Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Biol Chem ; 299(6): 104725, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075844

RESUMO

Genes Sdr16c5 and Sdr16c6 encode proteins that belong to a superfamily of short-chain dehydrogenases/reductases (SDR16C5 and SDR16C6). Simultaneous inactivation of these genes in double-KO (DKO) mice was previously shown to result in a marked enlargement of the mouse Meibomian glands (MGs) and sebaceous glands, respectively. However, the exact roles of SDRs in physiology and biochemistry of MGs and sebaceous glands have not been established yet. Therefore, we characterized, for the first time, meibum and sebum of Sdr16c5/Sdr16c6-null (DKO) mice using high-resolution MS and LC. In this study, we demonstrated that the mutation upregulated the overall production of MG secretions (also known as meibogenesis) and noticeably altered their lipidomic profile, but had a more subtle effect on sebogenesis. The major changes in meibum of DKO mice included abnormal accumulation of shorter chain, sebaceous-type cholesteryl esters and wax esters (WEs), and a marked increase in the biosynthesis of monounsaturated and diunsaturated Meibomian-type WEs. Importantly, the MGs of DKO mice maintained their ability to produce typical extremely long chain Meibomian-type lipids at seemingly normal levels. These observations indicated preferential activation of a previously dormant biosynthetic pathway that produce shorter chain, and more unsaturated, sebaceous-type WEs in the MGs of DKO mice, without altering the elongation patterns of their extremely long chain Meibomian-type counterparts. We conclude that the Sdr16c5/Sdr16c6 pair may control a point of bifurcation in one of the meibogenesis subpathways at which biosynthesis of lipids can be redirected toward either abnormal sebaceous-type lipidome or normal Meibomian-type lipidome in WT mice.


Assuntos
Glândulas Tarsais , Lágrimas , Animais , Camundongos , Ésteres do Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Espectrometria de Massas , Lágrimas/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982689

RESUMO

Cholesterol is stored as cholesteryl esters by the enzymes acyl-CoA:cholesterol acyltransferases/sterol O:acyltransferases (ACATs/SOATs). ACAT1 blockade (A1B) ameliorates the pro-inflammatory responses of macrophages to lipopolysaccharides (LPS) and cholesterol loading. However, the mediators involved in transmitting the effects of A1B in immune cells is unknown. Microglial Acat1/Soat1 expression is elevated in many neurodegenerative diseases and in acute neuroinflammation. We evaluated LPS-induced neuroinflammation experiments in control vs. myeloid-specific Acat1/Soat1 knockout mice. We also evaluated LPS-induced neuroinflammation in microglial N9 cells with and without pre-treatment with K-604, a selective ACAT1 inhibitor. Biochemical and microscopy assays were used to monitor the fate of Toll-Like Receptor 4 (TLR4), the receptor at the plasma membrane and the endosomal membrane that mediates pro-inflammatory signaling cascades. In the hippocampus and cortex, results revealed that Acat1/Soat1 inactivation in myeloid cell lineage markedly attenuated LPS-induced activation of pro-inflammatory response genes. Studies in microglial N9 cells showed that pre-incubation with K-604 significantly reduced the LPS-induced pro-inflammatory responses. Further studies showed that K-604 decreased the total TLR4 protein content by increasing TLR4 endocytosis, thus enhancing the trafficking of TLR4 to the lysosomes for degradation. We concluded that A1B alters the intracellular fate of TLR4 and suppresses its pro-inflammatory signaling cascade in response to LPS.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Camundongos , Aciltransferases/metabolismo , Colesterol/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neuroinflamatórias , Receptor 4 Toll-Like/metabolismo
3.
Malays J Med Sci ; 30(2): 96-110, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37102051

RESUMO

Background: Single nucleotide polymorphism (SNP) in the cholesteryl esters transfer protein (CETP) gene (rs708272) was reported to affect statin efficacy. This study investigated the association between CETP rs708272 and statin's lipid-lowering effects in hyperlipidaemic participants at Hospital Universiti Sains Malaysia, Kelantan. Methods: A total of 229 hyperlipidaemic statin users (96.1% Malays) were recruited, and a single blood sample (3 mL) was obtained for DNA extraction. The genotypes were determined using PCR-RFLP method and validated by sequencing analysis. Results: The minor allele frequency for rs708272 in all participants was 0.391, with no difference between females and males. At the baseline, the SNP was associated with different low-density lipoprotein (LDL-c) and triglyceride (TG) levels in females, but not males, when the GG and GA+AA genotypes were compared using a dominant genetic model. Regardless of the genotype, the total cholesterol and LDL-c levels decreased significantly (P < 0.001) in both genders after statin treatment, but the TG levels decreased exclusively in females with the GG genotypes. In both genders, high density lipoprotein levels were unaffected before and after the statin treatment. Conclusion: To improve the management of hyperlipidaemia, future research should consider patient gender when assessing the CETP rs708272 impact on LDL-c and TG.

4.
J Lipid Res ; 63(7): 100232, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35598637

RESUMO

Mutations in the LCAT gene cause familial LCAT deficiency (Online Mendelian Inheritance in Man ID: #245900), a very rare metabolic disorder. LCAT is the only enzyme able to esterify cholesterol in plasma, whereas sterol O-acyltransferases 1 and 2 are the enzymes esterifying cellular cholesterol in cells. Despite the complete lack of LCAT activity, patients with familial LCAT deficiency exhibit circulating cholesteryl esters (CEs) in apoB-containing lipoproteins. To analyze the origin of these CEs, we investigated 24 carriers of LCAT deficiency in this observational study. We found that CE plasma levels were significantly reduced and highly variable among carriers of two mutant LCAT alleles (22.5 [4.0-37.8] mg/dl) and slightly reduced in heterozygotes (218 [153-234] mg/dl). FA distribution in CE (CEFA) was evaluated in whole plasma and VLDL in a subgroup of the enrolled subjects. We found enrichment of C16:0, C18:0, and C18:1 species and a depletion in C18:2 and C20:4 species in the plasma of carriers of two mutant LCAT alleles. No changes were observed in heterozygotes. Furthermore, plasma triglyceride-FA distribution was remarkably similar between carriers of LCAT deficiency and controls. CEFA distribution in VLDL essentially recapitulated that of plasma, being mainly enriched in C16:0 and C18:1, while depleted in C18:2 and C20:4. Finally, after fat loading, chylomicrons of carriers of two mutant LCAT alleles showed CEs containing mainly saturated FAs. This study of CEFA composition in a large cohort of carriers of LCAT deficiency shows that in the absence of LCAT-derived CEs, CEs present in apoB-containing lipoproteins are derived from hepatic and intestinal sterol O-acyltransferase 2.


Assuntos
Deficiência da Lecitina Colesterol Aciltransferase , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Esterol O-Aciltransferase/metabolismo , Apolipoproteínas B , Colesterol/metabolismo , Ésteres do Colesterol , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/genética , Lipoproteínas , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase 2
5.
J Intern Med ; 292(2): 296-307, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34982494

RESUMO

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Assuntos
Fígado Gorduroso , Insulinas , Esterol O-Aciltransferase , Animais , Ésteres do Colesterol/metabolismo , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Triglicerídeos , Esterol O-Aciltransferase 2
6.
Int J Mol Sci ; 23(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36430276

RESUMO

The crucial barrier properties of the stratum corneum (SC) depend critically on the design and integrity of its layered molecular structure. However, analysis methods capable of spatially resolved molecular characterization of the SC are scarce and fraught with severe limitations, e.g., regarding molecular specificity or spatial resolution. Here, we used 3D time-of-flight secondary ion mass spectrometry to characterize the spatial distribution of skin lipids in corneocyte multilayer squams obtained by tape stripping. Depth profiles of specific skin lipids display an oscillatory behavior that is consistent with successive monitoring of individual lipid and corneocyte layers of the SC structure. Whereas the most common skin lipids, i.e., ceramides, C24:0 and C26:0 fatty acids and cholesteryl sulfate, are similarly organized, a distinct 3D distribution was observed for cholesteryl oleate, suggesting a different localization of cholesteryl esters compared to the lipid matrix separating the corneocyte layers. The possibility to monitor the composition and spatial distribution of endogenous lipids as well as active drug and cosmetic substances in individual lipid and corneocyte layers has the potential to provide important contributions to the basic understanding of barrier function and penetration in the SC.


Assuntos
Ésteres do Colesterol , Epiderme , Pele , Espectrometria de Massa de Íon Secundário , Imagem Molecular
7.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557318

RESUMO

Previous studies on ablation of several key genes of meibogenesis related to fatty acid elongation, omega oxidation, and esterification into wax esters have demonstrated that inactivation of any of them led to predicted changes in the meibum lipid profiles and caused severe abnormalities in the ocular surface and Meibomian gland (MG) physiology and morphology. In this study, we evaluated the effects of Soat1 ablation that were expected to cause depletion of the second largest class of Meibomian lipids (ML)-cholesteryl esters (CE)-in a mouse model. ML of the Soat1-null mice were examined using liquid chromatography high-resolution mass spectrometry and compared with those of Soat1+/- and wild-type mice. Complete suppression of CE biosynthesis and simultaneous accumulation of free cholesterol (Chl) were observed in Soat1-null mice, while Soat1+/- mutants had normal Chl and CE profiles. The total arrest of the CE biosynthesis in response to Soat1 ablation transformed Chl into the dominant lipid in meibum accounting for at least 30% of all ML. The Soat1-null mice had clear manifestations of dry eye and MG dysfunction. Enrichment of meibum with Chl and depletion of CE caused plugging of MG orifices, increased meibum rigidity and melting temperature, and led to a massive accumulation of lipid deposits around the eyes of Soat1-null mice. These findings illustrate the role of Soat1/SOAT1 in the lipid homeostasis and pathophysiology of MG.


Assuntos
Ésteres do Colesterol/metabolismo , Modelos Animais de Doenças , Disfunção da Glândula Tarsal/patologia , Glândulas Tarsais/patologia , Esterol O-Aciltransferase/fisiologia , Lágrimas/metabolismo , Animais , Homeostase , Masculino , Disfunção da Glândula Tarsal/etiologia , Disfunção da Glândula Tarsal/metabolismo , Glândulas Tarsais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Int J Mol Sci ; 21(9)2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32384602

RESUMO

The lipidomic analysis of immortalized human meibomian gland epithelial cells (HMGECs) has been proposed as a preclinical model to study meibomian gland dysfunction. An in vitro study was conducted to evaluate neutral lipid recovery following three harvesting techniques and to identify candidate lipid biomarkers of HMGECs. HMGECs were cultured in serum-containing media for two days to promote lipid production. Cells were either harvested by 0.25% trypsin-ethylenediaminetetraacetic acid (EDTA), harvested by 10 mM EDTA, or simultaneously harvested and extracted by 2:1 chloroform-methanol (CM). After extraction by a modified Folch technique, the nonpolar phase was processed and infused into a TripleTOF 5600 mass spectrometer (Sciex, Framingham, MA, USA) with electrospray ionization. MS and MS/MSall spectra were acquired. Nonpolar cholesteryl esters (CEs) were consistently detected in all samples, while wax esters were not. Only small differences in two out of twenty CEs were detected between harvesting methods. CM yielded less CE18:1 than the other methods but greater CE20:4 than the trypsin-EDTA method (p < 0.05 for all). Similar to human meibum, very long-chain CEs with carbon number (nc) ≥ 24 were detected in all samples and may serve as HMGEC lipid biomarkers. Further work is needed to address the absence of wax esters. Overall, the three harvesting methods are reasonably equivalent, though CM promotes much better efficiency and is recommended for higher throughput.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Lipidômica/métodos , Glândulas Tarsais/citologia , Técnicas de Cultura de Células/normas , Fracionamento Celular/métodos , Linhagem Celular , Células Cultivadas , Células Epiteliais/metabolismo , Humanos , Lipidômica/normas , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
J Lipid Res ; 60(11): 1968-1978, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511397

RESUMO

Secretions from meibomian glands located within the eyelid (commonly known as meibum) are rich in nonpolar lipid classes incorporating very-long (22-30 carbons) and ultra-long (>30 carbons) acyl chains. The complex nature of the meibum lipidome and its preponderance of neutral, nonpolar lipid classes presents an analytical challenge, with typically poor chromatographic resolution, even between different lipid classes. To address this challenge, we have deployed differential mobility spectrometry (DMS)-MS to interrogate the human meibum lipidome and demonstrate near-baseline resolution of the two major nonpolar classes contained therein, namely wax esters and cholesteryl esters. Within these two lipid classes, we describe ion mobility behavior that is associated with the length of their acyl chains and location of unsaturation. This capability was exploited to profile the molecular speciation within each class and thus extend meibum lipidome coverage. Intriguingly, structure-mobility relationships in these nonpolar lipids show similar trends and inflections to those previously reported for other physicochemical properties of lipids (e.g., melting point and phase-transition temperatures). Taken together, these data demonstrate that differential ion mobility provides a powerful orthoganol separation technology for the analysis of neutral lipids in complex matrices, such as meibum, and may further provide a means to predict physicochemical properties of lipids that could assist in inferring their biological function(s).


Assuntos
Lipidômica , Lipídeos/isolamento & purificação , Espectrometria de Mobilidade Iônica , Lipídeos/química , Espectrometria de Massas
10.
Arch Biochem Biophys ; 671: 103-110, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31251920

RESUMO

Cholesterol is an important lipid molecule and is needed for all mammalian cells. In various cell types, excess cholesterol is stored as cholesteryl esters; acyl-CoA:cholesterol acyltransferase 1 (ACAT1) plays an essential role in this storage process. ACAT1 is located at the endoplasmic reticulum and has nine transmembrane domains (TMDs). It is a member of the membrane-bound O-acyltransferase (MBOAT) family, in which members contain multiple TMDs and participate in a variety of biological functions. When solubilized in the zwitterionic detergent CHAPS, ACAT1 can be purified to homogeneity with full enzyme activity and behaves as a homotetrameric protein. ACAT1 contains two dimerization motifs. The first motif is located near the N-terminus and is not conserved in MBOATs. Deletion of the N-terminal dimerization domain converts ACAT1 to a dimer with full catalytic activity; therefore, ACAT1 is a two-fold dimer. The second dimerization domain, located near the C-terminus, is conserved in MBOATs; however, it was not known whether the C-terminal dimerization domain is required for enzyme activity. Here we show that treating ACAT1 with non-ionic detergent, Triton X-100 or octyl glucoside, causes the enzyme to become a two-fold monomer without any enzymatic activity. Detergent exchange of Triton X-100 with CHAPS restores ACAT1 to a two-fold dimer but fails to restore its enzymatic activity. These results implicate that ACAT1 requires hydrophobic subunit interactions near the C-terminus in order to remain active as a two-fold dimer. Our results also caution the use of Triton X-100 or octyl glucoside to purify other MBOATs.


Assuntos
Acetil-CoA C-Acetiltransferase/antagonistas & inibidores , Detergentes/química , Inibidores Enzimáticos/química , Glucosídeos/química , Octoxinol/química , Multimerização Proteica/efeitos dos fármacos , Acetil-CoA C-Acetiltransferase/metabolismo , Animais , Células CHO , Ácidos Cólicos/química , Cricetulus , Cabras , Células HEK293 , Humanos , Camundongos , Coelhos
11.
Immunology ; 154(2): 196-203, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460282

RESUMO

The family of non-classical major histocompatibility complex (MHC) class-I like CD1 molecules has an emerging role in human disease. Group 1 CD1 includes CD1a, CD1b and CD1c, which function to display lipids on the cell surface of antigen-presenting cells for direct recognition by T-cells. The recent advent of CD1 tetramers and the identification of novel lipid ligands has contributed towards the increasing number of CD1-restricted T-cell clones captured. These advances have helped to identify novel donor unrestricted and semi-invariant T-cell populations in humans and new mechanisms of T-cell recognition. However, although there is an opportunity to design broadly acting lipids and harness the therapeutic potential of conserved T-cells, knowledge of their role in health and disease is lacking. We briefly summarize the current evidence implicating group 1 CD1 molecules in infection, cancer and autoimmunity and show that although CD1 are not as diverse as MHC, recent discoveries highlight their versatility as they exhibit intricate mechanisms of antigen presentation.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos CD1/imunologia , Lipídeos/imunologia , Transdução de Sinais , Animais , Antígenos CD1/química , Antígenos CD1/metabolismo , Autoimunidade , Suscetibilidade a Doenças , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Relação Estrutura-Atividade , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
EMBO Rep ; 17(1): 27-36, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26564908

RESUMO

In addition to the appearance of senile plaques and neurofibrillary tangles, Alzheimer's disease (AD) is characterized by aberrant lipid metabolism and early mitochondrial dysfunction. We recently showed that there was increased functionality of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a subdomain of the ER involved in lipid and cholesterol homeostasis, in presenilin-deficient cells and in fibroblasts from familial and sporadic AD patients. Individuals carrying the ε4 allele of apolipoprotein E (ApoE4) are at increased risk for developing AD compared to those carrying ApoE3. While the reason for this increased risk is unknown, we hypothesized that it might be associated with elevated MAM function. Using an astrocyte-conditioned media (ACM) model, we now show that ER-mitochondrial communication and MAM function-as measured by the synthesis of phospholipids and of cholesteryl esters, respectively-are increased significantly in cells treated with ApoE4-containing ACM as compared to those treated with ApoE3-containing ACM. Notably, this effect was seen with lipoprotein-enriched preparations, but not with lipid-free ApoE protein. These data are consistent with a role of upregulated MAM function in the pathogenesis of AD and may help explain, in part, the contribution of ApoE4 as a risk factor in the disease.


Assuntos
Apolipoproteína E4/metabolismo , Astrócitos/fisiologia , Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Animais , Apolipoproteína E4/química , Apolipoproteína E4/genética , Colesterol/metabolismo , Ésteres do Colesterol/biossíntese , Meios de Cultivo Condicionados/química , Retículo Endoplasmático/genética , Humanos , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Camundongos , Fosfolipídeos/biossíntese , Ativação Transcricional , Regulação para Cima
13.
Br J Nutr ; 120(1): 23-32, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729672

RESUMO

n-3 Fatty acids are associated with better cardiovascular and cognitive health. However, the concentration of EPA, DPA and DHA in different plasma lipid pools differs and factors influencing this heterogeneity are poorly understood. Our aim was to evaluate the association of oily fish intake, sex, age, BMI and APOE genotype with concentrations of EPA, DPA and DHA in plasma phosphatidylcholine (PC), NEFA, cholesteryl esters (CE) and TAG. Healthy adults (148 male, 158 female, age 20-71 years) were recruited according to APOE genotype, sex and age. The fatty acid composition was determined by GC. Oily fish intake was positively associated with EPA in PC, CE and TAG, DPA in TAG, and DHA in all fractions (P≤0·008). There was a positive association between age and EPA in PC, CE and TAG, DPA in NEFA and CE, and DHA in PC and CE (P≤0·034). DPA was higher in TAG in males than females (P<0·001). There was a positive association between BMI and DPA and DHA in TAG (P<0·006 and 0·02, respectively). APOE genotype×sex interactions were observed: the APOE4 allele associated with higher EPA in males (P=0·002), and there was also evidence for higher DPA and DHA (P≤0·032). In conclusion, EPA, DPA and DHA in plasma lipids are associated with oily fish intake, sex, age, BMI and APOE genotype. Such insights may be used to better understand the link between plasma fatty acid profiles and dietary exposure and may influence intake recommendations across population subgroups.


Assuntos
Fatores Etários , Apolipoproteínas E/genética , Índice de Massa Corporal , Dieta , Ácidos Graxos Ômega-3/sangue , Óleos de Peixe , Fatores Sexuais , Adulto , Idoso , Alelos , Animais , Ésteres do Colesterol/sangue , Estudos Cross-Over , Método Duplo-Cego , Ácidos Graxos Insaturados/sangue , Feminino , Peixes , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas/sangue , Reino Unido , Adulto Jovem
14.
Exp Cell Res ; 340(2): 209-14, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26639173

RESUMO

Lipid droplets (LDs) in steroidogenic tissues have a cholesteryl ester (CE) core surrounded by a phospholipid monolayer that is coated with associated proteins. Compared with other tissues, they tend to be smaller in size and more numerous in numbers. These LDs are enriched with PLIN1c, PLIN2 and PLIN3. Both CIDE A and B are found in mouse ovary. Free cholesterol (FC) released upon hormone stimulation from LDs is the preferred source of cholesterol substrate for steroidogenesis, and HSL is the major neutral cholesterol esterase mediating the conversion of CEs to FC. Through the interaction of HSL with vimentin and StAR, FC is translocated to mitochondria for steroid hormone production. Proteomic analyses of LDs isolated from loaded primary ovarian granulosa cells, mouse MLTC-1 Leydig tumor cells and mouse testes revealed LD associated proteins that are actively involved in modulating lipid homeostasis along with a number of steroidogenic enzymes. Microscopy analysis confirmed the localization of many of these proteins to LDs. These studies broaden the role of LDs to include being a platform for functional steroidogenic enzyme activity or as a port for transferring steroidogenic enzymes and/or steroid intermediates, in addition to being a storage depot for CEs.


Assuntos
Colesterol/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias/metabolismo , Esteroides/metabolismo , Animais , Humanos , Proteômica/métodos
15.
Adv Exp Med Biol ; 997: 149-156, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815528

RESUMO

The most widely accepted hypothesis to explain the pathogenesis of Alzheimer disease (AD) is the amyloid cascade, in which the accumulation of extraneuritic plaques and intracellular tangles plays a key role in driving the course and progression of the disease. However, there are other biochemical and morphological features of AD, including altered calcium, phospholipid, and cholesterol metabolism and altered mitochondrial dynamics and function that often appear early in the course of the disease, prior to plaque and tangle accumulation. Interestingly, these other functions are associated with a subdomain of the endoplasmic reticulum (ER) called mitochondria-associated ER membranes (MAM). MAM, which is an intracellular lipid raft-like domain, is closely apposed to mitochondria, both physically and biochemically. These MAM-localized functions are, in fact, increased significantly in various cellular and animal models of AD and in cells from AD patients, which could help explain the biochemical and morphological alterations seen in the disease. Based on these and other observations, a strong argument can be made that increased ER-mitochondria connectivity and increased MAM function are fundamental to AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Transdução de Sinais , Doença de Alzheimer/patologia , Animais , Transporte Biológico , Encéfalo/patologia , Retículo Endoplasmático/patologia , Metabolismo Energético , Humanos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Mitocôndrias/patologia , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/patologia
16.
J Lipid Res ; 57(9): 1712-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381048

RESUMO

While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.


Assuntos
Proteínas de Transporte/genética , Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Lipoproteínas HDL/metabolismo , Adenoviridae/genética , Animais , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/genética , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação da Expressão Gênica , Hidrólise , Fígado/metabolismo , Camundongos
17.
Br J Nutr ; 115(1): 6-13, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26507559

RESUMO

Type 2 diabetes (T2D) is a major risk factor of CVD. The effects of purified sardine proteins (SP) were examined on glycaemia, insulin sensitivity and reverse cholesterol transport in T2D rats. Rats fed a high-fat diet (HFD) for 5 weeks, and injected with a low dose of streptozotocin, were used. The diabetic rats were divided into four groups, and they were fed casein (CAS) or SP combined with 30 or 5% lipids, for 4 weeks. HFD-induced hyperglycaemia, insulin resistance and hyperlipidaemia in rats fed HFD, regardless of the consumed protein. In contrast, these parameters lowered in rats fed SP combined with 5 or 30% lipids, and serum insulin values reduced in SP v. CAS. HFD significantly increased total cholesterol and TAG concentrations in the liver and serum, whereas these parameters decreased with SP, regardless of lipid intake. Faecal cholesterol excretion was higher with SP v. CAS, combined with 30 or 5% lipids. Lecithin:cholesterol acyltransferase (LCAT) activity and HDL3-phospholipids (PL) were higher in CAS-HF than in CAS, whereas HDL2-cholesteryl esters (CE) were lower. Otherwise, LCAT activity and HDL2-CE were higher in the SP group than in the CAS group, whereas HDL3-PL and HDL3-unesterified cholesterol were lower. Moreover, LCAT activity lowered in the SP-HF group than in the CAS-HF group, when HDL2-CE was higher. In conclusion, these results indicate the potential effects of SP to improve glycaemia, insulin sensitivity and reverse cholesterol transport, in T2D rats.


Assuntos
Colesterol/sangue , Diabetes Mellitus Tipo 2/dietoterapia , Proteínas de Peixes/uso terapêutico , Peixes , Hiperglicemia/tratamento farmacológico , Hiperlipidemias/tratamento farmacológico , Esterol O-Aciltransferase/metabolismo , Animais , Glicemia/metabolismo , Ésteres do Colesterol/sangue , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica , Proteínas de Peixes/farmacologia , Hiperlipidemias/sangue , Resistência à Insulina , Lecitinas/metabolismo , Lipídeos/sangue , Masculino , Fosfolipídeos/metabolismo , Ratos Wistar
18.
J Lipid Res ; 56(8): 1461-70, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26063458

RESUMO

Metabolic syndrome is linked with obesity and is often first identified clinically by elevated BMI and elevated levels of fasting blood glucose that are generally secondary to insulin resistance. Using the highly translatable rhesus monkey (Macaca mulatta) model, we asked if metabolic syndrome risk could be identified earlier. The study involved 16 overweight but healthy, euglycemic monkeys, one-half of which spontaneously developed metabolic syndrome over the course of 2 years while the other half remained healthy. We conducted a series of biometric and plasma measures focusing on adiposity, lipid metabolism, and adipose tissue-derived hormones, which led to a diagnosis of metabolic syndrome in the insulin-resistant animals. Plasma fatty acid composition was determined by gas chromatography for cholesteryl ester, FFA, diacylglycerol (DAG), phospholipid, and triacylglycerol lipid classes; plasma lipoprotein profiles were generated by NMR; and circulating levels of adipose-derived signaling peptides were determined by ELISA. We identified biomarker models including a DAG model, two lipoprotein models, and a multiterm model that includes the adipose-derived peptide adiponectin. Correlations among circulating lipids and lipoproteins revealed shifts in lipid metabolism during disease development. We propose that lipid profiling may be valuable for early metabolic syndrome detection in a clinical setting.


Assuntos
Diglicerídeos/sangue , Síndrome Metabólica/sangue , Animais , Biomarcadores/sangue , Progressão da Doença , Resistência à Insulina , Macaca mulatta , Masculino
19.
Exp Cell Res ; 320(2): 302-10, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24200503

RESUMO

Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells.


Assuntos
Ácido Graxo Sintase Tipo I/fisiologia , Ácidos Graxos/metabolismo , Glicólise , Neoplasias/metabolismo , Fosfolipídeos/biossíntese , Hipóxia Celular/fisiologia , Células Cultivadas , Esterificação , Feminino , Glicólise/genética , Humanos , Metabolismo dos Lipídeos , Lipogênese/fisiologia , Células MCF-7 , Neoplasias/genética
20.
J Lipid Atheroscler ; 13(1): 69-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38299166

RESUMO

Objective: Scavenger receptor class B type I (SR-BI) is primarily known for its role in the selective uptake of cholesteryl esters (CEs) from high-density lipoproteins (HDLs). Here we investigated whether SR-BI deficiency is associated with other potentially relevant changes in the plasma lipidome than the established effect of HDL-cholesterol elevation. Methods: Targeted ultra-high-performance liquid chromatography-tandem mass spectrometry was utilized to measure lipid species in plasma from female wild-type and SR-BI knockout mice. Results: SR-BI deficiency was associated with a reduction in the average CE fatty acid length (-2%; p<0.001) and degree of CE fatty acid unsaturation (-18%; p<0.001) due to a relative shift from longer, polyunsaturated CE species CE (20:4), CE (20:5), and CE (22:6) towards the mono-unsaturated CE (18:1) species. Sphingomyelin (SM) levels were 64% higher (p<0.001) in SR-BI knockout mice without a parallel change in (lyso)phosphatidylcholine (LPC) concentrations, resulting in an increase in the SM/LPC ratio from 0.102±0.005 to 0.163±0.003 (p<0.001). In addition, lower LPC lengths (-5%; p<0.05) and fatty acid unsaturation degrees (-20%; p<0.01) were detected in SR-BI knockout mice. Furthermore, SR-BI deficiency was associated with a 4.7-fold increase (p<0.001) in total plasma ceramide (Cer) levels, with a marked >9-fold rise (p<0.001) in Cer (d18:1/24:1) concentrations. Conclusion: We have shown that SR-BI deficiency in mice not only impacts the CE concentrations, length, and saturation index within the plasma compartment, but is also associated with plasma accumulation of several Cer and SM species that may contribute to the development of specific hematological and metabolic (disease) phenotypes previously detected in SR-BI knockout mice.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa