Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35858625

RESUMO

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Assuntos
Quebra Cromossômica , Segregação de Cromossomos , Aneuploidia , Animais , DNA , Replicação do DNA , Desenvolvimento Embrionário/genética , Humanos , Mamíferos/genética
2.
Hum Reprod ; 39(1): 258-274, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873575

RESUMO

STUDY QUESTION: Does the diagnosis of mosaicism affect ploidy rates across different providers offering preimplantation genetic testing for aneuploidies (PGT-A)? SUMMARY ANSWER: Our analysis of 36 395 blastocyst biopsies across eight genetic testing laboratories revealed that euploidy rates were significantly higher in providers reporting low rates of mosaicism. WHAT IS KNOWN ALREADY: Diagnoses consistent with chromosomal mosaicism have emerged as a third category of possible embryo ploidy outcomes following PGT-A. However, in the era of mosaicism, embryo selection has become increasingly complex. Biological, technical, analytical, and clinical complexities in interpreting such results have led to substantial variability in mosaicism rates across PGT-A providers and clinics. Critically, it remains unknown whether these differences impact the number of euploid embryos available for transfer. Ultimately, this may significantly affect clinical outcomes, with important implications for PGT-A patients. STUDY DESIGN, SIZE, DURATION: In this international, multicenter cohort study, we reviewed 36 395 consecutive PGT-A results, obtained from 10 035 patients across 11 867 treatment cycles, conducted between October 2015 and October 2021. A total of 17 IVF centers, across eight PGT-A providers, five countries and three continents participated in the study. All blastocysts were tested using trophectoderm biopsy and next-generation sequencing. Both autologous and donation cycles were assessed. Cycles using preimplantation genetic testing for structural rearrangements were excluded from the analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS: The PGT-A providers were randomly categorized (A to H). Providers B, C, D, E, F, G, and H all reported mosaicism, whereas Provider A reported embryos as either euploid or aneuploid. Ploidy rates were analyzed using multilevel mixed linear regression. Analyses were adjusted for maternal age, paternal age, oocyte source, number of embryos biopsied, day of biopsy, and PGT-A provider, as appropriate. We compared associations between genetic testing providers and PGT-A outcomes, including the number of chromosomally normal (euploid) embryos determined to be suitable for transfer. MAIN RESULTS AND THE ROLE OF CHANCE: The mean maternal age (±SD) across all providers was 36.2 (±5.2). Our findings reveal a strong association between PGT-A provider and the diagnosis of euploidy and mosaicism. Amongst the seven providers that reported mosaicism, the rates varied from 3.1% to 25.0%. After adjusting for confounders, we observed a significant difference in the likelihood of diagnosing mosaicism across providers (P < 0.001), ranging from 6.5% (95% CI: 5.2-7.4%) for Provider B to 35.6% (95% CI: 32.6-38.7%) for Provider E. Notably, adjusted euploidy rates were highest for providers that reported the lowest rates of mosaicism (Provider B: euploidy, 55.7% (95% CI: 54.1-57.4%), mosaicism, 6.5% (95% CI: 5.2-7.4%); Provider H: euploidy, 44.5% (95% CI: 43.6-45.4%), mosaicism, 9.9% (95% CI: 9.2-10.6%)); and Provider D: euploidy, 43.8% (95% CI: 39.2-48.4%), mosaicism, 11.0% (95% CI: 7.5-14.5%)). Moreover, the overall chance of having at least one euploid blastocyst available for transfer was significantly higher when mosaicism was not reported, when we compared Provider A to all other providers (OR = 1.30, 95% CI: 1.13-1.50). Differences in diagnosing and interpreting mosaic results across PGT-A laboratories raise further concerns regarding the accuracy and relevance of mosaicism predictions. While we confirmed equivalent clinical outcomes following the transfer of mosaic and euploid blastocysts, we found that a significant proportion of mosaic embryos are not used for IVF treatment. LIMITATIONS, REASONS FOR CAUTION: Due to the retrospective nature of the study, associations can be ascertained, however, causality cannot be established. Certain parameters such as blastocyst grade were not available in the dataset. Furthermore, certain platform-related and clinic-specific factors may not be readily quantifiable or explicitly captured in our dataset. As such, a full elucidation of all potential confounders accounting for variability may not be possible. WIDER IMPLICATIONS OF THE FINDINGS: Our findings highlight the strong need for standardization and quality assurance in the industry. The decision not to transfer mosaic embryos may ultimately reduce the chance of success of a PGT-A cycle by limiting the pool of available embryos. Until we can be certain that mosaic diagnoses accurately reflect biological variability, reporting mosaicism warrants utmost caution. A prudent approach is imperative, as it may determine the difference between success or failure for some patients. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Torres Quevedo Grant, awarded to M.P. (PTQ2019-010494) by the Spanish State Research Agency, Ministry of Science and Innovation, Spain. M.P., L.B., A.R.L., A.L.R.d.C.L., N.P.P., M.P., D.S., F.A., A.P., B.M., L.D., F.V.M., D.S., M.R., E.P.d.l.B., A.R., and R.V. have no competing interests to declare. B.L., R.M., and J.A.O. are full time employees of IB Biotech, the genetics company of the Instituto Bernabeu group, which performs preimplantation genetic testing. M.G. is a full time employee of Novagen, the genetics company of Cegyr, which performs preimplantation genetic testing. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Mosaicismo , Diagnóstico Pré-Implantação , Feminino , Humanos , Gravidez , Aneuploidia , Viés Implícito , Blastocisto/patologia , Estudos de Coortes , Testes Genéticos/métodos , Diagnóstico Pré-Implantação/métodos , Estudos Retrospectivos , Adulto
3.
J Assist Reprod Genet ; 41(1): 193-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37878220

RESUMO

PURPOSE: To evaluate the decline in transferable embryos in preimplantation genetic testing for aneuploidy (PGT-A) cycles due to (a) non-biopsable blastocyst quality, (b) failure of genetic analysis, (c) diagnosis of uniform numerical or structural chromosomal aberrations, and/or (d) chromosomal aberrations in mosaic constitution. METHODS: This retrospective multicenter study comprised outcomes of 1562 blastocysts originating from 363 controlled ovarian stimulation cycles, respectively, 226 IVF couples in the period between January 2016 and December 2018. Inclusion criteria were PGT-A cycles with trophectoderm biopsy (TB) and next generation sequencing (NGS). RESULTS: Out of 1562 blastocysts, 25.8% were lost due to non-biopsable and/or non-freezable embryo quality. In 10.3% of all biopsied blastocysts, genetic analysis failed. After exclusion of embryos with uniform or chromosomal aberrations in mosaic, only 18.1% of those originally yielded remained as diagnosed euploid embryos suitable for transfer. This translates into 50.4% of patients and 57.6% of stimulated cycles with no euploid embryo left for transfer. The risk that no transfer can take place rose significantly with a lower number of oocytes and with increasing maternal age. The chance for at least one euploid blastocyst/cycle in advanced maternal age (AMA)-patients was 33.3% compared to 52.1% in recurrent miscarriage (RM), 59.8% in recurrent implantation failure (RIF), and 60.0% in severe male factor (SMF). CONCLUSIONS: The present study demonstrates that PGT-A is accompanied by high embryo drop-out rates. IVF-practitioners should be aware that their patients run a high risk of ending up without any embryo suitable for transfer after (several) stimulation cycles, especially in AMA patients. Patients should be informed in detail about the frequency of inconclusive or mosaic results, with the associated risk of not having an euploid embryo available for transfer after PGT-A, as well as the high cost involved in this type of testing.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Masculino , Diagnóstico Pré-Implantação/métodos , Estudos Retrospectivos , Testes Genéticos/métodos , Blastocisto/patologia , Aneuploidia
4.
Hum Reprod ; 38(8): 1628-1642, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37218343

RESUMO

STUDY QUESTION: Can multiple-site low-pass genome sequencing (GS) of products of conception (POCs) improve the detection of genetic abnormalities, especially heterogeneously distributed mosaicism and homogeneously distributed mosaicism in first-trimester miscarriage? SUMMARY ANSWER: Multiple-site sampling combined with low-pass GS significantly increased genetic diagnostic yield (77.0%, 127/165) of first-trimester miscarriages, with mosaicisms accounting for 17.0% (28/165), especially heterogeneously distributed mosaicisms (75%, 21/28) that are currently underappreciated. WHAT IS KNOWN ALREADY: Aneuploidies are well known to cause first-trimester miscarriage, which are detectable by conventional karyotyping and next-generation sequencing (NGS) on a single-site sampling basis. However, there are limited studies demonstrating the implications of mosaic genetic abnormalities in first-trimester miscarriages, especially when genetic heterogeneity is present in POCs. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional cohort study carried out at a university-affiliated public hospital. One hundred seventy-four patients diagnosed with first-trimester miscarriage from December 2018 to November 2021 were offered ultrasound-guided manual vacuum aspiration (USG-MVA) treatment. Products of conception were subjected to multiple-site low-pass GS for the detection of chromosomal imbalances. PARTICIPANTS/MATERIALS, SETTING, METHODS: For each POC, multiple sites of villi (three sites on average) were biopsied for low-pass GS. Samples with maternal cell contamination (MCC) and polyploidy were excluded based on the quantitative fluorescence polymerase chain reaction (QF-PCR) results. The spectrum of chromosomal abnormalities, including mosaicism (heterogeneously distributed and homogeneously distributed) and constitutional abnormalities was investigated. Chromosomal microarray analysis and additional DNA fingerprinting were used for validation and MCC exclusion. A cross-platform comparison between conventional karyotyping and our multiple-site approach was also performed. MAIN RESULTS AND THE ROLE OF CHANCE: One hundred sixty-five POCs (corresponding to 490 DNA samples) were subjected to low-pass GS. Genetic abnormalities were detected in 77.0% (127/165) of POCs by our novel approach. Specifically, 17.0% (28/165) of cases had either heterogeneously distributed mosaicism (12.7%, 21/165) or homogeneously distributed mosaicism (6.1%, 10/165) (three cases had both types of mosaicism). The remaining 60.0% (99/165) of cases had constitutional abnormalities. In addition, in the 71 cases with karyotyping performed in parallel, 26.8% (19/71) of the results could be revised by our approach. LIMITATIONS, REASONS FOR CAUTION: Lack of a normal gestational week-matched cohort might hinder the establishment of a causative link between mosaicisms and first-trimester miscarriage. WIDER IMPLICATIONS OF THE FINDINGS: Low-pass GS with multiple-site sampling increased the detection of chromosomal mosaicisms in first-trimester miscarriage POCs. This innovative multiple-site low-pass GS approach enabled the novel discovery of heterogeneously distributed mosaicism, which was prevalent in first-trimester miscarriage POCs and frequently observed in preimplantation embryos, but is currently unappreciated by conventional single-site cytogenetic investigations. STUDY FUNDING/COMPETING INTEREST(S): This work was supported partly by Research Grant Council Collaborative Research Fund (C4062-21GF to K.W.C), Science and Technology Projects in Guangzhou (202102010005 to K.W.C), Guangdong-Hong Kong Technology Cooperation Funding Scheme (TCFS), Innovation and Technology Fund (GHP/117/19GD to K.W.C), HKOG Direct Grant (2019.050 to J.P.W.C), and Hong Kong Health and Medical Research Fund (05160406 to J.P.W.C). The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Aborto Espontâneo , Gravidez , Feminino , Humanos , Aborto Espontâneo/genética , Primeiro Trimestre da Gravidez , Mosaicismo , Estudos Transversais , Projetos Piloto
5.
Hum Reprod ; 38(11): 2137-2153, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37766497

RESUMO

STUDY QUESTION: Is the chromosome copy number of the trophectoderm (TE) of a human reconstituted embryos after spindle transfer (ST) representative of the inner cell mass (ICM)? SUMMARY ANSWER: Single-cell multi-omics sequencing revealed that ST blastocysts have a higher proportion of cell lineages exhibiting intermediate mosaicism than conventional ICSI blastocysts, and that the TE of ST blastocysts does not represent the chromosome copy number of ICM. WHAT IS KNOWN ALREADY: Preimplantation genetic testing for aneuploidy (PGT-A) assumes that TE biopsies are representative of the ICM, but the TE and ICM originate from different cell lineages, and concordance between TE and ICM is not well-studied, especially in ST embryos. STUDY DESIGN, SIZE, DURATION: We recruited 30 infertile women who received treatment at our clinic and obtained 45 usable blastocysts (22 from conventional ICSI and 23 reconstituted embryos after ST). We performed single-cell multi-omics sequencing on all blastocysts to predict and verify copy number variations (CNVs) in each cell. We determined the chromosome copy number of each embryo by analysing the proportion of abnormal cells in each blastocyst. We used the Bland-Altman concordance and the Kappa test to evaluate the concordance between TE and ICM in the both groups. PARTICIPANTS/MATERIALS, SETTING, METHODS: The study was conducted at a public tertiary hospital in China, where all the embryo operations, including oocytes retrieval, ST, and ICSI, were performed in the embryo laboratory. We utilized single-cell multi-omics sequencing technology at the Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, to analyse the blastocysts. Transcriptome sequencing was used to predict the CNV of each cell through bioinformatics analysis, and the results were validated using the DNA methylation library of each cell to confirm chromosomal normalcy. We conducted statistical analysis and graphical plotting using R 4.2.1, SPSS 27, and GraphPad Prism 9.3. MAIN RESULTS AND THE ROLE OF CHANCE: Mean age of the volunteers, the blastocyst morphology, and the developmental ratewere similar in ST and ICSI groups. The blastocysts in the ST group had some additional chromosomal types that were prone to variations beyond those enriched in the blastocysts of the ICSI group. Finally, both Bland-Altman concordance test and kappa concordancetest showed good chromosomal concordance between TE and ICM in the ICSI blastocysts (kappa = 0.659, P < 0.05), but not in ST blastocysts (P = 1.000), suggesting that the TE in reconstituted embryos is not representative of ICM. Gene functional annotation (GO and KEGG analyses) suggests that there may be new or additional pathways for CNV generation in ST embryos compared to ICSI embryos. LIMITATIONS, REASONS FOR CAUTION: This study was mainly limited by the small sample size and the limitations of single-cell multi-omics sequencing technology. To select eligible single cells, some cells of the embryos were eliminated or not labelled, resulting in a loss of information about them. The findings of this study are innovative and exploratory. A larger sample size of human embryos (especially ST embryos) and more accurate molecular genetics techniques for detecting CNV in single cells are needed to validate our results. WIDER IMPLICATIONS OF THE FINDINGS: Our study justifies the routine clinical use of PGT-A in ICSI blastocysts, as we found that the TE is a good substitute for ICM in predicting chromosomal abnormalities. While PGT-A is not entirely accurate, our data demonstrate good clinical feasibility. This trial was able to provide correct genetic counselling to patients regarding the reliability of PGT-A. Regarding ST blastocysts, the increased mosaicism rate and the inability of the TE to represent the chromosomal copy number of the ICM are both biological characteristics that differentiate them from ICSI blastocysts. Currently, ST is not used clinically on a large scale to produce blastocysts. However, if ST becomes more widely used in the future, our study will be the first to demonstrate that the use of PGT-A in ST blastocysts may not be as accurate as PGT-A for ICSI blastocysts. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from the National Key R&D Program of China (2018YFA0107601) and the National Key R&D Program of China (2018YFC1003003). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Infertilidade Feminina , Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Variações do Número de Cópias de DNA , Diagnóstico Pré-Implantação/métodos , Reprodutibilidade dos Testes , Infertilidade Feminina/metabolismo , Multiômica , Blastocisto/metabolismo , Testes Genéticos/métodos , Cromossomos , Aneuploidia , Mosaicismo
6.
Hum Genomics ; 16(1): 64, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457118

RESUMO

BACKGROUND: Aneuploidies are the most common chromosomal abnormality and the main genetic cause of adverse pregnancy outcomes. Since numerous studies have focused on common trisomies, relatively little is known about the association between phenotypic findings and rare autosomal aneuploidies (RAAs). We conducted a retrospective study of 48,904 cases for chromosomal microarray analysis in a large tertiary referral center and reported the overall frequencies, clinical manifestations, and outcomes of prenatal RAAs. RESULTS: A total of 90 RAAs were detected, of which 83 cases were mosaic trisomies and 7 were non-mosaic trisomies. Chromosomes 16, 22, and 9 were identified as the major chromosomes involving RAAs. The four predominant indications for prenatal diagnosis in our RAA cases were RAA-positive in noninvasive prenatal screening, advanced maternal age, ultrasound abnormalities, and high-risk for serum prenatal screening. Cardiovascular defects were the most frequently observed structural abnormalities, followed by musculoskeletal anomalies. Increased nuchal translucency and persistent left superior vena cava, the major soft marker abnormalities involved, were also observed in our RAA cases. Clinical outcomes were available for all RAAs, with 63 induced abortions and 27 live births recorded. CONCLUSIONS: Variable phenotypes and outcomes were observed, which were highly heterogeneous in cases of prenatal RAAs. Thus, a cautious and comprehensive strategy should be implemented during prenatal counseling for RAAs.


Assuntos
Resultado da Gravidez , Trissomia , Feminino , Gravidez , Humanos , Estudos Retrospectivos , Veia Cava Superior , Análise em Microsséries , Fenótipo , Aneuploidia , Cromossomos Humanos Par 16
7.
J Obstet Gynaecol Res ; 49(12): 2836-2848, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844871

RESUMO

BACKGROUND AND PURPOSE: The application of classical cytogenetic and DNA-based molecular techniques to detect cell lineages of mosaicism derived from cultured or noncultured fetal cells may result in discordant results. This retrospective study aimed to assess the inconsistent diagnostic outcomes, technical availability, and limitations of chromosomal microarray analysis (CMA) and karyotyping for mosaicism. METHODOLOGY: A total of 75 fetuses diagnosed with mosaicism by karyotype analysis or CMA were selected, and the results from both the methods were compared and further analyzed. RESULTS: A total of 42 (56%, 42/75) CMA results were consistent with karyotypes, consisting of 22 cases of mosaic sex chromosomal abnormalities, 8 routine autosomal aneuploidy cases, 8 other autosome aneuploidy cases, 3 large cryptic genomic rearrangements, and 1 small supernumerary marker chromosome. Discrepancy between karyotype analysis and CMA was observed in 33 (44%, 33/75) mosaicisms involving 15 sex chromosomal abnormalities, 1 routine autosomal aneuploidies, 5 other autosome aneuploidy cases, 8 large cryptic genomic rearrangements, and 4 small supernumerary marker chromosomes. CONCLUSION: Considering the disparities between methods as well as the cell populations analyzed, both CMA and karyotype analysis have their own advantages and disadvantages. Therefore, CMA should ideally be used in combination with karyotyping to detect more cases of mosaicism than using either test alone.


Assuntos
Transtornos Cromossômicos , Mosaicismo , Gravidez , Feminino , Humanos , Diagnóstico Pré-Natal/métodos , Estudos Retrospectivos , Cariotipagem , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Feto , Cariótipo , Aberrações dos Cromossomos Sexuais , Aneuploidia
8.
J Assist Reprod Genet ; 40(3): 639-652, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36695946

RESUMO

OBJECTIVE: Mosaic embryos are often characterized by different numbers (single or double or ≥ 3 aneuploidies) or types of chromosomal abnormalities (monosomy or trisomy and involving whole chromosome or chromosome segments). However, due to limitations in the number of samples, the relationship between these abnormalities and clinical outcomes is often not evaluated. METHODS: This study analyzed chromosomal abnormalities and clinical outcomes in 591 aneuploid mosaic and 3071 euploid embryos from multiple retrospective cohorts as well as from the current authors' unpublished retrospective cohort. RESULTS: Through meta-analysis, it was found that single aneuploid mosaicism reduced implantation and clinical pregnancy rates. In addition, no significant differences were noted between mosaic trisomies and mosaic monosomies in terms of their effects on implantation and clinical pregnancy rates. All subtypes of single aneuploid mosaicism were found to reduce implantation and clinical pregnancy rates for women of over 35 years old. Furthermore, it was observed that all subtypes of single aneuploid in higher-level mosaicism reduced implantation and clinical pregnancy rates. Regarding the lower-level group, only segmental mosaicism with segmental chromosome gain reduced both of the above rates. Unexpectedly, the type of chromosome abnormality was more likely to influence miscarriage rates compared with the level of mosaicism. Indeed, monosomy aneuploid mosaic embryos increased miscarriage rates in both lower- and higher-levels mosaic ratio groups, but not other subtypes. CONCLUSIONS: Although the mechanism for the above phenomenon remains unknown, it is recommended that attention should still be paid to the increased miscarriage rates caused by monosomy in aneuploid mosaic embryos.


Assuntos
Aborto Espontâneo , Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Adulto , Aborto Espontâneo/genética , Estudos Retrospectivos , Blastocisto , Testes Genéticos , Aneuploidia , Mosaicismo , Monossomia
9.
Mol Hum Reprod ; 28(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404421

RESUMO

About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon that has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution but also on whether it should be offered to patients at all. We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known about the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?


Assuntos
Diagnóstico Pré-Implantação , Aneuploidia , Blastocisto/patologia , Feminino , Testes Genéticos/métodos , Humanos , Mosaicismo , Gravidez , Diagnóstico Pré-Implantação/métodos
10.
Arch Gynecol Obstet ; 306(6): 1901-1911, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35306582

RESUMO

PURPOSE: Chromosomal mosaicism becomes a common phenomenon in Preimplantaion genetic testing (PGT). This meta-analysis was conducted to study which feature of chromosomal mosaicism was compatible for embryo transfer. METHODS: After searching the database PubMed, Embase, CCTR and related reviews up until May 2021. Two reviewers extracted relevant information and assessed study quality by the Newcastle-Ottawa scale independently. Summary Odd Radios (OR) were calculated using fixed- or random-effects models for clinical outcomes. A network meta-analysis compared the clinical outcomes of different chromosomes. RESULTS: A total of six studies with 1,106 cycles of single mosaic embryo transferred were included. Significant results of implantation rate (IR), miscarriage rate (MR), and ongoing pregnancy/live birth rate (OP/LBR) were observed when comparing embryos with mosaicism level < 50% and ≥ 50% [OR 1.42, 95% CI (1.06, 1.89); OR 0.45, 95% CI (0.27, 0.75); OR 1.74, 95% CI (1.28, 2.37)], and embryos with mosaicism with only affecting segmental chromosome(s) and only involving whole chromosome(s) [OR 1.31, 95% CI (1.01, 1.71); OR 0.57, 95% CI (0.36, 0.93); OR 1.51, 95% CI (1.15, 2.00)]. Embryos with only mosaic gains or losses had significant higher IR and OP/LBR than complex mosaicism [Gains vs complex: OR 1.75, 95% CI (1.20, 2.54); OR 1.73, 95% CI (1.16, 2.58). Losses vs complex: OR 1.90, 95% CI (1.34, 2.71); OR 2.10, 95% CI (1.44, 3.07)]. Mosaic embryos with only one chromosome involved had significant favorable outcomes of IR and OP/LBR than with three or more chromosomes involved [OR 1.76, 95% CI (1.23, 2.52); OR 1.86, 95% CI (1.25,2.78)]. Chr. 7, Chr. 2, Chr. 1, Chr. 18, Chr. 11, Chr. X, Chr. 13, Chr. 14, Chr. 12, and Chr. 9 were considered as prioritized chromosomes of mosaic embryos for transfer. CONCLUSIONS: This analysis support the embryos with mosaicism level ≥ 50%, whole chromosome(s) involved, multiple mosaic abnormalities were associated with worse pregnancy outcomes. Mosaicism level of 50% could be used as a threshold to assess the mosaic embryos.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Mosaicismo , Aneuploidia , Blastocisto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transferência Embrionária , Testes Genéticos/métodos , Fertilização in vitro
11.
J Cell Mol Med ; 25(1): 358-366, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201576

RESUMO

To investigate the incidence and clinical significance of chromosomal mosaicism (CM) in prenatal diagnosis by G-banding karyotyping and chromosomal microarray analysis (CMA). This is a single-centre retrospective study of invasive prenatal diagnosis for CM. From 5758 karyotyping results and 6066 CMA results, 104 foetal cases with CM were selected and analysed further. In total, 50% (52/104) of foetal cases with CM were affected by ultrasound-detectable phenotypes. Regardless of whether they were singleton or twin pregnancies, isolated structural defects in one system (51.35%, 19/37 in singletons; 86.67%, 13/15 in twins) and a single soft marker (18.92%, 7/37 in singletons; 13.33%, 2/15 in twins) were the most common ultrasound anomalies. Mosaic autosomal trisomy (19.23%, 20/104) was the most frequent type, and its rate was higher in phenotypic foetuses (28.85%, 15/52) than in non-phenotypic foetuses (9.62%, 5/52). There was no difference in mosaic fractions between phenotypic and non-phenotypic foetuses based on specimen sources or overall classification. Discordant mosaic results were observed in 16 cases (15.38%, 16/104) from different specimens or different testing methods. Genetic counselling and clinical management regarding CM in prenatal diagnosis remain challenging due to the variable phenotypes and unclear significance. Greater caution should be used in prenatal counselling, and more comprehensive assays involving serial ultrasound examinations, different specimens or testing methods verifications and follow-up should be applied.


Assuntos
Cariotipagem/métodos , Mosaicismo , Adulto , Aconselhamento Genético/métodos , Humanos , Cariótipo , Análise em Microsséries/métodos
12.
J Assist Reprod Genet ; 38(11): 2833-2848, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34518954

RESUMO

Chromosomal mosaicism is a hallmark of early human embryo development. The last decade yielded an enormous amount of information about diversity and prevalence of mosaicism in preimplantation embryos due to progress in preimplantation genetic testing of aneuploidies (PGT-A) based exclusively on molecular karyotyping of trophectoderm biopsy. However, the inner cell mass karyotype is still missing for mosaic embryos affecting the success rate of assisted reproductive medicine. Here, a classification model of chromosomal mosaicism is proposed based on the analysis of the primary zygote karyotype, the timing and types of primary and secondary chromosome segregation errors, and the distribution of mosaic cell clones between different embryonic and extraembryonic compartments of the blastocyst. Five basic principles for mosaicism analysis are introduced, namely, the estimation of the primary zygote karyotype, the investigation of additional sample point, the requirement of the second time point analysis, the delineating of reciprocity of chromosome segregation, and comprehensive chromosome screening at the single-cell level. The suggested model allows the prediction of the inner cell mass karyotype of the blastocyst and its developmental potential based on information from trophectoderm biopsy and non-invasive PGT-A using blastocoele fluid sample or spent culture medium as additional sample and time points for analysis and considering the reciprocity as a basic process in chromosome segregation errors between daughter cells in postzygotic cell divisions.


Assuntos
Transtornos Cromossômicos/classificação , Transtornos Cromossômicos/diagnóstico , Testes Genéticos/métodos , Mosaicismo , Diagnóstico Pré-Implantação/métodos , Transtornos Cromossômicos/genética , Feminino , Humanos , Gravidez
13.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171981

RESUMO

Mechanisms for somatic chromosomal mosaicism (SCM) and chromosomal instability (CIN) are not completely understood. During molecular karyotyping and bioinformatic analyses of children with neurodevelopmental disorders and congenital malformations (n = 612), we observed colocalization of regular chromosomal imbalances or copy number variations (CNV) with mosaic ones (n = 47 or 7.7%). Analyzing molecular karyotyping data and pathways affected by CNV burdens, we proposed a mechanism for SCM/CIN, which had been designated as "chromohelkosis" (from the Greek words chromosome ulceration/open wound). Briefly, structural chromosomal imbalances are likely to cause local instability ("wreckage") at the breakpoints, which results either in partial/whole chromosome loss (e.g., aneuploidy) or elongation of duplicated regions. Accordingly, a function for classical/alpha satellite DNA (protection from the wreckage towards the centromere) has been hypothesized. Since SCM and CIN are ubiquitously involved in development, homeostasis and disease (e.g., prenatal development, cancer, brain diseases, aging), we have metaphorically (ironically) designate the system explaining chromohelkosis contribution to SCM/CIN as the cytogenomic "theory of everything", similar to the homonymous theory in physics inasmuch as it might explain numerous phenomena in chromosome biology. Recognizing possible empirical and theoretical weaknesses of this "theory", we nevertheless believe that studies of chromohelkosis-like processes are required to understand structural variability and flexibility of the genome.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos/genética , Mosaicismo/embriologia , Envelhecimento/genética , Aneuploidia , Centrômero/genética , Criança , Instabilidade Cromossômica/fisiologia , Aberrações Cromossômicas , Transtornos Cromossômicos/genética , Cromossomos/fisiologia , Anormalidades Congênitas/genética , Variações do Número de Cópias de DNA , Diploide , Doença/genética , Feminino , Genoma/genética , Humanos , Cariotipagem/métodos , Masculino , Transtornos do Neurodesenvolvimento/genética , Federação Russa
14.
Hum Reprod ; 34(4): 758-769, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30838420

RESUMO

STUDY QUESTION: What is the accuracy of preimplantation genetic testing for aneuploidies (PGT-A) when considering human peri-implantation outcomes in vitro? STUDY ANSWER: The probability of accurately diagnosing an embryo as abnormal was 100%, while the proportion of euploid embryos classified as clinically suitable was 61.9%, yet if structural and mosaic abnormalities were not considered accuracy increased to 100%, with a 0% false positive and false negative rate. WHAT IS ALREADY KNOWN: Embryo aneuploidy is associated with implantation failure and early pregnancy loss. However, a proportion of blastocysts are mosaic, containing chromosomally distinct cell populations. Diagnosing chromosomal mosaicism remains a significant challenge for PGT-A. Although mosaic embryos may lead to healthy live births, they are also associated with poorer clinical outcomes. Moreover, the direct effects of mosaicism on early pregnancy remain unknown. Recently, developed in vitro systems allow extended embryo culture for up to 14 days providing a unique opportunity for modelling chromosomal instability during human peri-implantation development. STUDY DESIGN, SIZE, DURATION: A total of 80 embryos were cultured to either 8 (n = 7) or 12 days post-fertilisation (dpf; n = 73). Of these, 54 were PGT-A blastocysts, donated to research following an abnormal (n = 37) or mosaic (n = 17) diagnosis. The remaining 26 were supernumerary blastocysts, obtained from standard assisted reproductive technology (ART) cycles. These embryos underwent trophectoderm (TE) biopsy prior to extended culture. PARTICIPANTS/MATERIALS, SETTING, METHODS: We applied established culture protocols to generate embryo outgrowths. Outgrowth viability was assessed based on careful morphological evaluation. Nine outgrowths were further separated into two or more portions corresponding to inner cell mass (ICM) and TE-derived lineages. A total of 45 embryos were selected for next generation sequencing (NGS) at 8 or 12 dpf. We correlated TE biopsy profiles to both culture outcomes and the chromosomal status of the embryos during later development. MAIN RESULTS AND THE ROLE OF CHANCE: Of the 73 embryos cultured to 12 dpf, 51% remained viable, while 49% detached between 8 and 12 dpf. Viable, Day 12 outgrowths were predominately generated from euploid blastocysts and those diagnosed with trisomies, duplications or mosaic aberrations. Conversely, monosomies, deletions and more complex chromosomal constitutions significantly impaired in vitro development to 12 dpf (10% vs. 77%, P < 0.0001). When compared to the original biopsy, we determined 100% concordance for uniform numerical aneuploidies, both in whole outgrowths and in the ICM and TE-derived outgrowth portions. However, uniform structural variants were not always confirmed later in development. Moreover, a high proportion of embryos originally diagnosed as mosaic remained viable at 12 dpf (58%). Of these, 71% were euploid, with normal profiles observed in both ICM and TE-derived lineages. Based on our validation data, we determine a 0% false negative and 18.5% false positive error rate when diagnosing mosaicism. Overall, our findings demonstrate a diagnostic accuracy of 80% in the context of PGT-A. Nevertheless, if structural and mosaic abnormalities are not considered, accuracy increases to 100%, with a 0% false positive and false negative rate. LIMITATIONS REASONS FOR CAUTION: The inherent limitations of extended in vitro culture, particularly when modelling critical developmental milestones, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS: Our findings echo current prenatal testing data and support the high clinical predictive value of PGT-A for diagnosing uniform numerical aneuploidies, as well as euploid chromosomal constitutions. However, distinguishing technical bias from biological variability will remain a challenge, inherently limiting the accuracy of a single TE biopsy for diagnosing mosaicism. STUDY FUNDING, COMPETING INTEREST(S): This research is funded by the Ghent University Special Research Fund (BOF01D08114) awarded to M.P., the Research Foundation-Flanders (FWO.KAN.0005.01) research grant awarded to B.H. and De Snoo-van't Hoogerhuijs Stichting awarded to S.M.C.d.S.L. We thank Ferring Pharmaceuticals (Aalst, Belgium) for their unrestricted educational grant. The authors declare no competing interests. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Aneuploidia , Técnicas de Cultura Embrionária/métodos , Implantação do Embrião/genética , Testes Genéticos/métodos , Mosaicismo/embriologia , Diagnóstico Pré-Implantação/métodos , Adulto , Biópsia/métodos , Blastocisto/metabolismo , Blastocisto/patologia , Confiabilidade dos Dados , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imagem Óptica , Gravidez , Adulto Jovem
15.
Acta Endocrinol (Buchar) ; 14(4): 527-532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31149308

RESUMO

BACKGROUND: Mosaic karyotype 45,X/46,XY related mixed gonadal dysgenesis. AIM: To report a case of mosaic karyotype and petroclival meningioma. METHODS: Presentation of a clinical case with comments. RESULTS: The case of a 37-year-old woman mosaic karyotype - 45,X/46,XY, infertility, virilisation, Turner syndrome-like phenotype, primary amenorrhea, the absence of labia majora and petroclival meningioma. Concentrations of dehydroepiandrosterone sulphate (DHEAS), testosterone, luteinizing hormone (LH) and follicular stimulating hormone (FSH) were increased indicating hypergonadotropic hypogonadism. Low and high dose dexamethasone suppression tests demonstrated incomplete suppression of DHEAS concentration without connection between pulses of LH/FSH and DHEAS. Response to adrenocorticotropic hormone (ACTH) was normal. The morning/evening concentration ratio of DHEAS was very low in comparison with cortisol, ACTH and testosterone. Head magnetic resonance imaging (MRI) demonstrated petroclival meningioma without any adrenal or ovary abnormality. Menstruation started after treatment with 2 mg of estradiol. At control visit 1.5 years later she had no complaints. MRI did not demonstrate any signs of tumour progression. CONCLUSIONS: The main lesson learned from this case is that in searching the DHEAS secreting tumours one can find unusual cases with sustained high DHEAS and lack of confirmations of polycystic ovary syndrome, adrenal or ovary tumours using available ultrasound, CT and MRI.

16.
Am J Med Genet A ; 170A(1): 243-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26436922

RESUMO

We report on a unique case of a mosaic 20pter-p13 deletion due to a somatic repair event identified by allele differentiating single nucleotide polymorphism (SNP) probes on chromosomal microarray. Small terminal deletions of 20p have been reported in a few individuals and appear to result in a variable phenotype. This patient was a 24-month-old female who presented with failure to thrive and speech delay. Chromosomal microarray analysis (CMA) performed on peripheral blood showed a 1.6 Mb deletion involving the terminus of 20p (20pter-20p13). This deletion appeared mosaic by CMA and this suspicion was confirmed by fluorescence in situ hybridization (FISH) analysis. Additionally, the deletion interval at 20p was directly adjacent to 15 Mb of mosaic copy-neutral loss of heterozygosity (LOH). The pattern of SNP probes was highly suggestive of a somatic repair event that resulted in rescue of the deleted region using the non-deleted homologue as a template. Structural mosaicism is rare and most often believed to be due to a postzygotic mechanism. This case demonstrates the additional utility of allele patterns to help distinguish mechanisms and in this case identified the possibility of either a post-zygotic repair of a germline deletion or a post-zygotic deletion with somatic recombination repair in a single step.


Assuntos
Cromossomos Humanos Par 20/genética , Insuficiência de Crescimento/genética , Transtornos do Desenvolvimento da Linguagem/genética , Mosaicismo , Deleção de Sequência/genética , Pré-Escolar , Feminino , Humanos , Hibridização in Situ Fluorescente , Megalencefalia/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética
17.
J Pers Med ; 14(7)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39064028

RESUMO

Genetic disorders represent a high-impact diagnosis for both patients and their families. Prenatal screening methods and, when recommended, genetic testing allow parents to make informed decisions about the course a pregnancy is going to take. Although offering certainty about the potential evolution and prognosis of the pregnancy, and then the newborn, is usually not possible, genetic counseling can offer valuable insights into genetic disorders. Chromosomal mosaicisms are genetic anomalies that affect only some cell lines in either the fetus or the placenta or both. They can affect autosomal or heterosomal chromosomes, and they can be either numerical or structural. The prognosis seems to be more severe if the genetic alterations are accompanied by malformations visible in ultrasounds. Several genetic techniques can be used to diagnose certain mosaicisms, depending on their nature. A novel approach in prenatal care is non-invasive prenatal screening (NIPS), also known as non-invasive prenatal testing (NIPT), which, although it does not always have diagnostic value, can provide valuable information about potential genetic anomalies, especially numerical, with high sensitivity (Se).

18.
Methods Mol Biol ; 2825: 67-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38913303

RESUMO

Somatic chromosomal mosaicism, chromosome instability, and cancer are intimately linked together. Addressing the role of somatic genome variations (encompassing chromosomal mosaicism and instability) in cancer yields paradoxical results. Firstly, somatic mosaicism for specific chromosomal rearrangement causes cancer per se. Secondly, chromosomal mosaicism and instability are associated with a variety of diseases (chromosomal disorders demonstrating less severe phenotypes, complex diseases), which exhibit cancer predisposition. Chromosome instability syndromes may be considered the best examples of these diseases. Thirdly, chromosomal mosaicism and instability are able to result not only in cancerous diseases but also in non-cancerous disorders (brain diseases, autoimmune diseases, etc.). Currently, the molecular basis for these three outcomes of somatic chromosomal mosaicism and chromosome instability remains incompletely understood. Here, we address possible mechanisms for the aforementioned scenarios using a system analysis model. A number of theoretical models based on studies dedicated to chromosomal mosaicism and chromosome instability seem to be valuable for disentangling and understanding molecular pathways to cancer-causing genome chaos. In addition, technological aspects of uncovering causes and consequences of somatic chromosomal mosaicism and chromosome instability are discussed. In total, molecular cytogenetics, cytogenomics, and system analysis are likely to form a powerful technological alliance for successful research against cancer.


Assuntos
Instabilidade Cromossômica , Mosaicismo , Neoplasias , Humanos , Neoplasias/genética , Aberrações Cromossômicas
19.
Eur J Obstet Gynecol Reprod Biol ; 300: 12-16, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38972161

RESUMO

OBJECTIVE: In preimplantation genetic testing for aneuploidy, opinions regarding the handling of mosaic embryos vary. In this study, we aimed to investigate the effects of freeze-thawing, the number of cells obtained, and the number of laser irradiation cycles on the degree of embryonic mosaicism. STUDY DESIGN: This study was conducted in three parts. First, we classified specimens into the normal biopsy (control) (119 patients, 304 blastocysts) and thawed-biopsy (TB group) (26 patients, 72 blastocysts)) groups. The control and TB groups were then classified into three categories (euploidy, mosaic and aneuploidy) according to next-generation sequencing (NGS) results, and the number of cells collected and laser irradiation cycles were compared for each category. Subsequently, the effects of differences in the number of cells collected and laser irradiation cycles on NGS results were investigated in the control and TB groups. Finally, data on cell collection and laser irradiation cycles and NGS analysis results for the groups were compared. RESULTS: The TB group had a significantly higher incidence of chromosomal mosaicism than the control group. Neither the number of cells collected nor the laser irradiation cycles affected the percentage of chromosomal mosaicism. However, the freeze-thaw process increased the occurrence of mosaicism. CONCLUSIONS: This study showed that repeated freeze-thaw cycles increase the incidence of mosaicism, but the embryos are not aneuploid and are therefore suitable for transfer.


Assuntos
Aneuploidia , Criopreservação , Mosaicismo , Diagnóstico Pré-Implantação , Humanos , Mosaicismo/embriologia , Diagnóstico Pré-Implantação/métodos , Feminino , Adulto , Testes Genéticos/métodos , Blastocisto/efeitos da radiação , Gravidez , Lasers
20.
Life (Basel) ; 14(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39063601

RESUMO

Turner syndrome (TS) is caused by a complete or partial absence of an X or Y chromosome, including chromosomal mosaicism, affecting 1 in 2500 female live births. Sister chromatid exchange (SCE) is used as a sensitive indicator of spontaneous chromosome instability. Cells from mosaic patients constitute useful material for SCE evaluations as they grow under the influence of the same genetic background and endogenous and exogenous factors. We evaluated the proliferation dynamics and SCE frequencies of 45,X and 46,XN cells of 17 mosaic TS patients. In two participants, the 45,X cells exhibited a proliferative disadvantage in relation to 46,XN cells after 72 h of cultivation. The analysis of the mean proliferation index (PI) showed a trend for a significant difference between the 45,X and 46,X+der(X)/der(Y) cell lineages; however, there were no intra-individual differences. On the other hand, mean SCE frequencies showed that 46,X+der(X) had the highest mean value and 46,XX the lowest, with 45,X occupying an intermediate position among the lineages found in at least three participants; moreover, there were intra-individual differences in five patients. Although 46,X+der(X)/der(Y) cell lineages, found in more than 70% of participants, were the most unstable, they had a slightly higher mean PI than the 45,X cell lineages in younger (≤17 years) mosaic TS participants. This suggests that cells with a karyotype distinct from 45,X may increase with time in mosaic TS children and adolescents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa