Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Biochemistry (Mosc) ; 88(9): 1284-1295, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37770395

RESUMO

Structure of the chymosin gene of Siberian roe deer (Capreolus pygargus) was established for the first time and its exon/intron organization was determined. Coding part of the chymosin gene of C. pygargus was reconstructed by the Golden Gate method and obtained as a DNA clone. Comparative sequence analysis of the roe deer, cow, and one-humped camel prochymosins revealed a number of amino acid substitutions at the sites forming the substrate-binding cavity of the enzyme and affecting the S4 and S1' + S3' specificity subsites. Integration vector pIP1 was used to construct a plasmid pIP1-Cap in order to express recombinant roe deer prochymosin gene in CHO-K1 cells. CHO-K1-CYM-Cap pool cells were obtained, allowing synthesis and secretion of recombinant prochymosin into the culture fluid. As a result of zymogen activation, a recombinant roe deer chymosin was obtained and its total milk-clotting activity was estimated to be 468.4 ± 11.1 IMCU/ml. Yield of the recombinant roe deer chymosin was 500 mg/liter or ≈468,000 IMCU/liter, which exceeds the yields of genetically engineered chymosins in most of the expression systems used. Basic biochemical properties of the obtained enzyme were compared with the commercial preparations of recombinant chymosins from one-humped camel (Camelus dromedarius) and cow (Bos taurus). Specific milk-clotting activity of the recombinant chymosin of C. pygargus was 938 ± 22 IMCU/mg, which was comparable to that of the reference enzymes. Non-specific proteolytic activity of the recombinant roe deer chymosin was 1.4-4.5 times higher than that of the cow and camel enzymes. In terms of coagulation specificity, recombinant chymosin of C. pygargus occupied an intermediate position between the genetically engineered analogs of B. taurus and C. dromedarius chymosins. Thermostability threshold of the recombinant roe deer chymosin was 55°C. At 60°C, the enzyme retained <1% of its initial milk-clotting activity, and its complete thermal inactivation was observed at 65°C.


Assuntos
Cervos , Feminino , Bovinos , Animais , Cervos/genética , Quimosina/genética , Camelus , Técnicas de Cultura de Células
2.
J Environ Sci Health B ; 58(1): 10-20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36622369

RESUMO

Tofu whey is a pale-yellowish liquid with specific aroma/taste which remains as the byproduct/waste after tofu squeezing and represents an environmental problem for direct disposal. Understanding the fresh tofu whey protein composition and the activity of bioactive peptides could be useful for the application of tofu whey as a functional food additive. Tofu whey was obtained during the tofu production from six soybean genotypes by hydrothermal processing in combination with chymosin-pepsin rennet. Basic 7S globulin (14.28-19.13%), γ-conglycinin (7.73-9.31%) and ß-conglycinin (10.59-12.90%) were registered of the total extracted proteins. Glycinin was present with a dominant share of acidic (24.64-27.55%) versus basic polypeptides (12.18-14.61%) in the total extracted proteins. High content of total protein (22.67-28.00%), balanced content (9.76-13.33% of the total extracted proteins) and residual activity (1.95-3.76%) of trypsin inhibitors and low lectins content (5.04-5.48% of the total extracted proteins) indicate good nutritional value of the tofu whey samples. Tofu whey can be potentially useful for application as a cheap, nutritional and functional food additive and can enable sustainable production through the recycling of waste.


Assuntos
Alimentos de Soja , Soro do Leite , Proteínas do Soro do Leite , Glycine max/química
3.
Protein Expr Purif ; 183: 105874, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33744413

RESUMO

This study was conducted for investigating expression and enzymatic characteristics of recombinant Oryctolagus cuniculus chymosin (ROCC) expressed in Pichia pastoris. SDS-PAGE of partially purified supernatant displayed two distinct molecular bands approximately at the sizes of 40 kDa and 45 kDa corresponding to chymosin and partially glycosylated chymosin, respectively. Proteolysis assay demonstrated that rabbit chymosin was more specific compared to bovine and camel chymosins when it comes to hydrolyzing α, ß, and κ-casein. Rabbit chymosin kept its stability in a wide pH range (3.0-6.0) at 37 °C for 8 h. Active chymosin exhibited maximum enzymatic activity at 40 °C and pH 4.0 with the addition of 75 mM CaCl2. The ROCC clotting activity on donkey, cow, goat, lamb, camel milk was determined as 40, 10, 5.7, 3.07, and 2.66 IMCU/mL, respectively. These results revealed that ROCC might possess a potential for incorporation into cheese manufacture technology as a milk-clotting enzyme.


Assuntos
Quimosina , Expressão Gênica , Saccharomycetales , Animais , Quimosina/biossíntese , Quimosina/química , Quimosina/genética , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
J Appl Microbiol ; 130(5): 1645-1655, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33064920

RESUMO

AIMS: To develop a predictive model for Escherichia coli using deep neural networks. METHODS AND RESULTS: Batch experiments are conducted at different temperatures closer to optimum value (36·5°C, 37°C, 37·5°C, 38°C and 38·5°C) to obtain the growth curves of E .coli K-12. Two primary models namely modified Gompertz and new logistic are chosen. Three secondary models namely Gaussian, nonlinear autoregressive eXogenous (NARX) model and long short-term memory (LSTM) are developed. The novelty in this paper is the development of secondary models using artificial neural network (ANN) and deep network. The performance measures chosen to compare the developed primary and secondary models are correlation coefficient (R2 ), root-mean-square error (RMSE) and accuracy factor (Af ). Results show that modified Gompertz model has better R2 (0·99) and RMSE (0·019) when compared to new logistic model. Also, the deep network model outperforms other secondary models. Based on the primary and novel secondary model, a predictive model (tertiary model) is developed with improved accuracy and is validated. CONCLUSIONS: The proposed predictive model exhibit good validation results in terms of RMSE and R2 values and can be applied for determining the growth rate of E. coli at a particular temperature value. SIGNIFICANCE AND IMPACT OF THE STUDY: The proposed model can be used in food processing industries during enzyme production such as Chymosin, to predict the growth rate of E. coli as a function of temperature. Also, the developed LSTM and NARX models can be used to predict maximum specific growth rate of other microbial strains with proper training.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Modelos Biológicos , Redes Neurais de Computação , Indústria de Processamento de Alimentos , Reprodutibilidade dos Testes , Temperatura
5.
J Dairy Sci ; 104(3): 2511-2519, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455776

RESUMO

Chymosin is a predominant enzyme in rennet and is used in cheese production because of its excellent milk-clotting activity. Herein, we proposed a facile and label-free electrochemical method for determining chymosin activity based on a peptide-based enzyme substrate. The synthesized substrate peptide for chymosin was assembled onto the surface of the Au-deposited grassy carbon electrode. The current was proportional to chymosin activity, and thus chymosin activity could be determined. The detection ranges of chymosin activity were 2.5 to 25 U mL-1. The detection limit of chymosin activity was 0.8 U mL-1. The sensing platform was used to quantify chymosin activity in commercial rennet with high selectivity, excellent stability, and satisfactory reproducibility. We developed a facile, fast, and effective electrochemical assay for detecting chymosin activity, which has potential applications in cheesemaking.


Assuntos
Queijo , Quimosina , Animais , Leite , Peptídeos , Reprodutibilidade dos Testes
6.
J Dairy Sci ; 104(4): 3970-3979, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33663841

RESUMO

In this work, pressure-assisted enzymatic gelation was applied to milk proteins, with the goal of enhancing the structure and stability of pressure-created milk protein gels. High-pressure processing (HPP) at 600 MPa, 3 min, and 5°C was applied to milk protein concentrate (MPC) samples of 12.5% protein concentration, both in the absence and in the presence of calf chymosin [up to 60 IMCU (international milk-clotting units)/kg of milk] or camel chymosin (up to 45 IMCU/kg of milk). Gel hardness, water-holding capacity, and degree of proteolysis were used to assess network strength and shelf stability. The processing trials and all measurements were conducted in triplicate. Statistical analyses of the data were performed by ANOVA, at a 95% confidence level. After HPP treatment, we observed significant structural changes for all samples. Pressurization of MPC, with or without chymosin addition, led to extensive protein aggregation and network formation. The strength of HPP-created milk protein gels without chymosin addition, as measured by the elastic modulus (G'), had a value of 2,242 Pa. The value of G' increased with increasing chymosin concentration, reaching as high as 4,800 Pa for samples with 45 IMCU/kg of camel chymosin. During 4 wk of refrigerated storage, the HPP and chymosin MPC gels maintained higher gel hardness and better structural stability compared with HPP only (no chymosin) MPC gels. The water-holding capacity of the gels without chymosin remained at 100% during 28 d of refrigerated storage. The HPP and chymosin MPC gels had a lower water-holding capacity (91-94%) than the HPP-only counterparts, but their water-holding capacity did not decrease during storage. Overall, these findings demonstrate that controlled, fast structural modification of high-concentration protein systems can be obtained by HPP-assisted enzymatic treatment, and the created gels have a strong, stable network. This study provides insights into the possibility of using HPP for the development of milk-protein-based products with novel structures and textures and long refrigerated shelf life, along with the built-in safety imparted by the HPP treatment.


Assuntos
Quimosina , Proteínas do Leite , Animais , Géis , Concentração de Íons de Hidrogênio , Reologia
7.
Protein Expr Purif ; 154: 126-133, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30336214

RESUMO

Milk-clotting enzymes used in the dairy industry can be obtained from different sources such as plants, animals, and microorganisms. Recombinant chymosin is the best alternative for the dairy industry due to the differences in physicochemical properties of coagulating enzymes and scarcity of chymosin from animal sources. In this study, glycosylated and non-glycosylated forms of yak chymosin were extracellularly produced in a methylotrophic yeast, Komagataella phaffii (Pichia pastoris). Synthetic yak prochymosin genes were cloned into the pPICZαA vector, expressed in P. pastoris GS115 (PDI) strain. Active chymosin expression was achieved into supernatant with Saccharomyces cerevisiae α-mating factor under the control of methanol-inducible AOXI promoter. The glycosylation of yak chymosin did not have a significant effect on yield and activity at shake flask level. In a 5L fermentor, production of native yak-chymosin was achieved and the enzyme activity was found as 214 IMCU/ml. pH of 6-7 and temperature of 40 °C values were optimum for the enzyme. The laboratory scale white cheese production yield with recombinant yak chymosin was very similar to a commercial bovine chymosin. These results indicate that P. pastoris expression system is very suitable for recombinant yak chymosin production to meet the needs of the cheese industry.


Assuntos
Bovinos/genética , Quimosina , Animais , Quimosina/biossíntese , Quimosina/química , Quimosina/genética , Quimosina/isolamento & purificação , Clonagem Molecular , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
8.
J Dairy Sci ; 102(7): 5945-5956, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31079909

RESUMO

Beyaz peynir, a white brined cheese, was manufactured using different blends of camel chymosin (100, 75, 50, 25, and 0%) with calf chymosin and ripened for 90 d. The purpose of this study was to determine the best mixture of coagulant for Beyaz peynir, in terms of proteolysis, texture, and melting characteristics. The cheeses were evaluated in terms of chemical composition, levels of proteolysis, total free amino acids, texture, meltability, residual coagulant activity, microstructure, and sensory properties during 90 d of ripening. Differences in the gross chemical composition were statistically significant for all types of cheeses. Levels of proteolysis were highly dependent on the blends of the coagulants. Higher proteolysis was observed in cheeses that used a higher ratio of calf chymosin. Differences in urea-PAGE and peptide profiles of each cheese were observed as well. Meltability values proportionally increased with the higher increasing levels of calf chymosin in the blend formula. These coagulants had a slight effect on the microstructure of cheeses. The cheese made with camel chymosin had a harder texture than calf chymosin cheese, and hardness values of all cheese samples decreased during ripening. The cheeses with a high ratio of calf chymosin had higher residual enzyme activity than those made with camel chymosin. No significant difference in sensory properties was observed among the cheeses. In conclusion, cheeses made with a high level of calf chymosin had a higher level of proteolysis, residual coagulant activity, and meltability. The cheeses also had a softer texture than cheeses made with a high content of camel chymosin. Camel chymosin may be used as a coagulant alone if low or limited levels of proteolysis are desired in cheese.


Assuntos
Queijo/análise , Quimosina/metabolismo , Manipulação de Alimentos , Paladar , Animais , Animais Lactentes , Camelus , Bovinos , Relação Dose-Resposta a Droga , Proteólise , Reologia
9.
J Food Sci Technol ; 56(2): 589-598, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30906016

RESUMO

Iranian Ultrafiltered White cheese was produced by using different blends of coagulants (100:0, 75:25, 50:50, 25:75 and 0:100; Rhizomucor miehei and camel chymosin, respectively) and ripened for 90 days. The effect of different combinations of these coagulants on chemical composition, proteolysis and residual coagulant activity of the cheeses were studied. The results showed that pH, fat-in-dry matter, salt-in-dry matter and protein contents of the cheeses were significantly influenced by type and concentration of the coagulants. The difference between proteolytic activities of the two coagulants resulted in different levels of proteolysis in the cheeses. A direct relationship was determined between using higher concentrations of R. miehei and increasing the hydrolysis of αs1-casein in the cheeses, during ripening. The residual coagulant activity was influenced by the type and concentration of the coagulant as well. In conclusion, R. miehei provided a higher level of proteolysis and residual coagulant activity compared with camel chymosin.

10.
J Dairy Sci ; 101(8): 6853-6865, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29753472

RESUMO

We proposed that the performance and sensory properties of reduced-Na, low-moisture, part-skim (LMPS) Mozzarella cheese could be extended by the application of high hydrostatic pressure (HHP) to cheese postmanufacture and thereby decrease microbial and enzymatic activity. Fermentation-produced camel chymosin was also used as a coagulant to help reduce proteolysis during storage. Average composition of the LMPS Mozzarella cheeses was 48.6 ± 0.6% moisture, 22.5 ± 0.4% fat, 24.5 ± 0.6% protein, and 1.0 ± 0.1% NaCl. Blocks of cheeses were divided into 3 groups randomly after manufacture and stored at approximately 4°C for 20 wk. The control group was not HHP treated. Two weeks after manufacture, 2 groups of cheese samples were treated with HHP at 500 or 600 MPa for 3 min and then returned to storage at approximately 4°C. Analysis was performed during 20 wk of storage after cheese manufacture. Texture profile analysis (TPA) and dynamic low-amplitude oscillatory rheology were used to monitor cheese functionality. Quantitative descriptive analysis was conducted with 9 trained panelists using a 15-point scale to evaluate texture and flavor attributes of unmelted cheese as well as cheeses melted on pizzas. Pressure treatments at 500 and 600 MPa resulted in approximately 1 and 2 log reduction in the numbers of starter culture, respectively, compared with the control when measured 1 d after HHP treatment. Starter numbers continued to decrease in all cheeses over the 20 wk of storage, but the decrease was larger in the HHP-treated cheeses. Even though the initial numbers of nonstarter lactic acid bacteria were the same in all cheeses, the numbers of these bacteria increased faster in the control cheeses. High-pressure treatment of LMPS Mozzarella cheese resulted in an initial (1 d after HHP treatment) increase in pH, but by 2 wk after HHP treatment there was no statistical difference in pH values between control and HHP-treated samples. Immediately after treatment, HHP-treated cheeses exhibited significantly lower TPA and sensory (unmelted) hardness. However, by 14 wk after pressure treatment, the 600-MPa HHP-treated cheese had significantly higher TPA compared with control or 500-MPa HHP-treated cheeses. Sensory panels also indicated that by 14 wk after HHP treatment, the 600-MPa treated samples were significantly firmer than the control or 500-MPa treated cheeses. Compared with control cheese, cheeses treated at 600 or 500 MPa exhibited lower water-soluble nitrogen values at 6 and 10 wk after pressure treatment, respectively. By 10 wk after pressure treatment, the levels of intact αS1-casein were significantly higher in all HHP-treated cheeses compared with the control. Pizza sensory panels indicated that 600-MPa treated cheese was significantly chewier and exhibited lower blister quantity and higher strand thickness compared with control cheeses. High hydrostatic pressure treatment of low-Na, LMPS Mozzarella cheese could result in the extension of its desired baking characteristics when the cheese is stored at refrigerated temperature.


Assuntos
Queijo/normas , Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Refrigeração , Animais , Quimosina , Concentração de Íons de Hidrogênio , Sódio
11.
Mol Phylogenet Evol ; 116: 78-86, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28851538

RESUMO

Gene duplication and loss are powerful drivers of evolutionary change. The role of loss in phenotypic diversification is notably illustrated by the variable enzymatic repertoire involved in vertebrate protein digestion. Among these we find the pepsin family of aspartic proteinases, including chymosin (Cmy). Previous studies demonstrated that Cmy, a neo-natal digestive pepsin, is inactivated in some primates, including humans. This pseudogenization event was hypothesized to result from the acquisition of maternal immune immunoglobulin G (IgG) transfer. By investigating 94 mammalian subgenomes we reveal an unprecedented level of Cmy erosion in placental mammals, with numerous independent events of gene loss taking place in Primates, Dermoptera, Rodentia, Cetacea and Perissodactyla. Our findings strongly suggest that the recurrent inactivation of Cmy correlates with the evolution of the passive transfer of IgG and uncovers a noteworthy case of evolutionary cross-talk between the digestive and the immune system, modulated by gene loss.


Assuntos
Quimosina/genética , Mamíferos/genética , Animais , Quimosina/deficiência , Evolução Molecular , Deleção de Genes , Humanos , Sistema Imunitário/metabolismo , Imunoglobulina G/metabolismo , Mamíferos/classificação , Mamíferos/imunologia , Filogenia
12.
Protein Expr Purif ; 135: 78-82, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28526454

RESUMO

Chymosin is widely used in the dairy industry, and much is produced through recombinant DNA in organisms such as bacteria and tobacco. In this study, we used a new transgenic method to express caprine chymosin in corn seeds with lower cost and better storage capability. The recombinant chymosin protein was successfully expressed at an average level of 0.37 mg/g dry weight, which is 0.27% of the total soluble protein in the corn seed. Prochymosin can be activated to produce a chymosin protein with the ability to induce clotting in milk, similar to the commercial protein. The activity of the purified recombinant chymosin was as high as 178.5 U/mg. These results indicate that we have successfully established a technology for generating corn seed-derived caprine chymosin for potential use in the dairy industry.


Assuntos
Quimosina/biossíntese , Vetores Genéticos/química , Plantas Geneticamente Modificadas , Sementes/genética , Zea mays/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Animais , Quimosina/genética , Quimosina/isolamento & purificação , Quimosina/farmacologia , Clonagem Molecular , Ensaios Enzimáticos , Floculação/efeitos dos fármacos , Tecnologia de Alimentos , Expressão Gênica , Vetores Genéticos/metabolismo , Globulinas/genética , Globulinas/metabolismo , Cabras , Cinética , Leite/química , Leite/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Sementes/enzimologia , Transformação Genética , Zea mays/enzimologia
13.
Protein Expr Purif ; 123: 112-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27033608

RESUMO

An intense screening of Pichia pastoris clones transformed with the gene of bovine chymosin under methanol-inducible AOX1 promoter was performed, obtaining a transformant clone with a higher milk-clotting activity value in comparison with our previous studies. The scaling of recombinant-chymosin production was carried out by a fed-batch strategy in a stirred-tank bioreactor using biodiesel-byproduct crude glycerol as the carbon source and pure methanol for the induction of chymosin expression, achieving a biomass concentration of 158 g DCW/L and a maximum coagulant activity of 192 IMCU/ml after 120 h of methanol induction. Recombinant bovine chymosin was purified from bioreactor-fermentation culture by a procedure including anion-exchange chromatography which allowed obtaining heterologous chymosin with high level of purity and activity; suggesting that this downstream step could be scaled up in a successful manner for chymosin purification. Thermoestability assay permitted to establish that unformulated recombinant chymosin could be stored at 5 °C without decrease of enzyme activity throughout at least 120 days. Finally, reiterative methanol-inductions of recombinant chymosin expression in bioreactor demonstrated that the reutilization of cell biomass overcame the low enzyme productivity usually reached by P. pastoris system.


Assuntos
Reatores Biológicos , Quimosina/genética , Pichia/genética , Animais , Biocombustíveis/análise , Biocombustíveis/microbiologia , Bovinos , Cromatografia por Troca Iônica , Quimosina/química , Quimosina/isolamento & purificação , Quimosina/metabolismo , Estabilidade Enzimática , Fermentação , Glicerol/metabolismo , Microbiologia Industrial/instrumentação , Pichia/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
14.
Int J Mol Sci ; 17(5)2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27136529

RESUMO

Chymosin (also known as rennin) plays an essential role in the coagulation of milk in the cheese industry. Chymosin is traditionally extracted from the rumen of calves and is of high cost. Here, we present an alternative method to producing bovine chymosin from transgenic tobacco plants. The CYM gene, which encodes a preprochymosin from bovine, was introduced into the tobacco nuclear genome under control of the viral 35S cauliflower mosaic promoter. The integration and transcription of the foreign gene were confirmed with Southern blotting and reverse transcription PCR (RT-PCR) analyses, respectively. Immunoblotting analyses were performed to demonstrate expression of chymosin, and the expression level was quantified by enzyme-linked immunosorbent assay (ELISA). The results indicated recombinant bovine chymosin was successfully expressed at an average level of 83.5 ng/g fresh weight, which is 0.52% of the total soluble protein. The tobacco-derived chymosin exhibited similar native milk coagulation bioactivity as the commercial product extracted from bovine rumen.


Assuntos
Quimosina/metabolismo , Nicotiana/metabolismo , Animais , Southern Blotting , Bovinos , Caulimovirus/genética , Quimosina/genética , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Immunoblotting , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética
15.
Prep Biochem Biotechnol ; 46(6): 596-601, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26445310

RESUMO

In recent years, various studies in the field of industrial enzymes of biotechnology have gained importance due to increasing development in enzyme technology. The different areas where enzymes are used and their economic value of biotechnological products further increases their importance. There are hundreds of different types of cheese but each is made by coagulating milk using rennet to give curds. Today, researchers have begun to develop alternative systems in the cheese industry related to milk-clotting enzymes. In this study, the nucleic acid sequence encoding the optimized chymosin enzyme was used and cloned by Not I and Mlu I restriction enzymes into pTOLT vector system. Then using this construct, the enzyme as a fusion with Tol-A-III protein was produced in Escherichia coli BL21 (DE3) cells. After disrupting the E. coli cell and separating from the constituents by high speed centrifugation, the enzyme was purified by affinity chromatography and fractions were analyzed by SDS-PAGE. Purified enzyme has shown its activity. Optimum temperature and pH of CHY-Tol-A-III protein were 40°C and 6.5, respectively.


Assuntos
Quimosina/genética , Animais , Sequência de Bases , Cromatografia de Afinidade , Quimosina/química , Quimosina/isolamento & purificação , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Plasmídeos , Proteólise , Homologia de Sequência do Ácido Nucleico , Temperatura
16.
Asian-Australas J Anim Sci ; 29(9): 1363-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27004812

RESUMO

Rennet, a complex of enzymes found in the stomachs of ruminants, is an important component for cheese production. In our study, we described that yak chymosin gene recombinant Pichia pastoris strain could serve as a novel source for rennet production. Yaks total RNA was extracted from the abomasum of an unweaned yak. The yak preprochymosin, prochymosin, and chymosin genes from total RNA were isolated using gene specific primers based on cattle chymosin gene sequence respectively and analyzed their expression pattern byreal time-polymerase chain reaction. The result showed that the chymosin gene expression level of the sucking yaks was 11.45 times higher than one of adult yaks and yak chymosin belongs to Bovidae family in phylogenetic analysis. To express each, the preprochymosin, prochymosin, and chymosin genes were ligated into the expression vector pPICZαA, respectively, and were expressed in Pichia pastoris X33. The results showed that all the recombinant clones of P. pastoris containing the preprochymosin, prochymosin or chymosin genes could produce the active form of recombinant chymosin into the culture supernatant. Heterologous expressed prochymosin (14.55 Soxhlet unit/mL) had the highest enzyme activity of the three expressed chymosin enzymes. Therefore, we suggest that the yak chymosin gene recombinant Pichia pastoris strain could provide an alternative source of rennet production.

17.
Protein Expr Purif ; 111: 75-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25837439

RESUMO

Chymosin efficiently coagulates milk and so is widely used in commercial cheese production. Traditional chymosin production requires the slaughter of a large numbers of unweaned calves. In the present study, a full-length camel prochymosin gene was synthesized and cloned into the pPIC9K vector, which was then inserted into the yeast strain, Pichia pastoris GS115. Expression of the chymosin gene in yeast was under the control of an AOX1 inducible promoter. The yeast system produced approximately 37mg/L of recombinant enzyme under lab conditions. SDS-PAGE of the raw supernatant revealed two molecular bands, which were approximately 42kDa and 45kDa in size. The 45kDa band disappeared after treatment of the supernatant with N-glycosidase F (PNGase F), indicating that the recombinant protein was partially glycosylated. When subjected to a low pH, recombinant prochymosin was converted into mature and active chymosin. The active chymosin was capable of specifically hydrolyzing κ-casein. A pH of 5.04, and temperature range of 45-50°C, was optimum for milk clotting activity. Maximum milk clotting activity was detected with the inclusion of 20-40mM CaCl2. The recombinant enzyme was highly active and stable over a wide pH range (from 2.5 to 6.5) at 20°C for 8h. Thermostability of the recombinant enzyme was also analyzed. Pilot-scale production (300mg/L) was attained using a 5L fermenter. We demonstrated that expression of the camel chymosin gene in P. pastoris could represent an excellent system for producing active camel chymosin for potential use in the commercial production of cheese.


Assuntos
Quimosina/biossíntese , Quimosina/química , Expressão Gênica , Pichia/metabolismo , Animais , Camelus , Quimosina/genética , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
18.
J Dairy Sci ; 98(12): 8454-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454287

RESUMO

Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble calcium present after reconstitution. This work, testing the chymosin-induced gelation behavior of various reconstituted MPC samples, clearly demonstrated that a decrease in pH to 6.0 during membrane filtration affects the integrity of the casein micelles supramolecular structure with important consequences to their processing functionality.


Assuntos
Cálcio/análise , Filtração/métodos , Manipulação de Alimentos/métodos , Alimentos em Conserva/análise , Proteínas do Leite/análise , Leite/química , Animais , Caseínas/análise , Caseínas/química , Quimosina/química , Eletroforese em Gel de Poliacrilamida , Géis/química , Gluconatos , Concentração de Íons de Hidrogênio , Lactonas , Micelas , Diálise Renal , Solubilidade
19.
J Dairy Res ; 82(3): 375-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25876792

RESUMO

In this work, we studied the influence of the type of coagulant enzyme and the curd scalding temperature on the proteolysis and residual coagulant and plasmin activities of a cooked cheese, Reggianito, in the interest of reducing ripening time. A two-factor experimental design was applied in two levels: type of coagulant enzyme, bovine chymosin or camel chymosin, and curd scalding temperature, 50 or 56 °C. The experimental treatments were applied in Reggianito cheese making experiments, and the samples were ripened for 90 d at 12 °C. Scalding temperature influenced residual coagulant activity; the cheeses cooked at 50 °C had significantly higher activity than those treated at 56 °C. In contrast, scalding temperature did not modify plasmin activity. Proteolysis was primarily affected by curd cooking temperature because chymosin-mediated hydrolysis of αs1 casein was slower in cheeses treated at 56 °C. Additionally, the nitrogen content in the cheese soluble fractions was consistently lower in the cheeses scalded at 56 °C than those cooked at 50 °C. A significant influence of the type of coagulant enzyme was observed, especially in the nitrogen fractions and peptide profiles, which demonstrated that camel chymosin was slightly less proteolytic; however, these differences were lower than those caused by the scalding temperature.


Assuntos
Queijo/análise , Quimosina/metabolismo , Fibrinolisina/metabolismo , Manipulação de Alimentos/métodos , Temperatura Alta , Proteólise , Animais , Argentina , Camelus , Caseínas/metabolismo , Bovinos , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Peptídeos/análise
20.
Protein Expr Purif ; 104: 85-91, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25278015

RESUMO

A clone of the methylotrophic yeast Pichia pastoris strain GS115 transformed with the bovine prochymosin B gene was used to optimize the production and downstream of recombinant bovine chymosin expressed under the methanol-inducible AOXI promoter. Cell growth and recombinant chymosin production were analyzed in flask cultures containing basal salts medium with biodiesel-byproduct glycerol as the carbon source, obtaining values of biomass level and milk-clotting activity similar to those achieved with analytical glycerol. The effect of biomass level at the beginning of methanol-induction phase on cell growth and chymosin expression was evaluated, determining that a high concentration of cells at the start of such period generated an increase in the production of chymosin. The impact of the specific growth rate on chymosin expression was studied throughout the induction stage by methanol exponential feeding fermentations in a lab-scale stirred bioreactor, achieving the highest production of heterologous chymosin with a constant specific growth rate of 0.01h(-1). By gel filtration chromatography performed at a semi-preparative scale, recombinant chymosin was purified from exponential fed-batch fermentation cultures, obtaining a specific milk-clotting activity of 6400IMCU/mg of chymosin and a purity level of 95%. The effect of temperature and pH on milk-clotting activity was analyzed, establishing that the optimal temperature and pH values for the purified recombinant chymosin are 37°C and 5.5, respectively. This study reported the features of a sustainable bioprocess for the production of recombinant bovine chymosin in P. pastoris by fermentation in stirred-tank bioreactors using biodiesel-derived glycerol as a low-cost carbon source.


Assuntos
Quimosina/isolamento & purificação , Metanol/química , Pichia/genética , Regiões Promotoras Genéticas , Animais , Técnicas de Cultura Celular por Lotes , Biocombustíveis , Biomassa , Reatores Biológicos , Bovinos , Quimosina/biossíntese , Fermentação , Expressão Gênica , Glicerol/química , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa