Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Immunity ; 56(5): 1082-1097.e6, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100059

RESUMO

CD4+ T cell-mediated immunity against Streptococcus pneumoniae (pneumococcus) can protect against recurrent bacterial colonization and invasive pneumococcal diseases (IPDs). Although such immune responses are common, the pertinent antigens have remained elusive. We identified an immunodominant CD4+ T cell epitope derived from pneumolysin (Ply), a member of the bacterial cholesterol-dependent cytolysins (CDCs). This epitope was broadly immunogenic as a consequence of presentation by the pervasive human leukocyte antigen (HLA) allotypes DPB1∗02 and DPB1∗04 and recognition via architecturally diverse T cell receptors (TCRs). Moreover, the immunogenicity of Ply427-444 was underpinned by core residues in the conserved undecapeptide region (ECTGLAWEWWR), enabling cross-recognition of heterologous bacterial pathogens expressing CDCs. Molecular studies further showed that HLA-DP4-Ply427-441 was engaged similarly by private and public TCRs. Collectively, these findings reveal the mechanistic determinants of near-global immune focusing on a trans-phyla bacterial epitope, which could inform ancillary strategies to combat various life-threatening infectious diseases, including IPDs.


Assuntos
Linfócitos T CD4-Positivos , Citotoxinas , Humanos , Bactérias , Epitopos de Linfócito T , Colesterol
2.
Biochem J ; 481(19): 1349-1377, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39268843

RESUMO

Cholesterol-dependent cytolysins (CDCs) are the distinct class of ß-barrel pore-forming toxins (ß-PFTs) that attack eukaryotic cell membranes, and form large, oligomeric, transmembrane ß-barrel pores. Listeriolysin O (LLO) is a prominent member in the CDC family. As documented for the other CDCs, membrane cholesterol is essential for the pore-forming functionality of LLO. However, it remains obscure how exactly cholesterol facilitates its pore formation. Here, we show that cholesterol promotes both membrane-binding and oligomerization of LLO. We demonstrate cholesterol not only facilitates membrane-binding, it also enhances the saturation threshold of LLO-membrane association, and alteration of the cholesterol-recognition motif in the LLO mutant (LLOT515G-L516G) compromises its pore-forming efficacy. Interestingly, such defect of LLOT515G-L516G could be rescued in the presence of higher membrane cholesterol levels, suggesting cholesterol can augment the pore-forming efficacy of LLO even in the absence of a direct toxin-cholesterol interaction. Furthermore, we find the membrane-binding and pore-forming abilities of LLOT515G-L516G, but not those of LLO, correlate with the cholesterol-dependent rigidity/ordering of the membrane lipid bilayer. Our data further suggest that the line tension derived from the lipid phase heterogeneity of the cholesterol-containing membranes could play a pivotal role in LLO function, particularly in the absence of cholesterol binding. Therefore, in addition to its receptor-like role, we conclude cholesterol can further facilitate the pore-forming, membrane-damaging functionality of LLO by asserting the optimal physicochemical environment in membranes. To the best of our knowledge, this aspect of the cholesterol-mediated regulation of the CDC mode of action has not been appreciated thus far.


Assuntos
Toxinas Bacterianas , Colesterol , Proteínas de Choque Térmico , Proteínas Hemolisinas , Colesterol/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Membrana Celular/metabolismo , Humanos , Ligação Proteica , Lipídeos de Membrana/metabolismo , Lipídeos de Membrana/química
3.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928408

RESUMO

Trueperella pyogenes is an important opportunistic pathogenic bacterium widely distributed in the environment. Pyolysin (PLO) is a primary virulence factor of T. pyogenes and capable of lysing many different cells. PLO is a member of the cholesterol-dependent cytolysin (CDC) family of which the primary structure only presents a low level of homology with other members from 31% to 45%. By deeply studying PLO, we can understand the overall pathogenic mechanism of CDC family proteins. This study established a mouse muscle tissue model infected with recombinant PLO (rPLO) and its single-point mutations, rPLO N139K and rPLO F240A, and explored its mechanism of causing inflammatory damage. The inflammatory injury abilities of rPLO N139K and rPLO F240A are significantly reduced compared to rPLO. This study elaborated on the inflammatory mechanism of PLO by examining its unit point mutations in detail. Our data also provide a theoretical basis and practical significance for future research on toxins and bacteria.


Assuntos
Proteínas de Bactérias , Proteínas Hemolisinas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Mutação Puntual , Animais , Camundongos , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Inflamação/metabolismo , Inflamação/genética , Potássio/metabolismo , Transdução de Sinais , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Inflamassomos/metabolismo , Humanos
4.
Infect Immun ; 91(9): e0021323, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37607057

RESUMO

Streptococcus pneumoniae, a common cause of community-acquired bacterial pneumonia, can cross the respiratory epithelial barrier to cause lethal septicemia and meningitis. S. pneumoniae pore-forming toxin pneumolysin (PLY) triggers robust neutrophil (PMN) infiltration that promotes bacterial transepithelial migration in vitro and disseminated disease in mice. Apical infection of polarized respiratory epithelial monolayers by S. pneumoniae at a multiplicity of infection (MOI) of 20 resulted in recruitment of PMNs, loss of 50% of the monolayer, and PMN-dependent bacterial translocation. Reducing the MOI to 2 decreased PMN recruitment two-fold and preserved the monolayer, but apical-to-basolateral translocation of S. pneumoniae remained relatively efficient. At both MOI of 2 and 20, PLY was required for maximal PMN recruitment and bacterial translocation. Co-infection by wild-type S. pneumoniae restored translocation by a PLY-deficient mutant, indicating that PLY can act in trans. Investigating the contribution of S. pneumoniae infection on apical junction complexes in the absence of PMN transmigration, we found that S. pneumoniae infection triggered the cleavage and mislocalization of the adherens junction (AJ) protein E-cadherin. This disruption was PLY-dependent at MOI of 2 and was recapitulated by purified PLY, requiring its pore-forming activity. In contrast, at MOI of 20, E-cadherin disruption was independent of PLY, indicating that S. pneumoniae encodes multiple means to disrupt epithelial integrity. This disruption was insufficient to promote bacterial translocation in the absence of PMNs. Thus, S. pneumoniae triggers cleavage and mislocalization of E-cadherin through PLY-dependent and -independent mechanisms, but maximal bacterial translocation across epithelial monolayers requires PLY-dependent neutrophil transmigration.


Assuntos
Junções Aderentes , Streptococcus pneumoniae , Animais , Camundongos , Proteínas de Bactérias , Caderinas
5.
Microbiology (Reading) ; 169(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37702594

RESUMO

Cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins, produced by numerous Gram-positive pathogens. CDCs depend on host membrane cholesterol for pore formation; some CDCs also require surface-associated human CD59 (hCD59) for binding, conferring specificity for human cells. We purified a recombinant version of a putative CDC encoded in the genome of Streptococcus oralis subsp. tigurinus, tigurilysin (TGY), and used CRISPR/Cas9 to construct hCD59 knockout (KO) HeLa and JEG-3 cell lines. Cell viability assays with TGY on wild-type and hCD59 KO cells showed that TGY is a hCD59-dependent CDC. Two variants of TGY exist among S. oralis subsp. tigurinus genomes, only one of which is functional. We discovered that a single amino acid change between these two TGY variants determines its activity. Flow cytometry and oligomerization Western blots revealed that the single amino acid difference between the two TGY isoforms disrupts host cell binding and oligomerization. Furthermore, experiments with hCD59 KO cells and cholesterol-depleted cells demonstrated that TGY is fully dependent on both hCD59 and cholesterol for activity, unlike other known hCD59-dependent CDCs. Using full-length CDCs and toxin constructs differing only in the binding domain, we determined that having hCD59 dependence leads to increased lysis efficiency, conferring a potential advantage to organisms producing hCD59-dependent CDCs.


Assuntos
Citotoxinas , Especificidade de Hospedeiro , Humanos , Linhagem Celular Tumoral , Citotoxinas/genética , Colesterol , Aminoácidos , Antígenos CD59/genética
6.
IUBMB Life ; 74(12): 1169-1179, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35836358

RESUMO

The cholesterol-dependent cytolysins (CDCs) are a major family of bacterial pore-forming proteins secreted as virulence factors by Gram-positive bacterial species. CDCs are produced as soluble, monomeric proteins that bind specifically to cholesterol-rich membranes, where they oligomerize into ring-shaped pores of more than 30 monomers. Understanding the details of the steps the toxin undergoes in converting from monomer to a membrane-spanning pore is a continuing challenge. In this review we summarize what we know about CDCs and highlight the remaining outstanding questions that require answers to obtain a complete picture of how these toxins kill cells.


