuron, a benzoylphenyl urea hampering chitin biosynthesis, was tested on BMSB in laboratory and field conditions. In laboratory bioassays, the insecticide was sprayed on potted peach plants (30 cm high) and residues were aged in a glasshouse for 0, 7, 14, and 21 d. Then, third-instar bugs were placed on the plants and continuously exposed to residues. Mortality was scored after 7, 14, and 21 d exposure. Triflumuron caused significantly higher mortality on BMSB nymphs in comparison with water controls at all aging periods. Moreover, aging of residues up to 21 d did not cause any significant reduction of activity. Field experiments were also carried out in 2019 in eight pear orchards. Injuries to fruits at harvest were compared between plots where triflumuron was added to insecticide sprays against BMSB and control plots managed exactly in the same way but without any triflumuron treatment. An overall mean of 9.99 ± 1.98% stink bug injured fruits was detected in plots managed with the strategy including triflumuron, whereas 19.45 ± 3.55% of fruits were injured in plots assigned to controls.


Assuntos
Heterópteros , Laboratórios , Animais , Benzamidas , Ninfa
18.
Insect Sci ; 27(2): 212-223, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30397994

RESUMO

Trehalose-6-phosphate synthase (TPS), an enzyme that hydrolyzes two glucose molecules to yield trehalose, plays a pivotal role in various physiological processes. In this study, we cloned the trehalose-6-phosphate synthase gene (HvTPS) and investigated its expression patterns in various tissues and developmental stages in Heortia vitessoides Moore (Lepidoptera: Crambidae). HvTPS was highly expressed in the fat body and after pupation or before molting. We knocked down TPS in H. vitessoides by RNA interference and found that 3.0 µg of dsHvTPS resulted in optimal interference at 24 h and 36 h post-injection and caused a sharp decline in the survival rate during the 5th instar larval-pupal stage and obviously abnormal or lethal phenotypes. Additionally, compared to the controls, TPS activity and trehalose contents were significantly lower and the glucose content was significantly higher 24 h or 36 h after injection with 3.0 µg of dsHvTPS. Furthermore, the silencing of HvTPS suppressed the expression of six key genes in the chitin biosynthesis pathway and one key gene related to lipid catabolism. The expression levels of two genes associated with lipid biosynthesis were upregulated. These results strongly suggest that HvTPS is essential for the normal growth and development of H. vitessoides and provide a reference for further studies of the utility of key genes involved in chitin and lipid biosynthesis for controlling insect development.


Assuntos
Glucosiltransferases/genética , Mariposas/enzimologia , Animais , Quitina/biossíntese , Larva/metabolismo , Lipídeos/biossíntese , Mariposas/genética , Interferência de RNA , Análise de Sequência de DNA
19.
J Insect Physiol ; 114: 109-115, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30902530

RESUMO

The peritrophic matrix (PM) is an extracellular, semi-permeable biocomposite that lines the midgut of most insects. The PM serves as the first defense in the midgut to resist microorganisms such as viruses, bacteria and other pathogens, and to protect epithelial cells from mechanical damage. The PM also separates the midgut lumen into different compartments, which play important roles in nutrient ingestion and digestion. The PM is a highly dynamic structure that consists mainly of chitin fibers cross-linked by proteins, glycoproteins, and proteoglycans. The PM is continuously biosynthesized, assembled, and degraded in response to feeding and development. Chitin chains are synthesized by several enzymes and organized in several hierarchical levels, in which various PM-associated proteins appear to be essential for maintaining the structural integrity and physiological function of the PM. This review summarizes research advances on molecular components of the PM and their functions, as well as related proteins and enzymes that contribute to PM formation and modification. Crucial gaps in our current understanding of the PM are also addressed.


Assuntos
Quitina/biossíntese , Locusta migratoria/metabolismo , Animais , Trato Gastrointestinal/metabolismo
20.
Front Microbiol ; 10: 2873, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921051

RESUMO

Saprolegnia parasitica is a pathogenic oomycete responsible for severe fish infections. Despite its low abundance in the cell wall of S. parasitica, chitin is essential for hyphal growth as the inhibition of its biosynthesis leads to highly reduced growth. Here we identified and characterized chitin synthases (CHS) from S. parasitica as potential targets for anti-oomycete drugs. Bioinformatics analyses allowed the identification of six different putative Chs genes in the genome of the pathogen. The total number of genes was confirmed by Southern blot analysis and their expression levels were determined by quantitative PCR. Four of the six Chs genes were expressed in the mycelium, while the two others exhibited undetectable levels of expression. The mycelium was highly sensitive to the addition of nikkomycin Z (NZ) in the culture medium, which led to a decreased amount of chitin in the cell wall by up to 40% in the conditions tested, and to the formation of abnormal branching structures in the hyphae. The presence of NZ increased the expression level of one of the genes, Chs3, suggesting that the corresponding product is compensating the disruption of chitin biosynthesis in the hyphae. In addition, the activity of isolated CHS was strongly inhibited by NZ in vitro. Altogether our data indicate the importance of CHS for the vegetative growth of S. parasitica and demonstrate that these enzymes represent promising targets for the control of diseases caused by oomycetes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa