RESUMO
Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.
Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Doença de Wolman , Camundongos , Animais , Esterol Esterase/genética , Esterol Esterase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Fígado/metabolismo , Doença de Wolman/genética , Doença de Wolman/metabolismo , Doença de Wolman/patologia , Cirrose Hepática/genética , Triglicerídeos/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismoRESUMO
BACKGROUND: High-density lipoprotein plays a key role in reverse cholesterol transport. In addition, high-density lipoprotein particles may be cardioprotective and reduce infarct size in the setting of myocardial injury. Lecithin-cholesterol acyltransferase is a rate-limiting enzyme in reverse cholesterol transport. MEDI6012 is a recombinant human lecithin-cholesterol acyltransferase that increases high-density lipoprotein cholesterol. Administration of lecithin-cholesterol acyltransferase has the potential to reduce infarct size and regress coronary plaque in acute ST-segment-elevation myocardial infarction. METHODS: REAL-TIMI 63B (A Randomized, Placebocontrolled Phase 2b Study to Evaluate the Safety and Efficacy of MEDI6012 in Acute ST Elevation Myocardial Infarction) was a phase 2B multinational, placebo-controlled, randomized trial. Patients with ST-segment-elevation myocardial infarction within 6 hours of symptom onset and planned for percutaneous intervention were randomly assigned 2:1 to MEDI6012 (2- or 6-dose regimen) or placebo and followed for 12 weeks. The primary outcome was infarct size as a percentage of left ventricular mass by cardiac MRI at 10 to 12 weeks, with the primary analysis in patients with TIMI Flow Grade 0 to 1 before percutaneous intervention who received at least 2 doses of MEDI6012. The secondary outcome was change in noncalcified plaque volume on coronary computed tomographic angiography from baseline to 10 to 12 weeks with the primary analysis in patients who received all 6 doses of MEDI6012. RESULTS: A total of 593 patients were randomly assigned. Patients were a median of 62 years old, 77.9% male, and 95.8% statin naive. Median time from symptom onset to randomization was 146 (interquartile range [IQR], 103-221) minutes and from hospitalization to randomization was 12.7 (IQR, 6.6-24.0) minutes, and the first dose of drug was administered a median of 8 (IQR, 3-13) minutes before percutaneous intervention. The index myocardial infarction was anterior in 69.6% and TIMI Flow Grade 0 to 1 in 65.1% of patients. At 12 weeks, infarct size did not differ between treatment groups (MEDI6012: 9.71%, IQR 4.79-16.38; placebo: 10.48%, [IQR, 4.92-16.61], 1-sided P=0.79. There was also no difference in noncalcified plaque volume (geometric mean ratio, 0.96 [95% CI, NA-1.10], 1-sided P=0.30). There was no significant difference in treatment emergent serious adverse events. CONCLUSIONS: Administration of MEDI6012 in patients with acute ST-segment-elevation myocardial infarction did not result in a significant reduction in infarct size or noncalcified plaque volume at 12 weeks. MEDI6012 was well tolerated with no excess in overall serious adverse events. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT03578809.
Assuntos
Infarto Miocárdico de Parede Anterior , Inibidores de Hidroximetilglutaril-CoA Redutases , Fosfatidilcolina-Esterol O-Aciltransferase , Infarto do Miocárdio com Supradesnível do Segmento ST , Colesterol , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Lecitinas/uso terapêutico , Lipoproteínas HDL/uso terapêutico , Masculino , Pessoa de Meia-Idade , Fosfatidilcolina-Esterol O-Aciltransferase/uso terapêutico , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Esterol O-Aciltransferase/uso terapêutico , Resultado do TratamentoRESUMO
BACKGROUND: We have investigated the efficacy of a new strategy to limit pathological retinal neovascularization (RNV) during ischemic retinopathy by targeting the cholesterol metabolizing enzyme acyl-coenzyme A: cholesterol transferase 1 (ACAT1). Dyslipidemia and cholesterol accumulation have been strongly implicated in promoting subretinal NV. However, little is known about the role of cholesterol metabolism in RNV. Here, we tested the effects of inhibiting ACAT1 on pathological RNV in the mouse model of oxygen-induced retinopathy (OIR). METHODS: In vivo studies used knockout mice that lack the receptor for LDL cholesterol (LDLR-/-) and wild-type mice. The wild-type mice were treated with a specific inhibitor of ACAT1, K604 (10 mg/kg, i.p) or vehicle (PBS) during OIR. In vitro studies used human microglia exposed to oxygen-glucose deprivation (OGD) and treated with the ACAT1 inhibitor (1 µM) or PBS. RESULTS: Analysis of OIR retinas showed that increased expression of inflammatory mediators and pathological RNV were associated with significant increases in expression of the LDLR, increased accumulation of neutral lipids, and formation of toxic levels of cholesterol ester (CE). Deletion of the LDLR completely blocked OIR-induced RNV and significantly reduced the AVA. The OIR-induced increase in CE formation was accompanied by significant increases in expression of ACAT1, VEGF and inflammatory factors (TREM1 and MCSF) (p < 0.05). ACAT1 was co-localized with TREM1, MCSF, and macrophage/microglia makers (F4/80 and Iba1) in areas of RNV. Treatment with K604 prevented retinal accumulation of neutral lipids and CE formation, inhibited RNV, and decreased the AVA as compared to controls (p < 0.05). The treatment also blocked upregulation of LDLR, ACAT1, TREM1, MCSF, and inflammatory cytokines but did not alter VEGF expression. K604 treatment of microglia cells also blocked the effects of OGD in increasing expression of ACAT1, TREM1, and MCSF without altering VEGF expression. CONCLUSIONS: OIR-induced RNV is closely associated with increases in lipid accumulation and CE formation along with increased expression of LDLR, ACAT1, TREM1, and MCSF. Inhibiting ACAT1 blocked these effects and limited RNV independently of alterations in VEGF expression. This pathway offers a novel strategy to limit vascular injury during ischemic retinopathy.
Assuntos
Neovascularização Retiniana , Retinopatia da Prematuridade , Recém-Nascido , Animais , Humanos , Camundongos , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides , Fator A de Crescimento do Endotélio Vascular/metabolismo , Oxigênio/metabolismo , Colesterol , Transferases , Coenzima A/efeitos adversos , Lipídeos/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Acetil-CoA C-AcetiltransferaseRESUMO
BACKGROUND: Sea cucumber phospholipids, marine-derived lipids with high nutritional functions, have been proven to exhibit various biological activities. However, it is unclear how sea cucumber phospholipids regulate cholesterol (Chol) metabolism in atherosclerosis. OBJECTIVES: This study aimed to investigate the effects and mechanism of sea cucumber phospholipids on the metabolism of Chol and cholesterol esters (CE) in ApoE-/- mice, including plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O). METHODS: Male ApoE-/- mice were fed with Chow diet, high-fat diet (HFD), and HFD supplemented with PC-O or PE-P, respectively. We integrated a targeted lipidomics strategy to classify and compare the cholesteryl esters according to their fatty acid types, and then analyzed the individual cholesteryl ester molecular species in the liver and serum of mice. Furthermore, the Chol metabolism-related genes and pathways were analyzed in high-fat-induced ApoE-/- mice. RESULTS: Biochemical analysis showed that sea cucumber phospholipids significantly inhibit the generation of arterial plaque in ApoE-/- mice. Compared with the HFD group, PE-P significantly reduced the contents of SFA-CE and MUFA-CE in mice liver (P < 0.05), whereas PC-O particularly upregulated CE20:5 and CE22:6 in the serum of mice (P < 0.001). Furthermore, PC-O and PE-P inhibited the Chol synthesis pathway (Cyp7A1 and Cyp27A1), as well as promoted the catabolism of Chol by upregulating gene expressions of bile acid synthesis (Abcb11) and lysosomal activity (Lamp1), respectively. CONCLUSIONS: Sea cucumber phospholipids could ameliorate the atherosclerosis symptoms by regulating Chol metabolism. J Nutr 20xx;x:xx.
Assuntos
Aterosclerose , Pepinos-do-Mar , Camundongos , Masculino , Animais , Fosfolipídeos , Dieta Hiperlipídica/efeitos adversos , Pepinos-do-Mar/metabolismo , Colesterol/metabolismo , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BLRESUMO
OBJECTIVE: Plasma total HDL (high-density lipoprotein) is a heterogeneous mix of many protein-based subspecies whose functions and associations with coronary heart disease vary. We hypothesize that increasing HDL by CETP (cholesteryl ester transfer protein) inhibition failed to reduce cardiovascular disease risk, in part, because it increased dysfunctional subspecies associated with higher risk such as HDL that contains apoC3. Approach and Results: We studied participants in 2 randomized, double-blind, placebo-controlled trials of a CETP inhibitor on a background of atorvastatin treatment: ACCENTUATE (The Addition of Evacetrapib to Atorvastatin Compared to Placebo, High Intensity Atorvastatin, and Atorvastatin With Ezetimibe to Evaluate LDL-C Lowering in Patients With Primary Hyperlipidemia; 130 mg evacetrapib; n=126) and ILLUMINATE (Phase 3 Multi Center, Double Blind, Randomized, Parallel Group Evaluation of the Fixed Combination Torcetrapib/Atorvastatin, Administered Orally, Once Daily [Qd], Compared With Atorvastatin Alone, on the Occurrence of Major Cardiovascular Events in Subjects With Coronary Heart Disease or Risk Equivalents; 60 mg torcetrapib; n=80). We measured the concentration of apoA1 in total plasma and 17 protein-based HDL subspecies at baseline and 3 months. Both CETP inhibitors increased apoA1 in HDL that contains apoC3 the most of all HDL subspecies (median placebo-adjusted percent increase: evacetrapib 99% and torcetrapib 50%). They also increased apoA1 in other HDL subspecies associated with higher coronary heart disease risk such as those involved in inflammation (α-2-macroglobulin and complement C3) or hemostasis (plasminogen), and in HDL that contains both apoE and apoC3, a complex subspecies associated with higher coronary heart disease risk. ApoA1 in HDL that contains apoC1, associated with lower risk, increased 71% and 40%, respectively. Only HDL that contains apoL1 showed no response to either drug. CONCLUSIONS: CETP inhibitors evacetrapib and torcetrapib increase apoA1 in HDL subspecies that contain apoC3 and other HDL subspecies associated with higher risk of coronary heart disease. Subspecies-specific effects shift HDL subspecies concentrations toward a profile associated with higher risk, which may contribute to lack of clinical benefit from raising HDL by pharmaceutical CETP inhibition.
Assuntos
Anticolesterolemiantes/uso terapêutico , Benzodiazepinas/uso terapêutico , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Doença das Coronárias/sangue , Hiperlipidemias/tratamento farmacológico , Lipoproteínas HDL/sangue , Idoso , Apolipoproteína C-III/sangue , Atorvastatina/uso terapêutico , Doença das Coronárias/etiologia , Ezetimiba/uso terapêutico , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Hiperlipidemias/sangue , Hiperlipidemias/complicações , Masculino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Colorectal cancer (CRC) is one of the most common cancers worldwide characterized by disparities in age, gender, race and anatomic sites. The mechanism underlying pathogenesis, progression and disparities of CRC remains unclear. This study aims to reveal the association of expression levels of enzymes related to cholesteryl ester (CE) metabolism with pathogenesis, progression and disparities of CRC. METHODS: The differences in gene expression levels were analyzed for enzymes in CE synthesis (acyl CoA: cholesterol acyltransferase 1 and 2, ACAT1, and ACAT2), and in CE hydrolysis (neutral cholesterol ester hydrolase, NCEH1 and lysosomal acid lipase, LAL) on TNMplot platform between CRC and normal colorectal tissues (NCT) in a large cohort. The differences in protein expression levels for these enzymes were determined by Immunochemistry (IHC) performed on tissue microarray containing 96 pairs of CRC and benign colorectal tissues (BCT) from different patient populations. The expression level represented as IHC score of each enzyme was compared between CRC and BCT in entire population and populations stratified by race, gender and anatomic sites. Student's t-test, Fisher exact test and ANOVA were used for data analysis. Significant p value was set at P<0.05. RESULTS: The gene expression level of ACAT1 was significantly lower in CRC than in NCT (P = 2.15e-119). The gene expression level of ACAT2 was not statistically different between CRC and NCT. The gene expression level of LIPA (encoding LAL) was significantly higher in CRC than in NCT (P = 2.01e-14). No data was found for the gene expression level of NCEH1. The IHC score of ACAT1was significantly lower in CRC than in BCT in all studied populations and in sub site of colon, but not in that of rectum. The IHC score of ACAT2 was not statistically different between CRC and BCT. IHC score of NCEH1 was significantly higher in CRC than in BCT only in African American (AA) population. The IHC score of LAL was significantly higher in CRC than in BCT in all studied populations and in all sub sites. In addition, decreased ACAT1 in CRC significantly correlated to progression of CRC: the lower IHC score of ACAT1, the more advanced clinical stage of CRC will be. CONCLUSIONS: This study revealed that altered expression levels in enzymes related to CE metabolism highly correlate to the pathogenesis, clinical progression and disparities of CRC. The results will add revenue in elucidating mechanisms underlying progression of CRC, and shed light on seeking biomarkers and exploring therapeutic targets for CRC in a new direction.
Assuntos
Ésteres do Colesterol , Neoplasias Colorretais , Ésteres do Colesterol/metabolismo , Neoplasias Colorretais/genética , Humanos , Esterol Esterase/genética , Esterol Esterase/metabolismo , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismoRESUMO
Cholesterol ester transfer protein (CETP) is important clinically and is one of the major targets in cardiovascular disease studies. With high conformational flexibility, its tunnel structure allows unforced movement of high-density lipoproteins (HDLs), VLDLs, and LDLs. Research in reverse cholesterol transports (RCT) reveals that the regulation of CETP activity can change the concentration of cholesteryl esters (CE) in HDLs, VLDLs, and LDLs. These molecular insights demonstrate the mechanisms of CETP activities and manifest the correlation between CETP and HDL. However, animal and cell experiments focused on CETP give controversial results. Inhibiting CETP is found to be beneficial to anti-atherosclerosis in terms of increasing plasma HDL-C, while it is also claimed that CETP weakens atherosclerosis formation by promoting RCT. Currently, the CETP-related drugs are still immature. Research on CETP inhibitors is targeted at improving efficacy and minimizing adverse reactions. As for CETP agonists, research has proved that they also can be used to resist atherosclerosis.
Assuntos
Aterosclerose , Proteínas de Transferência de Ésteres de Colesterol , Animais , Aterosclerose/tratamento farmacológico , Transporte Biológico , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , HDL-Colesterol/metabolismo , Lipoproteínas HDL/metabolismoRESUMO
Autophagy is a controlled mechanism of intracellular self-digestion with functions in metabolic adaptation to stress, in development, in proteostasis and in maintaining cellular homeostasis in ageing. Deletion of autophagy in epidermal keratinocytes does not prevent the formation of a functional epidermis and the permeability barrier but causes increased susceptibility to damage stress and metabolic alterations and accelerated ageing phenotypes. We here investigated how epidermal autophagy deficiency using Keratin 14 driven Atg7 deletion would affect the lipid composition of the epidermis of young and old mice. Using mass spectrometric lipidomics we found a reduction of age-related accumulation of storage lipids in the epidermis of autophagy-deficient mice, and specific changes in chain length and saturation of fatty acids in several lipid classes. Transcriptomics and immunostaining suggest that these changes are accompanied by changes in expression and localisation of lipid and fatty acid transporter proteins, most notably fatty acid binding protein 5 (FABP5) in autophagy knockouts. Thus, maintaining autophagic activity at an advanced age may be necessary to maintain epidermal lipid homeostasis in mammals.
Assuntos
Epiderme , Lipidômica , Animais , Autofagia/genética , Epiderme/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Queratina-14 , Lipídeos , Mamíferos/metabolismo , CamundongosRESUMO
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Here, we review the impact of high-density lipoproteins (HDL) on sepsis from the perspective of biochemistry and pathophysiology, epidemiological research, and intervention studies in animals. Pathogen lipid moieties are major ligands for innate immunity receptors, such as toll-like receptors. The binding of pathogen-associated lipids to lipoproteins leads to sequestration, neutralization, and inactivation of their pro-inflammatory effects. Lipoproteins constitute an arm of the innate immune system. Pathogen-associated lipids can be removed from the body via the reverse lipopolysaccharide transport pathway in which HDL play a key role. Independent of the capacity for sequestration, the direct anti-inflammatory effects of HDL may counteract the development of sepsis. Mendelian randomization research using genetic variants associated with HDL cholesterol as an instrumental variable was consistent with a probable causal relationship between increased HDL cholesterol levels and decreased risk of infectious hospitalizations. Low HDL cholesterol independently predicts an adverse prognosis in sepsis both in observational epidemiology and in Mendelian randomization studies. Several HDL-associated enzymes, including phospholipid transfer protein (PLTP) and cholesterol ester transfer protein (CETP), undergo profound changes during sepsis. Potential HDL-directed interventions for treatment of sepsis include apolipoprotein A-I-based therapies, recombinant PLTP, and CETP inhibition.
Assuntos
Lipoproteínas HDL , Sepse , Animais , Lipoproteínas HDL/metabolismo , HDL-Colesterol/metabolismo , Proteínas de Transferência de Fosfolipídeos , Proteínas de Transferência de Ésteres de Colesterol/genética , Lipoproteínas/metabolismo , Sepse/genéticaRESUMO
OBJECTIVE: To explore the correlation of cytochrome B-245 alpha chain (CYBA) rs4673 and cholesteryl ester transfer protein (CETP) rs12720922 polymorphisms with the susceptibility of gene-ralized aggressive periodontitis (GAgP). METHODS: The study was a case-control trial. A total of 372 GAgP patients and 133 periodontally healthy controls were recruited. The CYBA rs4673 and CETP rs12720922 polymorphisms were detected by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Logistic regression models were used to analyze the correlation of CYBA rs4673 and CETP rs12720922 variants with the susceptibility of GAgP. The interaction between the two gene polymorphisms to the susceptibility of GAgP was analyzed by the likelihood ratio test. The interaction model adopted was the multiplication model. RESULTS: The mean age of GAgP group and control group was (27.5±5.2) years and (28.8±7.1) years respectively. There was significant difference in age between the two groups (P < 0.05). The gender distribution (male/female) was 152/220 and 53/80 respectively, and there was no significant difference between GAgP group and controls (P>0.05). For CYBA rs4673, the frequency of CT/TT genotype in the GAgP group was significantly higher than that in the controls [18.0% (66/366) vs. 10.6% (14/132), P < 0.05]. After adjusting age and gender, the individuals with CT/TT genotype had a higher risk of GAgP (OR=1.86, 95%CI: 1.01-3.45, P < 0.05), compared with CC genotype. There was no statistically significant difference in distributions of the CETP rs12720922 genotypes (GG, AA/AG) between GAgP patients and healthy controls (P>0.05). A significant interaction between CYBA rs4673 and CETP rs12720922 in the susceptibility to GAgP was observed. The GAgP risk of the individuals with CYBA rs4673 CT/TT and CETP rs12720922 GG genotypes was significantly increased (OR=3.25, 95%CI: 1.36-7.75, P < 0.01), compared with those carrying CC and AA/AG genotypes. CONCLUSION: CYBA rs4673 CT/TT genotype is associated with GAgP susceptibility. There is a significant interaction between CYBA rs4673 CT/TT genotype and CETP rs12720922 GG genotype in the susceptibility of GAgP.
Assuntos
Periodontite Agressiva , Adulto , Periodontite Agressiva/genética , Estudos de Casos e Controles , Proteínas de Transferência de Ésteres de Colesterol/genética , Grupo dos Citocromos b , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , NADPH Oxidases/genética , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
BACKGROUND: Cholesterol ester storage disease (CESD) is one of the rare causes that should be kept in mind in the etiology of cirrhosis. Recent studies detected that significantly reduced lysosomal acid lipase deficiency enzyme (LAL) in patients with cryptogenic cirrhosis (CC). Moreover, studies have evaluated that LAL activity is as effective as scoring systems in assessing the severity of cirrhosis. In this study, we aimed to investigate the CESD with LAL level and mutation analysis of LIPA gene in patients diagnosed with CC and to compare LAL activities between patients with CC and healthy volunteers. METHODS: Laboratory parameters and cirrhosis stage (CHILD and MELD) were recorded for the patient group included in the study. In addition, blood samples were taken from each case included in the study for LAL activity determination and LIPA gene analysis. RESULTS: A statistically significant decrease in LAL activity was found in patients diagnosed with CC compared to the healthy group. LIPA gene analysis did not detect CESD in any patient group. Correlation analysis showed a positive correlation between LAL activity and white blood cell and platelet counts in both healthy volunteers and CC patient groups. In the univariate and multivariate logistic regression analysis of the parameters associated with the MELD of ≥10 in patients with CC, significant relationship was found between the MELD of ≥10 and the LAL activity. DISCUSSION: In our study, LAL activity was significantly lower in CC patients than in the normal population. LAL activity level appears to be a parameter that can be used to assess the severity of cirrhosis.
Assuntos
Esterol Esterase , Doença de Wolman , Humanos , Seguimentos , Cirrose Hepática/diagnóstico , Esterol Esterase/genética , Doença de Wolman/diagnóstico , Doença de Wolman/genéticaRESUMO
BACKGROUND: Exploratory analyses of previous randomized trials generated a hypothesis that the clinical response to cholesteryl ester transfer protein (CETP) inhibitor therapy differs by ADCY9 genotype, prompting the ongoing dal-GenE trial in individuals with a particular genetic profile. The randomized placebo-controlled REVEAL trial (Randomized Evaluation of the Effects of Anacetrapib through Lipid-Modification) demonstrated the clinical efficacy of the CETP inhibitor anacetrapib among patients with preexisting atherosclerotic vascular disease. In the present study, we examined the impact of ADCY9 genotype on response to anacetrapib in the REVEAL trial. METHODS: Individuals with stable atherosclerotic vascular disease who were treated with intensive atorvastatin therapy received either anacetrapib 100 mg daily or matching placebo. Cox proportional hazards models, adjusted for the first 5 principal components of ancestry, were used to estimate the effects of allocation to anacetrapib on major vascular events (a composite of coronary death, myocardial infarction, coronary revascularization, or presumed ischemic stroke) and the interaction with ADCY9 rs1967309 genotype. RESULTS: Among 19 210 genotyped individuals of European ancestry, 2504 (13.0%) had a first major vascular event during 4 years median follow-up: 1216 (12.6%) among anacetrapib-allocated participants and 1288 (13.4%) among placebo-allocated participants. Proportional reductions in the risk of major vascular events with anacetrapib did not differ significantly by ADCY9 genotype: hazard ratio (HR) = 0.92 (95% CI, 0.81-1.05) for GG; HR = 0.94 (95% CI, 0.84-1.06) for AG; and HR = 0.93 (95% CI, 0.76-1.13) for AA genotype carriers, respectively; genotypic P for interaction = 0.96. Furthermore, there were no associations between ADCY9 genotype and the proportional reductions in the separate components of major vascular events or meaningful differences in lipid response to anacetrapib. CONCLUSIONS: The REVEAL trial is the single largest study to date evaluating the ADCY9 pharmacogenetic interaction. It provides no support for the hypothesis that ADCY9 genotype is materially relevant to the clinical effects of the CETP inhibitor anacetrapib. The ongoing dal-GenE study will provide direct evidence as to whether there is any specific pharmacogenetic interaction with dalcetrapib. CLINICAL TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov. Unique identifier: NCT01252953. URL: http://www.isrctn.com. Unique identifier: ISRCTN48678192. URL: https://www.clinicaltrialsregister.eu. Unique identifier: 2010-023467-18.
RESUMO
BACKGROUND: The functionality of high-density lipoproteins (HDL) is a better cardiovascular risk predictor than HDL concentrations. One of the key elements of HDL functionality is its apolipoprotein composition. Lecithin-cholesterol acyl transferase (LCAT) and cholesterol-ester transfer protein (CETP) are enzymes involved in HDL-mediated reverse cholesterol transport. This study assessed the concentration and activity of LCAT and CETP in HDL subspecies defined by their content of apolipoproteins E (apoE) and C-III (apoC-III) in humans. METHODS: Eighteen adults (ten women and eight men, mean age 55.6, BMI 26.9 Kg/m2, HbA1c 5.4%) were studied. HDL from each participant were isolated and divided into four subspecies containing respectively: No apoE and no apoC-III (E-C-), apoE but not apoC-III (E + C-), apoC-III but no apoE (E-C+) and both apoE and apoC-III (E + C+). The concentration and enzymatic activity of LCAT and CETP were measured within each HDL subspecies using immunoenzymatic and fluorometric methods. Additionally, the size distribution of HDL in each apolipoprotein-defined fraction was determined using non-denaturing electrophoresis and anti-apoA-I western blotting. RESULTS: HDL without apoE or apoC-III was the predominant HDL subtype. The size distribution of HDL was very similar in all the four apolipoprotein-defined subtypes. LCAT was most abundant in E-C- HDL (3.58 mg/mL, 59.6% of plasma LCAT mass), while HDL with apoE or apoC-III had much less LCAT (19.8, 12.2 and 8.37% of plasma LCAT respectively for E + C-, E-C+ and E + C+). LCAT mass was lower in E + C- HDL relative to E-C- HDL, but LCAT activity was similar in both fractions, signaling a greater activity-to-mass ratio associated with the presence of apoE. Both CETP mass and CETP activity showed only slight variations across HDL subspecies. There was an inverse correlation between plasma LCAT activity and concentrations of both E-C+ pre-beta HDL (r = - 0.55, P = 0.017) and E-C- alpha 1 HDL (r = - 0.49, P = 0.041). Conversely, there was a direct correlation between plasma CETP activity and concentrations of E-C+ alpha 1 HDL (r = 0.52, P = 0.025). CONCLUSIONS: The presence of apoE in small HDL is correlated with increased LCAT activity and esterification of plasma cholesterol. These results favor an interpretation that LCAT and apoE interact to enhance anti-atherogenic pathways of HDL.
Assuntos
Apolipoproteína C-III/análise , Apolipoproteínas E/análise , Proteínas de Transferência de Ésteres de Colesterol/análise , Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/análise , Adulto , Idoso , Proteínas de Transferência de Ésteres de Colesterol/sangue , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Feminino , Humanos , Lipoproteínas HDL/química , Lipoproteínas HDL/classificação , Masculino , Pessoa de Meia-Idade , Fosfatidilcolina-Esterol O-Aciltransferase/sangue , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismoRESUMO
Cholesterol is required for the formation and function of some signalling platforms. In synaptosomes, amyloid-ß (Aß) oligomers, the causative agent in Alzheimer's disease, bind to cellular prion proteins (PrPC) resulting in increased cholesterol concentrations, translocation of cytoplasmic phospholipase A2 (cPLA2, also known as PLA2G4A) to lipid rafts, and activation of cPLA2 The formation of Aß-PrPC complexes is controlled by the cholesterol ester cycle. In this study, Aß activated cholesterol ester hydrolases, which released cholesterol from stores of cholesterol esters and stabilised Aß-PrPC complexes, resulting in activated cPLA2 Conversely, cholesterol esterification reduced cholesterol concentrations causing the dispersal of Aß-PrPC complexes. In cultured neurons, the cholesterol ester cycle regulated Aß-induced synapse damage; cholesterol ester hydrolase inhibitors protected neurons, while inhibition of cholesterol esterification significantly increased Aß-induced synapse damage. An understanding of the molecular mechanisms involved in the dispersal of signalling complexes is important as failure to deactivate signalling pathways can lead to pathology. This study demonstrates that esterification of cholesterol is a key factor in the dispersal of Aß-induced signalling platforms involved in the activation of cPLA2 and synapse degeneration.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Ésteres do Colesterol/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Colesterol/metabolismo , Hidrólise , Microdomínios da Membrana/metabolismo , Camundongos Knockout , Fosfolipases A2/metabolismo , Príons/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Esqualeno/farmacologia , Esterol Esterase/metabolismo , Sinapses/efeitos dos fármacosRESUMO
Lysosomal acid lipase deficiency (LAL-D) is a multi-organ autosomal recessive disease caused by mutations in LIPA. We reviewed data from 681 samples (white blood cells [WBC] n = 625, fibroblasts = 30, liver = 4, amniocytes = 13, chorionic villus = 9) received for analysis of lysosomal acid lipase (LAL) activity over a 15-year period. LIPA sequencing was performed in 49 patients with reduced (n = 26) or deficient (n = 23) LAL activity. The Exome Aggregation Consortium and Genome Aggregation Database dataset were used for LAL-D prevalence calculations. LAL WBC activity was reduced in 67 patients (10.72%) and deficient in 37 (5.92%). The average of LAL activity ± margin of error (CI 95%) was 19.32 ± 0.86 pmol/min/mg for reduced activity patients and 5.90 ± 1.42 pmol/min/mg for deficient patients. The average age at diagnosis for LAL-D was 23.6 years with several patients older than age 30. The correlation between the age at diagnosis and LAL activity showed a significant moderate direct correlation (Pearson's r = 0.46, P < 0.005). Homozygous or compound heterozygous mutations were identified in 9 out of 23 patients with deficient results (detection rate 39.1%). The average LAL activity in molecularly confirmed patients was 4.02 ± 2.02 pmol/min/mg protein, while in molecularly negative patients was 13.886 ± 1.49 pmol/min/mg (P < 0.0001). Twenty-two different mutations were identified including two novel variants (c.309C>A and c.856G>C). A carrier frequency of approximately 1 in 350 was inferred. LAL activity in WBC is a validated tool for LAL-D diagnosis. Higher residual enzymatic activity might result in a milder phenotype leading to diagnosis delay. A cut-off below 12 pmol/min/mg protein might be useful to discriminate patients with LIPA mutations.
Assuntos
Fígado/patologia , Esterol Esterase/metabolismo , Doença de Wolman/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Genótipo , Humanos , Lactente , Recém-Nascido , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos , Esterol Esterase/genética , Estados Unidos/epidemiologia , Doença de Wolman/epidemiologia , Doença de Wolman/genética , Adulto Jovem , Doença de WolmanRESUMO
OBJECTIVE: High-density lipoprotein (HDL) lipid composition and function may better reflect cardiovascular risk than HDL cholesterol concentration. This study characterized the relationships between HDL composition, metabolism, and function in metabolic syndrome (MetS) patients and how changes in composition after weight loss (WL) and exercise treatments are related to function. APPROACH AND RESULTS: Plasma samples from MetS patients (n=95) and healthy individuals (n=40) were used in this study. Subsets of the MetS group underwent 12 weeks of no treatment (n=17), WL (n=19), or WL plus exercise (WLEX; n=17). HDL was isolated using density-gradient ultracentrifugation. The HDL lipidome was analyzed by mass spectrometry, and particle size determined by nuclear magnetic resonance. Cholesteryl ester transfer protein activity and ex vivo HDL cholesterol efflux capacity (CEC) were assessed. The HDL lipidome in the MetS patients was substantially different from that in healthy individuals, mean particle size was smaller, and CEC was lower. Several HDL phospholipid and sphingolipid species were associated with HDL diameter and CEC. The HDL lipidome and particle size were modified toward the healthy individuals after WL and WLEX treatments, with greater effects observed in the latter group. Cholesteryl ester transfer protein activity was reduced after WL and WLEX, and CEC was improved after WLEX. CONCLUSIONS: WLEX treatment in MetS patients normalizes the HDL lipidome and particle size profile and enhances CEC. HDL lipids associated with diminished CEC may represent novel biomarkers for early prediction of HDL dysfunction and disease risk and may represent potential therapeutic targets for future HDL therapies. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00163943.
Assuntos
Restrição Calórica , Terapia por Exercício , Lipoproteínas HDL/sangue , Síndrome Metabólica/terapia , Redução de Peso , Biomarcadores/sangue , Proteínas de Transferência de Ésteres de Colesterol/sangue , HDL-Colesterol/sangue , Terapia Combinada , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Tamanho da Partícula , Fosfolipídeos/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto , Esfingolipídeos/sangue , Células THP-1 , Fatores de Tempo , Resultado do TratamentoRESUMO
Lysosomal acid lipase deficiency is a poorly diagnosed genetic disorder, leading to accumulation of cholesterol esters and triglycerides in the liver, with progression to chronic liver disease, dyslipidemia, and cardiovascular complications. Lack of awareness on diagnosis of this condition may hamper specific treatment, which consists on enzymatic replacement. It may prevent the progression of liver disease and its complications. We describe the case of a 53-year-old Brazilian man who was referred to our center due to the diagnosis of liver cirrhosis of unknown etiology. He was asymptomatic and had normal body mass index. He had dyslipidemia, and family history of myocardial infarction and stroke. Abdominal imaging tests showed liver cirrhosis features and the presence of intrahepatic calcifications. Initial investigation of the etiology of the liver disease was not elucidated, but liver biopsy showed microgoticular steatosis and cholesterol esters deposits in Kuppfer cells. The dosage of serum lysosomal acid lipase was undetectable and we found the presence of a rare homozygous mutation in the gene associated with the lysosomal acid lipase deficiency, (allele c.386A > G homozygous p.H129R).
Assuntos
DNA/genética , Cirrose Hepática/etiologia , Fígado/diagnóstico por imagem , Mutação , Esterol Esterase/genética , Doença de Wolman/genética , Biópsia , Análise Mutacional de DNA , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/genética , Masculino , Pessoa de Meia-Idade , Doenças Raras , Esterol Esterase/metabolismo , Tomografia Computadorizada por Raios X , Doença de Wolman/complicações , Doença de Wolman/diagnóstico , Doença de WolmanRESUMO
OBJECTIVE: Angioplasty and stent implantation, the most common treatment for atherosclerotic lesions, have a significant failure rate because of restenosis. This study asks whether increasing plasma high-density lipoprotein (HDL) levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, prevents stent-induced neointimal hyperplasia. APPROACH AND RESULTS: New Zealand White rabbits received normal chow or chow supplemented with 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Iliac artery endothelial denudation and bare metal steel stent deployment were performed after 2 weeks of des-fluoro-anacetrapib treatment. The animals were euthanized 4 weeks poststent deployment. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma cholesteryl ester transfer protein activity and increased plasma apolipoprotein A-I and HDL cholesterol levels by 53±6.3% and 120±19%, respectively. Non-HDL cholesterol levels were unaffected. Des-fluoro-anacetrapib treatment reduced the intimal area of the stented arteries by 43±5.6% (P<0.001), the media area was unchanged, and the arterial lumen area increased by 12±2.4% (P<0.05). Des-fluoro-anacetrapib treatment inhibited vascular smooth muscle cell proliferation by 41±4.5% (P<0.001). Incubation of isolated HDLs from des-fluoro-anacetrapib-treated animals with human aortic smooth muscle cells at apolipoprotein A-I concentrations comparable to their plasma levels inhibited cell proliferation and migration. These effects were dependent on scavenger receptor-B1, the adaptor protein PDZ domain-containing protein 1, and phosphatidylinositol-3-kinase/Akt activation. HDLs from des-fluoro-anacetrapib-treated animals also inhibited proinflammatory cytokine-induced human aortic smooth muscle cell proliferation and stent-induced vascular inflammation. CONCLUSIONS: Inhibiting cholesteryl ester transfer protein activity in New Zealand White rabbits with iliac artery balloon injury and stent deployment increases HDL levels, inhibits vascular smooth muscle cell proliferation, and reduces neointimal hyperplasia in an scavenger receptor-B1, PDZ domain-containing protein 1- and phosphatidylinositol-3-kinase/Akt-dependent manner.
Assuntos
Angioplastia com Balão/instrumentação , Anticolesterolemiantes/farmacologia , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima , Oxazolidinonas/farmacologia , Stents , Lesões do Sistema Vascular/prevenção & controle , Angioplastia com Balão/efeitos adversos , Animais , Apolipoproteína A-I/sangue , Proteínas de Transporte/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol/sangue , Modelos Animais de Doenças , Humanos , Hiperplasia , Artéria Ilíaca/efeitos dos fármacos , Artéria Ilíaca/lesões , Artéria Ilíaca/metabolismo , Artéria Ilíaca/patologia , Proteínas de Membrana , Metais , Músculo Liso Vascular/lesões , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Desenho de Prótese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos , Receptores Depuradores Classe B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Lesões do Sistema Vascular/etiologia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologiaRESUMO
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.
Assuntos
Anticolesterolemiantes/farmacologia , Ácidos e Sais Biliares/metabolismo , Ésteres do Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Peptídeo Hidrolases/farmacologia , Animais , Apolipoproteínas E/metabolismo , Linhagem Celular Tumoral , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Regulação da Expressão Gênica , Humanos , Hidrólise , Cinética , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Background: Fatty acid (FA) proportions in cholesterol esters (CEs) and plasma phospholipids are widely used as dietary biomarkers. Information on how proportions in these fractions correlate could have implications for interpretation and use of FA biomarkers in observational and interventional studies.Objective: We investigated correlations between FA proportions in CEs and phospholipids in free-living individuals and assessed how diet-induced alterations of FA proportions correlate between fractions.Methods: Spearman's rank correlation coefficients (rs) between FA proportions (percentage of total FAs) in circulating CEs and phospholipids were calculated separately in 8 individual study populations including Swedish females and males (N = 2052; age range: 11-84 y), and pooled by inverse-variance weighted meta-analysis. In addition, study populations were stratified by age, sex, body mass index (BMI; in kg/m2), and diabetes status, and strata-specific rs were pooled by meta-analysis. In 2 randomized trials (N = 79) in which dietary saturated FAs were isocalorically replaced with unsaturated FAs, treatment-wise calculations of rs were conducted between FA changes in CEs and phospholipids.Results: Overall, FA proportions in CEs and phospholipids correlated well and especially strongly for polyunsaturated FAs (PUFAs), with pooled rs (95% CIs) ranging from 0.74 (0.72, 0.76) for α-linolenic acid to 0.92 (0.91, 0.93) for eicosapentaenoic acid. Weak correlations (pooled rs < 0.4) were observed only for palmitic acid and stearic acid, with pooled rs (95% CIs): 0.29 (0.24, 0.33) and 0.30 (0.25, 0.34), respectively. Overall, correlations were not affected by age, sex, BMI, or diabetes status. Strong correlations (rs ≥ 0.6) between diet-induced FA changes in CEs and phospholipids were observed for most PUFAs.Conclusions: Proportions of most FAs in CEs and phospholipids ranked individuals similarly, suggesting that FA proportions in these fractions can be used interchangeably in populations of diverse age, sex, body composition, and diabetes status. Caution is advised, however, when comparing results from studies assessing palmitic acid or stearic acid in different lipid fractions.