Assuntos
Toxinas Bacterianas , Citotoxinas , Citotoxinas/metabolismo , Toxinas Bacterianas/genética , Colesterol/metabolismo , Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Bactérias/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(27): 13352-13357, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209022

RESUMO

Pneumolysin (PLY), a major virulence factor of Streptococcus pneumoniae, perforates cholesterol-rich lipid membranes. PLY protomers oligomerize as rings on the membrane and then undergo a structural transition that triggers the formation of membrane pores. Structures of PLY rings in prepore and pore conformations define the beginning and end of this transition, but the detailed mechanism of pore formation remains unclear. With atomistic and coarse-grained molecular dynamics simulations, we resolve key steps during PLY pore formation. Our simulations confirm critical PLY membrane-binding sites identified previously by mutagenesis. The transmembrane ß-hairpins of the PLY pore conformation are stable only for oligomers, forming a curtain-like membrane-spanning ß-sheet. Its hydrophilic inner face draws water into the protein-lipid interface, forcing lipids to recede. For PLY rings, this zone of lipid clearance expands into a cylindrical membrane pore. The lipid plug caught inside the PLY ring can escape by lipid efflux via the lower leaflet. If this path is too slow or blocked, the pore opens by membrane buckling, driven by the line tension acting on the detached rim of the lipid plug. Interestingly, PLY rings are just wide enough for the plug to buckle spontaneously in mammalian membranes. In a survey of electron cryo-microscopy (cryo-EM) and atomic force microscopy images, we identify key intermediates along both the efflux and buckling pathways to pore formation, as seen in the simulations.


Assuntos
Membrana Celular/efeitos dos fármacos , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Membrana Celular/metabolismo , Colesterol/metabolismo , Microscopia Crioeletrônica , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Estreptolisinas/farmacologia
8.
Microbiol Immunol ; 65(11): 512-529, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34591320

RESUMO

The genus Streptococcus infects a broad range of hosts, including humans. Some species, such as S. pyogenes, S. agalactiae, S. pneumoniae, and S. mutans, are recognized as the major human pathogens, and their pathogenicity toward humans has been investigated. However, many of other streptococcal species have been recognized as opportunistic pathogens in humans, and their clinical importance has been underestimated. In our previous study, the Anginosus group streptococci (AGS) and Mitis group streptococci (MGS) showed clear ß-hemolysis on blood agar, and the factors responsible for the hemolysis were homologs of two types of ß-hemolysins, cholesterol-dependent cytolysin (CDC) and streptolysin S (SLS). In contrast to the regular ß-hemolysins produced by streptococci (typical CDCs and SLSs), genetically, structurally, and functionally atypical ß-hemolysins have been observed in AGS and MGS. These atypical ß-hemolysins are thought to affect and contribute to the pathogenic potential of opportunistic streptococci mainly inhabiting the human oral cavity. In this review, we introduce the diverse characteristics of ß-hemolysin produced by opportunistic streptococci, focusing on the species/strains belonging to AGS and MGS, and discuss their pathogenic potential.


Assuntos
Proteínas Hemolisinas , Infecções Estreptocócicas , Hemólise , Humanos , Streptococcus pneumoniae , Streptococcus pyogenes
9.
Microbiol Immunol ; 65(2): 61-75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33331679

RESUMO

Streptococcus pseudopneumoniae (SPpn) is a relatively new species closely related to S. pneumoniae (SPn) and S. mitis (SM) belonging to the Mitis group of the genus Streptococcus (MGS). Although genes encoding various pneumococcal virulence factors have been observed in the SPpn genome, the pathogenicity of SPpn against human, including the roles of virulence factor candidates, is still unclear. The present study focused on and characterized a candidate virulence factor previously reported in SPpn with deduced multiple functional domains, such as lipase domain, two lectin domains, and cholesterol-dependent cytolysin-related domain using various recombinant proteins. The gene was found not only in SPpn but also in the strains of SM and SPn. Moreover, the gene product was expressed in the gene-positive strains as secreted and cell-bound forms. The recombinant of gene product showed lipase activity and human cell-binding activity depending on the function of lectin domain(s), but no hemolytic activity. Thus, based on the distribution of the gene within the MGS and its molecular function, the gene product was named mitilectin (MLC) and its contribution to the potential pathogenicity of the MLC-producing strains was investigated. Consequently, the treatment with anti-MLC antibody and the mlc gene-knockout significantly reduced the human cell-binding activity of MLC-producing strains. Therefore, the multifunctional MLC was suggested to be important as an adhesion molecule in considering the potential pathogenicity of the MLC-producing strains belonging to MGS, such as SPpn and SM.


Assuntos
Streptococcus mitis , Moléculas de Adesão Celular , Colesterol , Citotoxinas , Humanos , Streptococcus , Streptococcus pneumoniae
10.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30745329

RESUMO

Arcanobacterium haemolyticum is an emerging human pathogen that causes pharyngitis and wound infections. A few studies have suggested that A. haemolyticum is able to induce its uptake into nonphagocytic epithelial cells, but the bacterial factors associated with host cell invasion and the host cell processes involved have yet to be studied. We investigated how two A. haemolyticum virulence factors, arcanolysin (ALN) and phospholipase D (PLD), affect the ability of the bacteria to adhere to and subsequently invade Detroit 562 pharyngeal epithelial cells. The sphingomyelinase activity of phospholipase D was necessary to increase bacterial adherence, while the absence of a functional arcanolysin had no effect on A. haemolyticum adherence but did lead to a decrease in A. haemolyticum invasion into Detroit 562 cells. Because of the known roles of cholesterol-dependent cytolysins in disrupting calcium gradients and inducing F-actin-mediated bacterial internalization, we sought to determine whether ALN and PLD played a similar role in the ability of A. haemolyticum to invade nonphagocytic cells. Elimination of extracellular calcium and inhibition of the Arp2/3 complex or F-actin polymerization also caused a decrease in the ability of A. haemolyticum to invade Detroit 562 cells. Overall, our findings suggest that A. haemolyticum utilizes phospholipase D primarily for adherence and utilizes arcanolysin primarily for invasion into Detroit 562 cells in a process dependent on extracellular calcium and F-actin polymerization. Our work marks the first insight into how the individual activities of arcanolysin and phospholipase D affect A. haemolyticum host-pathogen interactions using the biologically relevant Detroit 562 cell line.


Assuntos
Infecções por Actinomycetales/patologia , Arcanobacterium/enzimologia , Arcanobacterium/patogenicidade , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Infecções/metabolismo , Fosfolipase D/metabolismo , Humanos
11.
Adv Exp Med Biol ; 1112: 281-291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637704

RESUMO

Pore-forming toxins (PFTs) are a distinct class of membrane-damaging protein toxins documented in a wide array of life forms ranging from bacteria to humans. PFTs are known to act as potent virulence factors of the bacterial pathogens. Bacterial PFTs are, in general, secreted as water-soluble molecules, which upon encountering target host cells assemble into transmembrane oligomeric pores, thus leading to membrane permeabilization and cell death. Interaction of the PFTs with the target host cells can also lead to plethora of cellular responses having critical implications for the bacterial pathogenesis processes, host-pathogen interactions, and host immunity. In this review, we present an overview of our current understanding of the structural aspects of the membrane pore-formation processes employed by the bacterial PFTs. We also discuss the functional implications of the PFT mode of actions, in terms of eliciting diverse cellular responses.


Assuntos
Toxinas Bacterianas/química , Membrana Celular/química , Fatores de Virulência/química , Bactérias/patogenicidade , Humanos
12.
Biochim Biophys Acta Biomembr ; 1859(6): 1075-1088, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28263714

RESUMO

Perfringolysin O (PFO) belongs to the family of cholesterol-dependent cytolysins. Upon binding to a cholesterol-containing membrane, PFO undergoes a series of structural changes that result in the formation of a ß-barrel pore and cell lysis. Recognition and binding to cholesterol are mediated by the D4 domain, one of four domains of PFO. The D4 domain contains a conserved tryptophan-rich loop named undecapeptide (E458CTGLAWEWWR468) in which arginine 468 is essential for retaining allosteric coupling between D4 and other domains during interaction of PFO with the membrane. In this report we studied the impact of R468A mutation on the whole protein structure using hydrogen-deuterium exchange coupled with mass spectrometry. We found that in aqueous solution, compared to wild type (PFO), PFOR468A showed increased deuterium uptake due to exposure of internal toxin regions to the solvent. This change reflected an overall structural destabilization of PFOR468A in solution. Conversely, upon binding to cholesterol-containing membranes, PFOR468A revealed a profound decrease of hydrogen-deuterium exchange when compared to PFO. This block of deuterium uptake resulted from PFOR468A-induced aggregation and fusion of liposomes, as found by dynamic light scattering, microscopic observations and FRET measurements. In the result of liposome aggregation and fusion, the entire PFOR468A molecule became shielded from aqueous solution and thereby was protected against proteolytic digestion and deuteration. We have established that structural changes induced by the R468A mutation lead to exposure of an additional cholesterol-independent liposome-binding site in PFO that confers its fusogenic property, altering the mode of the toxin action.


Assuntos
Toxinas Bacterianas/química , Clostridium perfringens/química , Proteínas Hemolisinas/química , Lipossomos/química , Fusão de Membrana , Proteínas Recombinantes de Fusão/química , Lipossomas Unilamelares/química , Sequência de Aminoácidos , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Clonagem Molecular , Clostridium perfringens/patogenicidade , Medição da Troca de Deutério , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Cinética , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Lipossomas Unilamelares/metabolismo
13.
Biochem Biophys Res Commun ; 493(2): 1115-1121, 2017 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-28911869

RESUMO

Listeriolysin O (LLO) is a pore-forming toxin produced by L. monocytogenes, and is belonged to a protein family of cholesterol-dependent cytolysins (CDCs). Previous studies have demonstrated that LLO triggers Ubc9 degradation and disrupts host SUMOylation to facilitate bacterial infection. However, the underlying mechanism of Ubc9 degradation is unclear. Here we show that LLO-induced down-regulation of Ubc9 is independent of Ubc9-SUMO interaction, however, it may involve phosphorylation signaling. Additionally, LLO exerts its effects primarily on nuclear Ubc9 and this process is mediated by K+ efflux. Interestingly, for intracellular CDCs such as pneumolysin and suilysin, blockage of K+ efflux enhances degradation of nuclear Ubc9, suggesting that extracellular and intracellular pathogens may exploit different mechanisms to modulate host SUMOylation system. Furthermore, up-regulation of SUMOylation by stable expression of SUMO-1 or SUMO-2 shows a delay in membrane perforation by LLO, indicating that SUMO modification of host proteins may act at the frontline for the defense response against LLO. Taken together, our study provides insights to the understanding of host-pathogen interactions.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Listeria monocytogenes/fisiologia , Listeriose/metabolismo , Potássio/metabolismo , Proteólise , Enzimas de Conjugação de Ubiquitina/metabolismo , Cátions Monovalentes/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Listeriose/microbiologia , Fosforilação , Sumoilação
14.
Proc Natl Acad Sci U S A ; 111(49): E5312-20, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422425

RESUMO

The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.


Assuntos
Eritrócitos/metabolismo , Hemólise , Polissacarídeos/química , Estreptolisinas/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Carboidratos/química , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citometria de Fluxo , Glicolipídeos/química , Humanos , Antígenos CD15/química , Dados de Sequência Molecular , Mutagênese , Oligossacarídeos/química , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície
15.
J Struct Biol ; 193(2): 132-40, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26688057

RESUMO

Cholesterol-dependent cytolysins (CDCs) contribute to various pathogenesis by Gram-positive bacterial pathogens. Among them, pneumolysin (PLY) produced by Streptococcus pneumoniae is a major contributor to pneumococcal infections. Despite numerous studies of the cytolytic mechanism of PLY, little structural information on its interactions with a specific receptor of the cell membrane is available. We report here the first crystal structures of PLY in an apo-form and in a ternary complex with two mannoses at 2.8Å and 2.5Å resolutions, respectively. Both structures contained one monomer in an asymmetric unit and were comprised of four discontinuous domains, similar to CDC structures reported previously. The ternary complex structure showed that loop 3 and the undecapeptide region in domain 4 might contribute to cellular recognition by binding to mannose, as a component of a specific cell-surface receptor. Moreover, mutational studies and docking simulations for four residues (Leu431, Trp433, Thr459, and Leu460) in domain 4 indicated that Leu431 and Trp433 in the undecapeptide might be involved in the binding of cholesterol, together with the Thr459-Leu460 pair in loop 1. Our results provide structure-based molecular insights into the interaction of PLY with the target cell membrane, including the binding of mannose and cholesterol.


Assuntos
Estreptolisinas/química , Estreptolisinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Cristalografia por Raios X , Hemólise , Humanos , Manose/química , Manose/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Estrutura Terciária de Proteína , Estreptolisinas/genética , Relação Estrutura-Atividade
16.
Adv Exp Med Biol ; 879: 107-130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26659266

RESUMO

In multicellular eukaryotes including plants, animals and humans, epigenetic reprogramming may play a role in the pathogenesis of a wide variety of diseases. Recent studies revealed that in addition to viruses, pathogenic bacteria are also capable to dysregulate the epigenetic machinery of their target cells. In this chapter we focus on epigenetic alterations induced by bacteria infecting humans. Most of them are obligate or facultative intracellular bacteria that produce either bacterial toxins and surface proteins targeting the host cell membrane, or synthesise effector proteins entering the host cell nucleus. These bacterial products typically elicit histone modifications, i.e. alter the "histone code". Bacterial pathogens are capable to induce alterations of host cell DNA methylation patterns, too. Such changes in the host cell epigenotype and gene expression pattern may hinder the antibacterial immune response and create favourable conditions for bacterial colonization, growth, or spread. Epigenetic dysregulation mediated by bacterial products may also facilitate the production of inflammatory cytokines and other inflammatory mediators affecting the epigenotype of their target cells. Such indirect epigenetic changes as well as direct interference with the epigenetic machinery of the host cells may contribute to the initiation and progression of malignant tumors associated with distinct bacterial infections.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Metilação de DNA , Epigênese Genética , Animais , Bactérias/genética , Bactérias/patogenicidade , Infecções Bacterianas/genética , Toxinas Bacterianas/genética , Humanos
17.
Mol Pharm ; 12(6): 1992-2000, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25881713

RESUMO

Perfringolysin O (PFO) is a member of the cholesterol-dependent cytolysin (CDC) family of bacterial pore-forming proteins, which are highly efficient in delivering exogenous proteins to the cytoplasm. However, the indiscriminate and potent cytotoxicity of PFO limits its practical use as an intracellular delivery system. In this study, we describe the design and engineering of a bispecific, neutralizing antibody against PFO, which targets reversibly attenuated PFO to endocytic compartments via receptor-mediated internalization. This PFO-based system efficiently mediated the endosomal release of a co-targeted gelonin construct with high specificity and minimal toxicity in vitro. Consequently, the therapeutic window of PFO was improved by more than 5 orders of magnitude. Our results demonstrating that the activity of pore-forming proteins can be controlled by antibody-mediated neutralization present a novel strategy for utilizing these potent membrane-lytic agents as a safe and effective intracellular delivery vehicle.


Assuntos
Anticorpos Neutralizantes/química , Toxinas Bacterianas/química , Proteínas Hemolisinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Biológicos , Perforina/química
18.
Biol Reprod ; 90(3): 54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24478394

RESUMO

Purulent disease of the uterus develops in 40% of dairy cows after parturition, when the epithelium of the endometrium is disrupted to expose the underlying stroma to bacteria. The severity of endometrial pathology is associated with isolation of Trueperella pyogenes. In the present study, T. pyogenes alone caused uterine disease when infused into the uterus of cattle where the endometrial epithelium was disrupted. The bacterium secretes a cholesterol-dependent cytolysin, pyolysin (PLO), and the plo gene was identical and the plo gene promoter was highly similar amongst 12 clinical isolates of T. pyogenes. Bacteria-free filtrates of the T. pyogenes cultures caused hemolysis and endometrial cytolysis, and PLO was the main cytolytic agent, because addition of anti-PLO antibody prevented cytolysis. Similarly, a plo-deletion T. pyogenes mutant did not cause hemolysis or endometrial cytolysis. Endometrial stromal cells were notably more sensitive to PLO-mediated cytolysis than epithelial or immune cells. Stromal cells also contained more cholesterol than epithelial cells, and reducing stromal cell cholesterol content using cyclodextrins protected against PLO. Although T. pyogenes or plo-deletion T. pyogenes stimulated accumulation of inflammatory mediators, such as IL-1beta, IL-6, and IL-8, from endometrium, PLO did not stimulate inflammatory responses by endometrial or hematopoietic cells, or in vitro organ cultures of endometrium. The marked sensitivity of stromal cells to PLO-mediated cytolysis provides an explanation for how T. pyogenes acts as an opportunistic pathogen to cause pathology of the endometrium once the protective epithelium is lost after parturition.


Assuntos
Infecções por Actinomycetales/patologia , Infecções por Actinomycetales/veterinária , Arcanobacterium , Proteínas de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Colesterol/farmacologia , Endométrio/patologia , Proteínas Hemolisinas/farmacologia , Doenças Uterinas/patologia , Doenças Uterinas/veterinária , Infecções por Actinomycetales/microbiologia , Animais , Arcanobacterium/genética , Arcanobacterium/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Western Blotting , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Endometrite/microbiologia , Endometrite/patologia , Endométrio/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Genoma Bacteriano , Proteínas Hemolisinas/genética , Hemólise/efeitos dos fármacos , Indicadores e Reagentes , Cinética , Técnicas de Cultura de Órgãos , Gravidez , Células Estromais/metabolismo , Doenças Uterinas/microbiologia
19.
Anaerobe ; 30: 220-38, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24952276

RESUMO

Pore formation is a common mechanism of action for many bacterial toxins. More than one third of clostridial toxins are pore-forming toxins (PFTs) belonging to the ß-PFT class. They are secreted as soluble monomers rich in ß-strands, which recognize a specific receptor on target cells and assemble in oligomers. Then, they undergo a conformational change leading to the formation of a ß-barrel, which inserts into the lipid bilayer forming functional pore. According to their structure, clostridial ß-PFTs are divided into several families. Clostridial cholesterol-dependent cytolysins form large pores, which disrupt the plasma membrane integrity. They are potent virulence factors mainly involved in myonecrosis. Clostridial heptameric ß-PFTs (aerolysin family and staphylococcal α-hemolysin family) induce small pores which trigger signaling cascades leading to different cell responses according to the cell types and toxins. They are mainly responsible for intestinal diseases, like necrotic enteritis, or systemic diseases/toxic shock from intestinal origin. Clostridial intracellularly active toxins exploit pore formation through the endosomal membrane to translocate the enzymatic component or domain into the cytosol. Single chain protein toxins, like botulinum and tetanus neurotoxins, use hydrophobic α-helices to form pores, whereas clostridial binary toxins encompass binding components, which are structurally and functionally related to ß-PFTs, but which have acquired the specific activity to internalize their corresponding enzymatic components. Structural analysis suggests that ß-PFTs and binding components share a common evolutionary origin.


Assuntos
Toxinas Bacterianas/metabolismo , Membrana Celular/efeitos dos fármacos , Clostridium/fisiologia , Membranas Intracelulares/efeitos dos fármacos , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Fatores de Virulência/metabolismo , Toxinas Bacterianas/genética , Clostridium/patogenicidade , Evolução Molecular , Variação Genética , Proteínas Citotóxicas Formadoras de Poros/genética , Fatores de Virulência/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-39285123

RESUMO

The bacterium Streptococcus pneumoniae has become a leading cause of meningitis, sepsis, and bacterial pneumonia worldwide, with increased prevalence of antibiotic-resistant serotypes serving to exacerbate the issue. The main factor responsible for colonization and immune response escape in pneumococcal infections is the secreted molecule pneumolysin, which is a subset within a family of related toxins that form transmembrane pores in biological membranes through cholesterol recognition and binding. The conserved activity and structure of pneumolysin between all observed S. pneumoniae serotypes, along with its requirement for pathogenicity, has made this molecule an attractive target for vaccination, diagnostic, and sequestration platforms, but not yet as a facilitative agent for therapeutic treatment. Consequently, the present work aimed to examine the impact of liposomal cholesterol content for pneumolysin-induced release of the encapsulated antimicrobial peptide nisin. It was determined that a cholesterol content above 45 mol% was necessary to facilitate interactions with both purified pneumolysin toxin and S. pneumoniae culture, demonstrated through enhanced nisin release and a reduction in hemolytic rates upon exposure of the toxin with cholesterol-rich vesicles. Antibacterial testing highlighted the ability of the developed platform to elicit a potent and specific bactericidal response in vitro against cultured S. pneumoniae when compared to a control strain, Staphylococcus epidermidis. It further improved viability of a fibroblast cell line upon S. pneumoniae challenge, outperforming free nisin via the synergistic impact of simultaneous bacterial clearance and pneumolysin neutralization. These findings collectively indicate that cholesterol-rich liposomes hold promise as a selective treatment platform against pneumococcal infections.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa