Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
Appl Environ Microbiol ; 90(6): e0073224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38819127

RESUMO

Chloroform (CF) and dichloromethane (DCM) are groundwater contaminants of concern due to their high toxicity and inhibition of important biogeochemical processes such as methanogenesis. Anaerobic biotransformation of CF and DCM has been well documented but typically independently of one another. CF is the electron acceptor for certain organohalide-respiring bacteria that use reductive dehalogenases (RDases) to dechlorinate CF to DCM. In contrast, known DCM degraders use DCM as their electron donor, which is oxidized using a series of methyltransferases and associated proteins encoded by the mec cassette to facilitate the entry of DCM to the Wood-Ljungdahl pathway. The SC05 culture is an enrichment culture sold commercially for bioaugmentation, which transforms CF via DCM to CO2. This culture has the unique ability to dechlorinate CF to DCM using electron equivalents provided by the oxidation of DCM to CO2. Here, we use metagenomic and metaproteomic analyses to identify the functional genes involved in each of these transformations. Though 91 metagenome-assembled genomes were assembled, the genes for an RDase-named acdA-and a complete mec cassette were found to be encoded on a single contig belonging to Dehalobacter. AcdA and critical Mec proteins were also highly expressed by the culture. Heterologously expressed AcdA dechlorinated CF and other chloroalkanes but had 100-fold lower activity on DCM. Overall, the high expression of Mec proteins and the activity of AcdA suggest a Dehalobacter capable of dechlorination of CF to DCM and subsequent mineralization of DCM using the mec cassette. IMPORTANCE: Chloroform (CF) and dichloromethane (DCM) are regulated groundwater contaminants. A cost-effective approach to remove these pollutants from contaminated groundwater is to employ microbes that transform CF and DCM as part of their metabolism, thus depleting the contamination as the microbes continue to grow. In this work, we investigate bioaugmentation culture SC05, a mixed microbial consortium that effectively and simultaneously degrades both CF and DCM coupled to the growth of Dehalobacter. We identified the functional genes responsible for the transformation of CF and DCM in SC05. These genetic biomarkers provide a means to monitor the remediation process in the field.


Assuntos
Proteínas de Bactérias , Clorofórmio , Cloreto de Metileno , Consórcios Microbianos , Clorofórmio/metabolismo , Cloreto de Metileno/metabolismo , Consórcios Microbianos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Água Subterrânea/microbiologia , Metagenômica , Poluentes Químicos da Água/metabolismo
2.
Chemistry ; 30(2): e202302964, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37848391

RESUMO

The design of dynamic structures with high recognition host-guest materials capable to host selectively small volatile molecules is an emergent field of research with both fundamental and applied implications. The challenge of exploring novel materials with advanced functionalities has led to the development of dynamic crystalline structures promoted by soft interactions. Here, a new pure organic dynamic framework based on hexakis[60]fullerene that are held together by weak van der Waals interactions is described. This crystalline structure is capable of absorbing and releasing chloroform, through internal structural reorganization. This research provides new insight into the design of organic molecular crystals for selective adsorption applications.

3.
Chem Biodivers ; 21(3): e202301495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282427

RESUMO

OBJECTIVE: To study the antibacterial and phytochemical activities of bioactive elements in the leaves of Annona reticulata Linn, a historically used Bangladeshi medicinal plant. METHODS: Shade-dried and crushed plant leaves were soaked with various solvents to obtain samples for different chemical analyses. All extracts were selected for antimicrobial, physicochemical, and Pharmacological investigations. The antimicrobial activity was evaluated using disc diffusion assay, and broth microdilution methods determined potentiation of the activities of the antibiotic antibacterial activity of the plant extracts was investigated using either gram-positive or gram-negative pathogenic wild-type bacteria. RESULTS: From the initial phytochemical and pharmacological studies, it was clear that all extracts, methanol, chloroform, and ethyl acetate, of the leaves of A. reticulata, were proven to process potent bioactive constituents. While differential antimicrobial properties were found to be possessed by all extracts, methanolic extract was the most potent one against all tested microorganisms. It also has potentiated the activities of antibiotics in E. coli. CONCLUSION: Bioactive constituents in the plant extracts were shown to possess phytochemical and antimicrobial activities. More investigation is needed to segregate the chemical components responsible for the respective phytochemical and antimicrobial activities.


Assuntos
Annona , Anti-Infecciosos , Antibacterianos/química , Bactérias , Escherichia coli , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Metanol , Folhas de Planta/química , Testes de Sensibilidade Microbiana
4.
Chemphyschem ; 24(15): e202300124, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183766

RESUMO

Among the conglomeration of hydrogen bond donors, the C-H group is prevalent in chemistry and biology. In the present work, CHCl3 has been selected as the hydrogen bond donor and are X(CH3 )2 are the hydrogen bond acceptors. Formation of C-H⋅⋅⋅X hydrogen bond under the matrix isolation condition is confirmed by the observation of red-shift in the C-H stretching frequency of CHCl3 and comparison with the simulated spectra. Stabilisation energy of all the three complexes is almost equal although the observed red-shift for the C-H⋅⋅⋅O complex is less compared to the C-H⋅⋅⋅S/Se complexes. The nature and origin of the hydrogen bond have been delineated using Natural Bond Orbital, Atoms in Molecules, Non-Covalent Interaction analyses, and Energy Decomposition Analysis. Charge transfer is found to be proportional to the observed red-shift. This work provides the first impression of C-H⋅⋅⋅Se hydrogen bond and its comparison with C-H⋅⋅⋅O/S hydrogen bond interaction under experimental condition.

5.
Environ Sci Technol ; 57(26): 9811-9821, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37339398

RESUMO

Chloroform (CF) is a widely used chemical reagent and disinfectant and a probable human carcinogen. The extensive literature on halocarbon reduction with zerovalent iron (ZVI) shows that transformation of CF is slow, even with nano, bimetallic, sulfidated, and other modified forms of ZVI. In this study, an alternative method of ZVI modification─involving simultaneous sulfidation and nitridation through mechanochemical ball milling─was developed and shown to give improved degradation of CF (i.e., higher degradation rate and inhibited H2 evolution reaction). The composite material (denoted as S-N(C)-ZVI) gave synergistic effects of nitridation and sulfidation on CF degradation. A complete chemical reaction network (CRN) analysis of CF degradation suggests that O-nucleophile-mediated transformation pathways may be the main route for the formation of the terminal nonchlorinated products (formate, CO, and glycolic polymers) that have been used to explain the undetected products needed for mass balance. Material characterizations of the ZVI recovered after batch experiments showed that sulfidation and nitridation promoted the formation of Fe3O4 on the S-N(C)-ZVI particles, and the effect of aging on CF degradation rates was minor for S-N(C)-ZVI. The synergistic benefits of sulfidation and nitridation on CF degradation were also observed in experiments performed with groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Ferro/química , Clorofórmio , Cinética
6.
Environ Sci Technol ; 57(48): 19912-19920, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962431

RESUMO

Chloroform (CF) and dichloromethane (DCM) contaminate groundwater sites around the world but can be cleaned up through bioremediation. Although several strains of Dehalobacter restrictus can reduce CF to DCM and multiple Peptococcaceae can ferment DCM, these processes cannot typically happen simultaneously due to CF sensitivity in the known DCM-degraders or electron donor competition. Here, we present a mixed microbial culture that can simultaneously metabolize CF and DCM and create an additional enrichment culture fed only DCM. Through genus-specific quantitative polymerase chain reaction, we find that Dehalobacter grows while either CF alone or DCM alone is converted, indicating its involvement in both metabolic steps. Additionally, the culture was maintained for over 1400 days without the addition of an exogenous electron donor, and through electron balance calculations, we show that DCM metabolism would produce sufficient reducing equivalents (likely hydrogen) for CF respiration. Together, these results suggest intraspecies electron transfer could occur to continually reduce CF in the culture. Minimizing the addition of electron donor reduces the cost of bioremediation, and "self-feeding" could prolong bioremediation activity long after donor addition ends. Overall, understanding this mechanism informs strategies for culture maintenance and scale-up and benefits contaminated sites where the culture is employed for remediation worldwide.


Assuntos
Clorofórmio , Cloreto de Metileno , Clorofórmio/metabolismo , Cloreto de Metileno/metabolismo , Biodegradação Ambiental , Halogenação , Peptococcaceae/metabolismo
7.
Environ Sci Technol ; 57(37): 13925-13936, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37656597

RESUMO

Emissions of chloroform (CHCl3), a short-lived halogenated substance not currently controlled under the Montreal Protocol on Substances that Deplete the Ozone Layer, are offsetting some of the achievements of the Montreal Protocol. In this study, emissions of CHCl3 from China were derived by atmospheric measurement-based "top-down" inverse modeling and a sector-based "bottom-up" inventory method. Top-down CHCl3 emissions grew from 78 (72-83) Gg yr-1 in 2011 to a maximum of 193 (178-204) Gg yr-1 in 2017, followed by a decrease to 147 (138-154) Gg yr-1 in 2018, after which emissions remained relatively constant through 2020. The changes in emissions from China could explain all of the global changes during the study period. The CHCl3 emissions in China were dominated by anthropogenic sources, such as byproduct emissions during disinfection and leakage from chloromethane industries. Had emissions continued to grow at the rate observed up to 2017, a delay of several years in Antarctic ozone layer recovery could have occurred. However, this delay will be largely avoided if global CHCl3 emissions remain relatively constant in the future, as they have between 2018 and 2020.


Assuntos
Clorofórmio , Ozônio Estratosférico , Regiões Antárticas , China , Desinfecção
8.
Luminescence ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053240

RESUMO

Three new pyrrolo[3,2-b]pyrrole derivatives containing methoxyphenyl, pyrene or tetraphenylethylene (TPE) units (compounds 1-3) have been designed, synthesized and fully characterized. The aggregation-induced emission (AIE) properties of compounds 1-3 were tested in different water fraction (fw ) of tetrahydrofuran (THF). The pyrrolo[3,2-b]pyrrole derivative 3 containing TPE units exhibited typical AIE features with an enhanced emission (∼32-fold) in the solid state versus in solution; compounds 1 and 2 exhibited an aggregation-caused quenching effect. In addition, the steric and electronic effects of the peripheral moieties on the emission behavior, both in solution and in the solid state, have been investigated. Moreover, pyrrolo[3,2-b]pyrrole 1 exhibits high sensitivity and selectivity for dichloromethane and chloroform solvents, with the system displaying a new emission peak and fast response time under ultraviolet irradiation.

9.
Pestic Biochem Physiol ; 192: 105408, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105635

RESUMO

Anti-reproductive potential of papaya seed chloroform extract-based solid lipid nanoparticles (PSCEN) was investigated for the first time in lesser bandicoot rat, Bandicota bengalensis. Mature male rats (n = 30 per group) were fed bait (loose mixture of cracked wheat, powdered sugar, and groundnut oil in the ratio 88:10:2) containing two different concentrations of PSCEN (5% and 10%) in a bi-choice condition for 15 days with one group as vehicle control. The ingestion of active ingredient in 15 days treatment was significantly (P ≤ 0.05) higher by rats treated with 10% PSCEN (39.17-58.70 g/kg body weight) as compared to rats treated with 5% PSCEN (21.30-33.23 g/kg body weight). A dose dependent significant (P ≤ 0.05) decrease was observed in the level of testosterone, FSH, LH and GnRH in plasma of treated rats. A significant (P ≤ 0.05) decrease was also observed in level of total soluble proteins, total lipids, phospholipids and cholesterol in both plasma and testicular tissue, and level of 17ß-HSD and 3ß-HSD in testicular tissue indicating anti-reproductive effects of PSCEN treatment. There was observed significant (P ≤ 0.05) effect of treatment on histomorphology of testis and cauda epididymis in the form of reduced tubular diameter, germinal epithelial thickness, number of germ cells and dissociation of epithelial cycle in seminiferous tubules, and reduced tubular diameter, increased epithelial thickness, vacuolization, loose contact of principle cells and reduced number of spermatozoa in the cauda epididymal tubules. Maximum antifertility effect was observed with 10% PSCEN treatment, which was not reversed upto 105 days of treatment withdrawal indicating long-term efficacy. The current investigation suggests the use of PSCEN in the management of reproduction of B. bengalensis by exerting influence on testicular and cauda epididymal functions and biochemical parameters.


Assuntos
Carica , Clorofórmio , Nanopartículas , Reprodução , Animais , Masculino , Ratos , Peso Corporal , Clorofórmio/farmacologia , Murinae , Espermatozoides , Testículo , Testosterona/farmacologia , Reprodução/efeitos dos fármacos
10.
Drug Chem Toxicol ; : 1-11, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37501612

RESUMO

The study is the first to formulate and investigate potential of papaya seed chloroform extract based solid lipid nanoparticles (PSCEN) as antifertility agents on male Bandicota bengalensis. The prepared nanoparticles were spherical of size 300-600 nm. The release kinetics showed a controlled release of the drug with major release over 48 h. To assess the antifertility effects of PSCEN, adult male rats were fed a diet containing two different concentrations of PSCEN (5% and 10%) for 15 days under bi-choice conditions. The mean total active ingredient ingestion of the rats in the two treated groups ranged from 2.13-3.31 and 3.92-5.87 g/100g body weight, respectively. No adverse effects of treatment on body weight were observed. Also, no mortality of rats was observed. The treatment had a significant effect on the weight of the testis and the epididymis, but not on the other organs. Sperm motility (%), sperm viability (%), sperm count (millions/ml), sperm mitochondrial activity (%), sperm nuclear chromatin de-condensation (%) and sperm hypo-osmotic swelling (%) were significantly decreased, and sperm abnormality (%) significantly increased compared to the vehicle control group. The reproductive success rates of male rats treated with 5% and 10% PSCEN and mated with untreated female rats were 20.00-66.67% and 16.67%, respectively, while in untreated female rats mated with male rats of vehicle control group, reproductive success rate was 33.33 to 80%. The study found a maximal antifertility effect of the 10% PSCEN containing bait, which was irreversible up to 105 days after stopping treatment, suggesting long-term efficacy.

11.
Bioprocess Biosyst Eng ; 46(2): 279-296, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36536224

RESUMO

Digenea simplex (D. simplex), an Egyptian marine red macroalga, contains a diverse group of phytochemicals with unique bioactivities. At the same time, the synthesis of nanosuspension (NS) has received increasing interest to optimize the technological aspects of drugs. Thence, the main objective of this work was to use the chloroform extract (ChlE) of D. simplex to prepare its nanosuspension (ChlE-NS) formulation to increase its aqueous solubility, thereby improving its bioactivity. By using FTIR, GC/MS analysis, and phytochemical screening assays, the chemical profiling of ChlE was assessed. NS was prepared by the antisolvent precipitation technique using 1.5% w/v polyvinyl alcohol (PVA). A light microscope, FTIR, particle size distribution, polydispersity index (PDI), and zeta potential (ZP) measurements was used to characterize the prepared NS. Four cancer cell lines were used in the MTT experiment to investigate the anticancer potential of ChlE and ChlE-NS. An apoptotic mechanism was established using acridine orange/ethidium bromide (AO/EB) dual staining, DNA fragmentation, and increased caspase activity. ChlE and ChlE-NS were also evaluated as antioxidants using DPPH and ABTS free radical assays. The results showed that, when compared to ChlE, ChlE-NS had greater cytotoxic activity against the four cancer cell lines. However, results of antioxidant activity showed that ChlE-NS had an IC50 of 36.86 ± 0.09 and 63.5 ± 0.47%, while ChlE had values of 39.90 ± 0.08 and 86.5 ± 0.8% in DPPH and ABTS assays, respectively. Based on the results of this research, D. simplex ChlE-NS may be an effective strategy for enhancing ChlE's cytotoxic and antioxidant activities.


Assuntos
Neoplasias , Trematódeos , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Clorofórmio , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
12.
Toxicol Ind Health ; 39(10): 603-612, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37518894

RESUMO

Chloroform is a widely used industrial chemical that can also pollute the environment. The aims of this study were to examine the potential cytotoxicity and genotoxicity of chloroform on plant cells, using the Vicia faba bioassay. Chloroform was evaluated at concentrations of 0.1, 0.5, 1, 2, and 5 mg·L-1. The following parameters were analyzed: the mitotic index (MI), micronucleus (MN) frequency, chromosomal aberration (CA) frequency, and malondialdehyde (MDA) content. The results showed that exposure to increasing concentrations of chloroform caused a decrease in MI and an increase in the frequency of MN in Vicia faba root tip cells, relative to their controls. Moreover, various types of CA, including C-mitosis, fragments, bridges, laggard chromosomes, and multipolar mitosis, were observed in the treated cells. The frequency of MN was positively correlated with the frequency of CA in exposure to 0.1-1 mg·L-1 chloroform. Furthermore, chloroform exposure induced membrane lipid peroxidation damage in the Vicia faba radicle, and a linear correlation was observed between the MDA content and the frequency of MN or CA. These findings indicated that chloroform exposure can result in oxidative stress, cytotoxicity, and genotoxicity in plant cells.


Assuntos
Vicia faba , Clorofórmio/toxicidade , Testes para Micronúcleos , Raízes de Plantas/genética , Meristema , Aberrações Cromossômicas/induzido quimicamente
13.
Prep Biochem Biotechnol ; : 1-8, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088914

RESUMO

Telomere Length (TL) and integrity is significantly associated with age-related disease, multiple genetic and environmental factors. We observe mouse genomic DNA (gDNA) isolation methods to have a significant impact on average TL estimates. The canonical qPCR method does not measure TL directly but via the ratio of telomere repeats to a single copy gene (SCG) generating a T/S ratio. We use a monochromatic-multiplex-qPCR (mmqPCR) method which multiplexes the PCR and enables quantification of the target and the single copy gene within the same qPCR reaction. We demonstrate that TL measurements, from murine gDNA, isolated via Spin Columns (SC) and Magnetic Beads (MB), generate significantly smaller T/S ratios compared to gDNA isolated via traditional phenol/chloroform methods. The former methods may impede correct TL estimation by producing non representative fragment sets and reducing qPCR efficacy. This work highlights discrepancies in TL measurements due to different extraction techniques. We recommend the use of gDNA isolation methods that are shown to preserve DNA length and integrity, such as phenol/chloroform isolation. We propose that widely used high throughput DNA isolation methodologies can create spurious associations within a sample set, thus creating misleading data. We suggest that published TL associations should be revisited in the light of these data.

14.
Appl Environ Microbiol ; 88(4): e0197021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936839

RESUMO

Chloroform (CF) and dichloromethane (DCM) are among the more commonly identified chlorinated aliphatic compounds found in contaminated soil and groundwater. Complete dechlorination of CF has been reported under anaerobic conditions by microbes that respire CF to DCM and others that biodegrade DCM. The objectives of this study were to ascertain if a commercially available bioaugmentation enrichment culture (KB-1 Plus CF) uses an oxidative or fermentative pathway for biodegradation of DCM and to determine if the products from DCM biodegradation can support organohalide respiration of CF to DCM in the absence of an exogenous electron donor. In various treatments with the KB-1 Plus CF culture to which 14C-CF was added, the predominant product was 14CO2, indicating that oxidation is the predominant pathway for DCM. Recovery of 14C-DCM when biodegradation was still in progress confirmed that CF first undergoes reductive dechlorination to DCM. 14C-labeled organic acids, including acetate and propionate, were also recovered, suggesting that synthesis of organic acids provides a sink for the electron equivalents from oxidation of DCM. When the biomass was washed to remove organic acids from prior additions of exogenous electron donor and only CF and DCM were added, the culture completely dechlorinated CF. The total amount of DCM added was not sufficient to provide the electron equivalents needed to reduce CF to DCM. Thus, the additional reducing power came via the DCM generated from CF reduction. Nevertheless, the rate of CF consumption was considerably lower compared to that of treatments that received an exogenous electron donor. IMPORTANCE Chloroform (CF) and dichloromethane (DCM) are among the more commonly identified chlorinated aliphatic compounds found in contaminated soil and groundwater. One way to address this problem is to add microbes to the subsurface that can biodegrade these compounds. While microbes are known that can accomplish this task, less is known about the pathways used under anaerobic conditions. Some use an oxidative pathway, resulting mainly in carbon dioxide. Others use a fermentative pathway, resulting in formation of organic acids. In this study, a commercially available bioaugmentation enrichment culture (KB-1 Plus CF) was evaluated using carbon-14 labeled chloroform. The main product formed was carbon dioxide, indicating the use of an oxidative pathway. The reducing power gained from oxidation was shown to support reductive dechlorination of CF to DCM. The results demonstrate the potential to achieve full dechlorination of CF and DCM to nonhazardous products that are difficult to identify in the field.


Assuntos
Clorofórmio , Cloreto de Metileno , Anaerobiose , Biodegradação Ambiental , Radioisótopos de Carbono , Clorofórmio/metabolismo , Cloreto de Metileno/metabolismo , Peptococcaceae
15.
Environ Res ; 203: 111883, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391733

RESUMO

This cross-sectional study aimed to examine the concentration of the by-products of chlorination in the swimming pool and estimate human health risk for the swimmers of Shiraz University of Medical Sciences. In this study, the chloroform concentrations of 16 samples were measured using Gas Chromatography (GC). All the measured concentrations were less than the allowed amount announced by the World Health Organization (WHO). The results of the cancer risk (CR) and hazard index (HI) showed that the major exposure routes were found to be dermal during swimming and the 95 percentile of estimated CR and HI for the male group were 1.38 × 10-10 and 1.82 × 10-5 respectively, which is higher than the values of 5.48 × 10-10 and 2.25 × 10-5 respectively, for the women group. Sensitivity analyses indicated that the swimming exposure time (ET), and chloroform concentration were the most relevant variables in the health risk model. Therefore, knowledge about the sources of micro-pollutants in swimming pools might help promote the health methods of the pool environment.


Assuntos
Desinfetantes , Piscinas , Clorofórmio/análise , Estudos Transversais , Desinfetantes/toxicidade , Desinfecção , Feminino , Humanos , Masculino , Natação , Trialometanos
16.
Drug Chem Toxicol ; 45(1): 367-377, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31778078

RESUMO

The aim of the current study was to examine and compare the cardioprotective activities of the chloroform and petroleum extracts the leaves of Casuarina suberosa in isoproterenol (ISO)-induced cardiac tissue oxidative stress. Rats were categorized into 6 groups as follows: control group, vehicle or Tween 80-treated group, ISO-treated group, chloroform extract + ISO treated group, petroleum ether extract + ISO treated group and Reference drug (Captopril) + ISO treated group. ISO injection significantly (p < 0.05) increased the activities of cardiac marker enzymes (CK-MB, LDH, ALT, and AST), cardiac troponin-I, levels of lipid peroxides (MDA), nitric oxide (NO), and vascular endothelial growth factor (VEGF), serum angiotensin-converting enzyme (ACE) activity and neutrophil infiltration marker; myeloperoxidase (MPO) in the cardiac tissues. Pretreatment with chloroform or petroleum ether extracts significantly (p < 0.05) prevented the ISO-induced alteration; they upregulated VEGF expression. Histopathological findings corroborated biochemical results. These extracts exerted a cardioprotective effect by alleviating oxidative stress.


Assuntos
Cardiotônicos , Animais , Cardiotônicos/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Miocárdio/metabolismo , Estresse Oxidativo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Drug Chem Toxicol ; 45(6): 2424-2438, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34325589

RESUMO

Calliandra portoricensis (C. portoricensis) is used in herbal homes in Nigeria to manage breast diseases. We investigated the anti-tumourigenic effects of chloroform extract of C. portoricensis (CP) in breast experimental cancer induced by N-methyl-N-nitrosourea (NMU) and benzo-(a)-pyrene (BaP). Fifty-six female rats were assigned into seven equal groups: Group 1 served as control, group 2 received NMU and BaP (50 mg/kg, each), groups 3 and 4 received [NMU + BaP] and treated with CP at 50 and 100 mg/kg, respectively. Group 5 received CP (100 mg/kg), group 6 received [NMU + BaP] and vincristine (0.5 mg/kg), while group 7 received vincristine (0.5 mg/kg). The NMU and BaP (i.p) were dissolved in normal saline and corn oil, respectively. The CP (oral) and vincristine (i.p) were given thrice and twice per week, respectively for 10 weeks. The [NMU + BaP] intoxication significantly decreased body weight gain by 32% while organo-somatic weight of mammary gland increased by 37%. Also, [NMU + BaP] decreased the activities of mammary catalase, glutathione-s-transferase, glutathione peroxidase, superoxide dismutase and total sulphurhydryl by 34%, 31%, 35%, 35% and 33%, respectively. The [NMU + BaP] increased inflammatory and oxidative stress markers; nitrite, lipid peroxidation and myeloperoxidase by 62%, 57% and 361%, respectively. Strong expression of BCL-2, IL-6, COX 2, ß-catenin and iNOS in [NMU + BaP]-administered rats were observed. Histology revealed glands with malignant epithelial cells and high nucleocytoplasm in [NMU + BaP] rats. Treatment with CP attenuated inflammation, apoptosis and restored cyto-architecture of mammary gland. Overall, CP abates mammary tumourigenesis by targeting cellular pathways of inflammation and apoptosis.


Assuntos
Metilnitrosoureia , Neoplasias , Extratos Vegetais , Animais , Feminino , Ratos , Benzo(a)pireno/toxicidade , beta Catenina , Carcinogênese , Catalase/metabolismo , Clorofórmio , Ciclo-Oxigenase 2 , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Inflamação , Interleucina-6 , Metilnitrosoureia/toxicidade , Nitritos , Peroxidase , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , Superóxido Dismutase/metabolismo , Vincristina , Fabaceae/química
18.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616699

RESUMO

Properties of the Langmuir-Blodgett (LB) films of arachidic and stearic acids, versus the amount of the films' monolayers were studied and applied for chloroform vapor detection with acoustoelectric high-frequency SAW sensors, based on an AT quartz two-port Rayleigh type SAW resonator (414 MHz) and ST-X quartz SAW delay line (157.5 MHz). Using both devices, it was confirmed that the film with 17 monolayers of stearic acid deposited on the surface of the SAW delay line at a surface pressure of 30 mN/m in the solid phase has the best sensitivity towards chloroform vapors, compared with the same films with other numbers of monolayers. For the SAW resonator sensing using slightly longer arachidic acid molecules, the optimum performance was reached with 17 LB film layers due to a sharper decrease in the Q-factor with mass loading. To understand the background of the result, Atomic Force Microscopy (AFM) in intermittent contact mode was used to study the morphology of the films, depending on the number of monolayers. The presence of the advanced morphology of the film surface with a maximal average roughness (9.3 nm) and surface area (29.7 µm2) was found only for 17-monolayer film. The effects of the chloroform vapors on the amplitude and the phase of the acoustic signal for both SAW devices at 20 °C were measured and compared with those for toluene and ethanol vapors; the largest responses were detected for chloroform vapor. For the film with an optimal number of monolayers, the largest amplitude response was measured for the resonator-based device. Conversely, the largest change in the acoustic phase produced by chloroform adsorption was measured for delay-line configuration. Finally, it was established that the gas responses for both devices coated with the LB films are completely restored 60 s after chamber cleaning with dry air.

19.
J Asian Nat Prod Res ; : 1-7, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35635100

RESUMO

A new steroid (acylated C21 pregnane steroid) was isolated from chloroform extract in phytochemical screening of Caralluma lasiantha. The isolated compound is found to be 3ß-hydroxy-14ß-(6'- carboxyphenyl)propionyloxypregn-5-en-20-one based on spectroscopic studies (IR, 1H NMR, 13C NMR, DEPT, COSY, HSQC, HMBC and ESI-MS). The isolated new steroid was tested against four bacterial strains and the activity was related to the structure of the molecule.

20.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012112

RESUMO

While microRNAs are considered as excellent biomarkers of various diseases, there are still several remaining challenges regarding their isolation. In this study, we aimed to design a novel RNA isolation method that would help to overcome those challenges. Therefore, we present a novel phenol/chloroform-free, low-cost method for miRNA extraction. Within this method, RNA is extracted from cell lysate with an isopropanol/water/NaCl system, followed by solid-phase extraction using TiO2 microspheres to effectively separate short RNAs from long RNA molecules. We also demonstrated the pH-dependent selectivity of TiO2 microspheres towards different sizes of RNA. We were able to regulate the size range of extracted RNAs with simple adjustments in binding conditions used during the solid-phase extraction.


Assuntos
MicroRNAs , Fenol , Clorofórmio/química , MicroRNAs/genética , Fenol/química , Fenóis , Titânio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa