RESUMO
Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.
Assuntos
Clorofila/química , Oxigênio/química , Fotossíntese , Fenômenos Fisiológicos Vegetais , Carbono-Oxigênio Ligases/química , Clorofila/análogos & derivados , Clorofila A , Luz , Liases/química , Magnésio/química , Protoporfirinas/químicaRESUMO
Colour change is an important event during fruit ripening in blueberry. It is well known that miR156/SPLs act as regulatory modules mediating anthocyanin biosynthesis and ethylene plays critical roles during colour change, but the intrinsic connections between the two pathways remain poorly understood. Previously, we demonstrated that blueberry VcMIR156a/VcSPL12 affects the accumulation of anthocyanins and chlorophylls in tomato and Arabidopsis. In this study, we first showed that VcMIR156a overexpression in blueberry led to enhanced anthocyanin biosynthesis, decreased chlorophyll accumulation, and, intriguingly, concomitant elevation in the expression of ethylene biosynthesis genes and the level of the ethylene precursor ACC. Conversely, VcSPL12 enhanced chlorophyll accumulation and suppressed anthocyanin biosynthesis and ACC synthesis in fruits. Moreover, the treatment with ethylene substitutes and inhibitors attenuated the effects of VcMIR156a and VcSPL12 on pigment accumulation. Protein-DNA interaction assays indicated that VcSPL12 could specifically bind to the promoters and inhibit the activities of the ethylene biosynthetic genes VcACS1 and VcACO6. Collectively, our results show that VcMIR156a/VcSPL12 alters ethylene production through targeting VcACS1 and VcACO6, therefore governing fruit colour change. Additionally, VcSPL12 may directly interact with the promoter region of the chlorophyll biosynthetic gene VcDVR, thereby activating its expression. These findings established an intrinsic connection between the miR156/SPL regulatory module and ethylene pathway.
Assuntos
Arabidopsis , Mirtilos Azuis (Planta) , MicroRNAs , Frutas/genética , Frutas/metabolismo , Antocianinas , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Cor , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Arabidopsis/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Understanding the optical characteristics, especially the fluorescence properties of vegetable oils, particularly black seed oil (BSO), is an essential prerequisite for the development of the future applications in both medicinal and nutritional fields. In this way, it is essential to identify the roles played by the components such as unsaturated fatty acids, carotenoids, flavonoids, vitamin E, and chlorophylls in the BSO fluorescence spectra. In the current landscape, challenges arise from the adulteration of BSO with impurities such as sunflower oil (SO), complicating efforts to obtain pure BSO. Here, dependence of the BSO fluorescence on excitation wavelength has been examined using UV- visible diode lasers (λ = 355, 405, 440, 532 and 660 nm) as excitation sources. Though conjugated unsaturated fatty acids, flavonoids and chlorophylls are mainly contributed to the fluorescence due to UV excitation, wavelengths in the visible range specifically excite carotenoids, vitamin E, and chlorophylls. By utilizing the laser-induced fluorescence (LIF) technique, we explored the effects of inner filters and setup geometry to gain deeper insights into the BSO fluorescence dynamics. Differential spectral analysis (DSA) revealed that adulteration of BSO with SO alters its fluorescence features. As a result, a novel approach is proposed for adulteration detection, based on the simultaneous excitation of BSO and SO by a 405 nm laser, benefit to indirect excitation of the carotenoids of BSO by fluorescence emission of SO within the spectral range of 400-500 nm, which results in the enhancement of BSO fluorescence in the region of 500-600 nm.
RESUMO
While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-Undaria pinnatifida, Dulse-Palmaria palmata, and Nori-Porphyra spp.) and microalgae (Spirulina-Arthrospira platensis, and Chlorella-Chlorella vulgaris) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.
Assuntos
Lipídeos , Microalgas , Alga Marinha , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Lipídeos/química , Lipídeos/análise , Alga Marinha/química , Microalgas/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Aminacrina/química , Pigmentos Biológicos/análise , Pigmentos Biológicos/química , Spirulina/químicaRESUMO
The Coulomb coupling between transition densities of the pigments in photosynthetic pigment-protein complexes, termed excitonic coupling, is a key factor for the description of optical spectra and energy transfer. A challenging question is the quantification of the screening of the excitonic coupling by the optical polarizability of the environment. We use the equivalence between the sophisticated quantum chemical polarizable continuum (PCM) model and the simple electrostatic Poisson-TrEsp approach to analyze the distance and orientation dependence of the dielectric screening between chlorophylls in photosystem I trimers. On the basis of these calculations we find that the vacuum couplings Vmn(0) and the couplings in the dielectric medium Vmn=fmnVmn(0) are related by the empirical screening factor fmn=0.60+39.6θ(|κmn|-1.17)exp(-0.56Rmn/Å), where κmn is the usual orientational factor of the dipole-dipole coupling between the pigments, Rmn is the center-to-center distance, and the Heaviside-function θ(|κmn|-1.17) ensures that the exponential distance dependence only contributes for in-line type dipole geometries. We are confident that the present expression can be applied also to other pigment-protein complexes with chlorophyll or related pigments of similar shape. The variance between the Poisson-TrEsp and the approximate coupling values is found to decrease by a factor of 8 and 3-4 using the present expression, instead of an exponential distance dependent or constant screening factor, respectively, assumed previously in the literature.
Assuntos
Clorofila , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/metabolismo , Clorofila/química , Transferência de Energia , Modelos Moleculares , Eletricidade EstáticaRESUMO
BACKGROUND: The unintended co-extraction of chlorophylls during the recovery of polyphenols from plant sources yields green-coloured phenolic extracts with limited use in colour-sensitive foods. This study aimed at decolourizing the ethanolic extracts of sugar beet leaves using a UV-A treatment (390 nm). RESULTS: Exposure of the phenolic extracts to 30 UV-A LEDs at 8.64 J m-2 radiation dose decreased the total chlorophyll content by 69.23% and reduced the greenness parameter (-a*) significantly (P < 0.05) from 27.33 ± 0.32 to 8.64 ± 0.16. Additionally, UV-A treatment increased the content of most individual phenolic compounds (e.g. gallic acid, ferulic acid, etc.) significantly, resulting in an increase in the overall phenolic content in the extracts from 900.56 ± 14.11 µg g-1 fresh weight (FW) to a maximum of 975.09 ± 9.62 µg g-1 FW at 0.67 J m-2. However, rutin content had a significant decrease at the highest radiation dose (8.64 J m-2). The soluble sugar content (i.e. glucose and fructose) increased simultaneously with phenolic compounds after the UV-A treatment. Although the UV treatment reduced the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, it had no significant effect on the ferrous chelating activity and the extract's ability to delay lipid oxidation in corn oil. The antioxidant activity index of the treated extract was comparable to that of butylated hydroxytoluene, a synthetic antioxidant. CONCLUSION: Key findings of this study include successful decolourization of the extract, decomposition of bound polyphenols to their free form, and maintaining the antioxidant activity of the extract in the oil system after UV-A exposure. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMO
Microalgae are a source of a wide variety of commodities, including particularly valuable pigments. The typical pigments present in microalgae are the chlorophylls, carotenoids, and phycobiliproteins. However, other types of pigments, of the family of water-soluble polyphenols, usually encountered in terrestrial plants, have been recently reported in microalgae. Among such microalgal polyphenols, many flavonoids have a yellowish hue, and are used as natural textile dyes. Besides being used as natural colorants, for example in the food or cosmetic industry, microalgal pigments also possess many bioactive properties, making them functional as nutraceutical or pharmaceutical agents. Each type of pigment, with its own chemical structure, fulfills particular biological functions. Considering both eukaryotes and prokaryotes, some species within the four most promising microalgae groups (Cyanobacteria, Rhodophyta, Chlorophyta and Heterokontophyta) are distinguished by their high contents of specific added-value pigments. To further enhance microalgae pigment contents during autotrophic cultivation, a review is made of the main related strategies adopted during the last decade, including light adjustments (quantity and quality, and the duration of the photoperiod cycle), and regard to mineral medium characteristics (salinity, nutrients concentrations, presence of inductive chemicals). In contrast to what is usually observed for growth-related pigments, accumulation of non-photosynthetic pigments (polyphenols and secondary carotenoids) requires particularly stressful conditions. Finally, pigment enrichment is also made possible with two new cutting-edge technologies, via the application of metallic nanoparticles or magnetic fields.
Assuntos
Microalgas , Pigmentos Biológicos , Microalgas/metabolismo , Microalgas/química , Pigmentos Biológicos/química , Carotenoides/química , Carotenoides/metabolismo , Carotenoides/análise , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Rodófitas/química , Rodófitas/metabolismo , Clorófitas/química , Clorófitas/metabolismo , Clorofila/análise , Polifenóis/análise , Polifenóis/química , Polifenóis/metabolismo , Meios de Cultura/químicaRESUMO
Marine algae are one of the most important sources of high-value compounds such as polar lipids, omega-3 fatty acids, photosynthetic pigments, or secondary metabolites with interesting features for different niche markets. Acetabularia acetabulum is a macroscopic green single-celled alga, with a single nucleus hosted in the rhizoid. This alga is one of the most studied dasycladalean species and represents an important model system in cell biology studies. However, its lipidome and pigment profile have been overlooked. Total lipid extracts were analyzed using hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS), tandem mass spectrometry (MS/MS), and high-performance liquid chromatography (HPLC). The antioxidant capacity of lipid extracts was tested using DPPH and ABTS assays. Lipidomics identified 16 polar lipid classes, corresponding to glycolipids, betaine lipids, phospholipids, and sphingolipids, with a total of 191 lipid species, some of them recognized by their bioactivities. The most abundant polar lipids were glycolipids. Lipid classes less studied in algae were identified, such as diacylglyceryl-carboxyhydroxymethylcholine (DGCC) or hexosylceramide (HexCer). The pigment profile of A. acetabulum comprised carotenoids (17.19%), namely cis-neoxanthin, violaxanthin, lutein and ß,ß-carotene, and chlorophylls a and b (82.81%). A. acetabulum lipid extracts showed high antioxidant activity promoting a 50% inhibition (IC50 ) with concentrations of 57.91 ± 1.20 µg · mL-1 (438.18 ± 8.95 µmol Trolox · g-1 lipid) in DPPH and 20.55 ± 0.60 µg · mL-1 in ABTS assays (918.56 ± 27.55 µmol Trolox · g-1 lipid). This study demonstrates the potential of A. acetabulum as a source of natural bioactive molecules and antioxidant compounds.
Assuntos
Acetabularia , Antioxidantes , Lipídeos/análise , Lipidômica/métodos , Espectrometria de Massas em Tandem , Acetábulo/química , GlicolipídeosRESUMO
Developing efficient and stable visible light active photocatalyst has significant environmental applications. Though dye sensitization of TiO2 nanoparticles with natural chlorophyll pigments can potentially impart visible light activity, their long-term stability is a major concern. We investigated the functionalization of TiO2 with salicylic acid, and subsequent sensitization with chlorophylls to improve the catalyst stability for the photocatalytic degradation of Ciprofloxacin (CPX) under visible light. A significant improvement in the degradation efficiency and catalyst stability was observed for five reuse cycles. Further, an optimum CPX degradation of â¼75% was achieved with 0.75 g L-1 catalyst dosage of 0.1 chl/0.1 SA-TiO2, initial pH of 6, and 10 ppm of initial CPX for a visible light exposure of 2 h. The degradation followed the pseudo-second-order kinetics. In addition, the ciprofloxacin degradation was reduced in the wastewater matrix system due to the presence of other scavenging species such as chlorides, sulphates, and alkalinity. Significant reduction in the toxicity of degradation compounds after the photocatalytic degradation was observed in comparison to parent CPX. Further, the degradation pathway and plausible mechanism of degradation of CPX were also proposed.
Assuntos
Nanopartículas , Poluentes Químicos da Água , Ciprofloxacina , Clorofila , Ácido Salicílico , Poluentes Químicos da Água/análise , Titânio/química , Catálise , LuzRESUMO
Two-Spotted Spider Mites (TSSMs, Tetranychus urticae Koch 1836 (Acari: Tetranychidae)) is one of the most important pests in many crop plants, and their feeding activity is based on sucking leaf cell contents. The purpose of this study was to evaluate the interaction between TSSMs and their host Lima bean (Phaseolus lunatus) by analyzing the metabolomics of leaf pigments and the transcriptomics of TSSM guanine production. We also used epifluorescence, confocal laser scanning, and transmission electron microscopies to study the morphology and structure of TSSMs and their excreta. Finally, we evaluated the potential photosynthetic ability of TSSMs and the activity and content of Ribulose-1,5-bisphosphate Carboxylase/Oxigenase (RubisCO). We found that TSSMs express several genes involved in guanine production, including Guanosine Monophosphate Synthetase (GMPS) and decoyinine (DCY), a potential inhibitor of GMPS, was found to reduce TSSMs proliferation in infested Lima bean leaves. Despite the presence of intact chloroplasts and chlorophyll in TSSMs, we demonstrate that TSSMs do not retain any photosynthetic activity. Our results show for the first time the transcriptomics of guanine production in TSSMs and provide new insight into the catabolic activity of TSSMs on leaf chlorophyll and carotenoids. Finally, we preliminary demonstrate that DCY has an acaricidal potential against TSSMs.
Assuntos
Acaricidas , Phaseolus , Tetranychidae , Animais , Acaricidas/farmacologia , Tetranychidae/metabolismo , Carotenoides/metabolismo , Transcriptoma , Clorofila/metabolismo , Phaseolus/metabolismo , Fotossíntese , BiologiaRESUMO
Chlorophylls play a crucial role in photosynthesis and are abundantly found in green fruits and vegetables that form an integral part of our diet. Although limited, existing studies suggest that these photosynthetic pigments and their derivatives possess therapeutic properties. These bioactive molecules exhibit a wide range of beneficial effects, including antioxidant, antimutagenic, antigenotoxic, anti-cancer, and anti-obesogenic activities. However, it is unfortunate that leafy materials and fruit peels often go to waste in the food supply chain, contributing to the prevailing issue of food waste in modern societies. Nevertheless, these overlooked materials contain valuable bioactive compounds, including chlorophylls, which offer significant health benefits. Consequently, exploring the potential of these discarded resources, such as utilizing them as functional food ingredients, aligns with the principles of a circular economy and presents exciting opportunities for exploitation.
Assuntos
Clorofila , Eliminação de Resíduos , Antioxidantes/análise , Dieta , Verduras , Frutas/químicaRESUMO
This paper reviews the current knowledge regarding modifications to chlorophylls during the processing of green table olives treated with alkali. Particular attention is given to the pheophytinization reactions (substitution of Mg2+ by 2H+ in the chlorophyll chromophore group) that can take place because of pH and/or temperature changes and the possible sequential substitution of the 2H+ with Cu2+ within the chlorophyll porphyrin ring. These reactions may have a direct impact on the commercial value of olive productions as some naturally forming Cu-chlorophylls complexes (i) are identical to strictly forbidden colorants for table olives (E141) and (ii) have been identified as responsible for the unwelcome appearance of the so-called green staining alteration (characterized by bluish-green zones distributed over the olive skin of the drupes).
Assuntos
Olea , Porfirinas , Olea/química , Cobre/química , Clorofila/químicaRESUMO
Chlorophyll pigments are thought to be responsible for the highly appreciated green color of unfermented Castelvetrano-style table olives, but no studies have considered the effects of a controlled addition of copper during storage or packaging at the industrial level. For this purpose, chlorophyll derivatives were analyzed in Nocellara cultivar table olives debittered industrially using the Castelvetrano method, via means of HPLC and MS analyses, following the addition of copper in alkaline brines stored at 4 °C for 3 months in 220 L barrels, and during the subsequent storage in acid brines in commercial 400 g packages at 4 °C for up to 18 months. The presence of copper in storage or in packaging brines both contributed significantly to maintaining the green color of the olives, which was associated with a specific pattern of chlorophyll derivatives, as evidenced by principal component analysis. Notably, re-greening was rapidly achievable also for olives that had yellowed for 18 months at a copper concentration below the limit of EU legislation. Finally, by means of PCA, we also demonstrated that a short-term thermic treatment can work as an accelerated predictive tool in determining the fate of chlorophyll derivatives.
Assuntos
Cobre , Olea , Cobre/análise , Clorofila/análise , Sais , FermentaçãoRESUMO
The purpose of the work was to determine the intraspecific variability of the stinging nettle, in respect of the mass of leaves and their chemical composition, including the content of phenolic compounds and assimilative pigments. The objects of the study were 10 populations of nettle, originating from the eastern and southern part of Poland. The results obtained indicate a high level of variability between and within the populations investigated but not strictly related to their geographical locations. The mass of the leaves ranged from 0.19 to 0.28 kg dry weight (DW)/plant (Coefficient of variation (CV) = 16.33%). Using HPLC-DAD, four phenolic acids were detected, i.e., caffeoylmalic (570.97-1367.40 mg/100 g DW), chlorogenic (352.79-1070.83 mg/100 g DW), neochlorogenic (114.56-284.77 mg/100 g DW) and cichoric (58.31-189.52 mg/100 g DW) acids, with the last one differentiating populations to the highest degree (CV = 48.83%). All of the analyzed populations met the requirements of the European Pharmacopoeia (Ph Eur 10th) concerning the minimum content of caffeoylmalic and chlorogenic acids in nettle leaves (not less than 0.3%). Within the flavonoid fraction, two compounds were identified, namely rutoside (917.05-1937.43 mg/100 g DW, CV = 21.32%) and hyperoside (42.01-289.45 mg/100 g DW; CV = 55.26%). The level of chlorophyll a ranged from 3.82 to 4.49 mg/g DW, chlorophyll b from 1.59 to 2.19 mg/g DW, while the content of carotenoids varied from 2.34 to 2.60 mg/100 g DW. Given all the traits investigated, the level of a population's polymorphism (CV) was visibly higher within a population than between populations. Population no. 4 was distinguished by the highest mass of leaves, and the highest content of rutoside, while population no. 2 was distinguished by the highest content of hyperoside, caffeoylmalic and chlorogenic acid.
Assuntos
Urtica dioica , Urtica dioica/química , Clorofila A , Flavonoides/química , Fenóis , Ácido Clorogênico , RutinaRESUMO
Of the different quality parameters of any food commodity or beverage, color is the most important, attractive and choice-affecting sensory factor to consumers and customers. Nowadays, food industries are interested in making the appearance of their food products attractive and interesting in order to appeal to consumers/customers. Natural green colorants have been accepted universally due to their natural appeal as well as their nontoxic nature to consumers. In addition, several food safety issues mean that natural green colorants are preferable to synthetic food colorants, which are mostly unsafe to the consumers but are less costly, more stable, and create more attractive color hues in food processing. Natural colorants are prone to degradation into numerous fragments during food processing, and thereafter, in storage. Although different hyphenated techniques (especially high-performance liquid chromatography (HPLC), LC-MS/HRMS, and LC/MS-MS are extensively used to characterize all these degradants and fragments, some of them are not responsive to any of these techniques, and some substituents in the tetrapyrrole skeleton are insensitive to these characterization tools. Such circumstances warrant an alternative tool to characterize them accurately for risk assessment and legislation purposes. This review summarizes the different degradants of chlorophylls and chlorophyllins under different conditions, their separation and identification using various hyphenated techniques, national legislation regarding them, and the challenges involved in their analysis. Finally, this review proposes that a non-targeted analysis method that combines HPLC and HR-MS assisted by powerful software tools and a large database could be an effective tool to analyze all possible chlorophyll and chlorophyllin-based colorants and degradants in food products in the future.
Assuntos
Clorofilídeos , Corantes de Alimentos , Cromatografia Líquida de Alta Pressão/métodos , Clorofilídeos/química , Clorofila/química , Corantes de Alimentos/químicaRESUMO
In terrestrial plants, strigolactones act as multifunctional endo- and exo-signals. On microalgae, the strigolactones determine akin effects: induce symbiosis formation with fungi and bacteria and enhance photosynthesis efficiency and accumulation of biomass. This work aims to synthesize and identify strigolactone mimics that promote photosynthesis and biomass accumulation in microalgae with biotechnological potential. Novel strigolactone mimics easily accessible in significant amounts were prepared and fully characterized. The first two novel compounds contain 3,5-disubstituted aryloxy moieties connected to the bioactive furan-2-one ring. In the second group of compounds, a benzothiazole ring is connected directly through the cyclic nitrogen atom to the bioactive furan-2-one ring. The novel strigolactone mimics were tested on Chlorella sorokiniana NIVA-CHL 176. All tested strigolactones increased the accumulation of chlorophyll b in microalgae biomass. The SL-F3 mimic, 3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)-3H-benzothiazol-2-one (7), proved the most efficient. This compound, applied at a concentration of 10-7 M, determined a significant biomass accumulation, higher by more than 15% compared to untreated control, and improved the quantum yield efficiency of photosystem II. SL-F2 mimic, 5-(3,5-dibromophenoxy)-3-methyl-5H-furan-2-one (4), applied at a concentration of 10-9 M, improved protein production and slightly stimulated biomass accumulation. Potential utilization of the new strigolactone mimics as microalgae biostimulants is discussed.
Assuntos
Chlorella , Microalgas , Chlorella/metabolismo , Biomassa , Fotossíntese , Microalgas/metabolismo , Furanos/farmacologia , Furanos/metabolismoRESUMO
The OsMYBR22 (same to OsRVE1), an R1type-MYB transcription factor belonging to the rice CCA1-like family, was upregulated under blue light condition, which enhanced the chlorophyll and carotenoid accumulation. The overexpression of OsMYBR22 in rice (Oryza sativa, L) led to everlasting green seeds and leaves of a darker green. Transgene expression patterns showed more concordance with chlorophyll than carotenoid profiles. The transcript levels of most genes related to chlorophyll biosynthesis and degradation examined were similarly repressed in the late maturing stages of seeds. It proposed that rice seeds have the feedback regulatory mechanism for chlorophyll biosynthesis and also implied that evergreen seed traits might be caused due to the inhibition of degradation rather than the promotion of biosynthesis for chlorophylls. Metabolomics revealed that OsMYBR22 overexpression largely and simultaneously enhanced the contents of nutritional and functional metabolites such as chlorophylls, carotenoids, amino acids including lysine and threonine, and amino acid derivatives including γ-aminobutyric acid, which are mostly biosynthesized in chloroplasts. Transmission electron microscopy anatomically demonstrated greener phenotypes with an increase in the number and thickness of chloroplasts in leaves and the structurally retentive chloroplasts in tubular and cross cells of the seed inner pericarp region. In conclusion, the molecular actions of OsMYBR22/OsRVE1 provided a new strategy for the biofortified rice variety, an "Evergreen Rice," with high accumulation of chloroplast-localized metabolites in rice grains.
Assuntos
Cloroplastos , Oryza , Proteínas de Plantas , Fatores de Transcrição , Clorofila/metabolismo , Cloroplastos/metabolismo , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Brown algae are ubiquitously distributed in the NW coastline of the Iberian Peninsula, where they stand as an underexploited resource. In this study, five solvents were applied to the extraction of pigments from nine brown algae, followed by their determination and quantification by HPLC-DAD. A total of 13 compounds were detected: Six were identified as chlorophylls, six were classified as xanthophylls, and one compound was reported as a carotene. Fucoxanthin was reported in all extracts, which is the most prominent pigment of these algae. Among them, L. saccharina and U. pinnatifida present the highest concentration of fucoxanthin (4.5-4.7 mgâg-1 dry weight). Ethanol and acetone were revealed as the most efficient solvents for the extraction of pigments, showing a maximal value of 11.9 mg of total pigments per gram of dry alga obtained from the ethanolic extracts of H. elongata, followed by the acetonic extracts of L. ochroleuca. Indeed, ethanol was also revealed as the most efficient solvent according to its high extraction yield along all species evaluated. Our results supply insights into the pigment composition of brown algae, opening new perspectives on their commercial exploitation by food, pharmaceutical, and cosmeceutical industries.
Assuntos
Phaeophyceae/química , Pigmentos Biológicos/química , Solventes/química , Carotenoides/química , Carotenoides/isolamento & purificação , Clorofila/química , Clorofila/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Pigmentos Biológicos/isolamento & purificação , Água do Mar , Xantofilas/química , Xantofilas/isolamento & purificaçãoRESUMO
Gadolinium-based contrast agents are molecular complexes which are extensively used for diagnostic purposes. Apart from their tremendous contribution to disease diagnostics, there are several issues related to their use. They are extremely stable complexes and potential contaminants of surface and ground waters, an issue which is documented worldwide. The irrigation of fields with contaminated surface waters or their fertilization with sludge from wastewater treatment plants can lead to the introduction of Gd into the human food supply chain. Thus, this study focused on the potential toxicity of Gd on plants. For this purpose, we have studied the molecular effects of gadobutrol (a well-known MRI contrast agent) exposure on in vitro-grown Stevia rebaudiana. The effects of gadobutrol on plant morphology, on relevant plant metabolites such as chlorophylls, carotenoids, ascorbic acids (HPLC), minerals (ICP-OES), and on the generation of free radical species (MDA assay and EPR) were assessed. Exposures of 0.01, 0.05, 0.1, 1, and 3 mM gadobutrol were used. We found a correlation between the gadobutrol dose and the plant growth and concentration of metabolites. Above the 0.1. mM dose of gadobutrol, the toxic effects of Gd+3 ions became significant.
Assuntos
Compostos Organometálicos , Stevia , Carotenoides , Meios de Contraste/toxicidade , Gadolínio/toxicidade , Gadolínio DTPA , Humanos , Imageamento por Ressonância Magnética , EsgotosRESUMO
Chlorophylls provide the basis for photosynthesis and thereby most life on Earth. Besides their involvement in primary charge separation in the reaction center, they serve as light-harvesting and light-sensing pigments, they also have additional functions, e.g., in inter-system electron transfer. Chlorophylls also have a wealth of applications in basic science, medicine, as colorants and, possibly, in optoelectronics. Considering that there has been more than 200 years of chlorophyll research, one would think that all has been said on these pigments. However, the opposite is true: ongoing research evidenced in this Special Issue brings together current work on chlorophylls and on their carotenoid counterparts. These introductory notes give a very brief and in part personal account of the history of chlorophyll research and applications, before concluding with a snapshot of this year's publications.