Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Annu Rev Microbiol ; 75: 673-693, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351790

RESUMO

Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections.


Assuntos
Quitridiomicetos , Micoses , Anfíbios/microbiologia , Animais , Micoses/microbiologia , Micoses/veterinária , Virulência
2.
Proc Natl Acad Sci U S A ; 120(2): e2212633120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595674

RESUMO

The origins and evolution of virulence in amphibian-infecting chytrids Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are largely unknown. Here, we use deep nanopore sequencing of Bsal and comparative genomics against 21 high-quality genome assemblies that span the fungal Chytridiomycota. We discover that Bsal has the most repeat-rich genome of the Chytridiomycota, comprising 40.9% repetitive elements; this genome has expanded to more than 3× the length of its conspecific Bd, with autonomous and fully functional LTR/Gypsy elements contributing significantly to the expansion. The M36 metalloprotease virulence factors are highly expanded (n = 177) in Bsal, most of which (53%) are flanked by transposable elements, suggesting they have a repeat-associated expansion. We find enrichment upstream of M36 metalloprotease genes of three novel repeat families belonging to the repeat superfamily of LINEs that are implicated with gene copy number variations. Additionally, Bsal has a highly compartmentalized genome architecture, with virulence factors enriched in gene-sparse/repeat-rich compartments, while core conserved genes are enriched in gene-rich/repeat-poor compartments. Genes upregulated during infection are primarily found in the gene-sparse/repeat-rich compartment in both Bd and Bsal. Furthermore, genes with signatures of positive selection in Bd are enriched in repeat-rich regions, suggesting these regions are a cradle for the evolution of chytrid pathogenicity. These are the hallmarks of two-speed genome evolution, and this study provides evidence of two-speed genomes in an animal pathogen, shedding light on the evolution of fungal pathogens of vertebrates driving global declines and extinctions.


Assuntos
Quitridiomicetos , Micoses , Animais , Virulência/genética , Micoses/veterinária , Micoses/microbiologia , Variações do Número de Cópias de DNA , Anfíbios/microbiologia , Quitridiomicetos/genética , Fatores de Virulência , Evolução Molecular
3.
Ecol Lett ; 27(5): e14431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712705

RESUMO

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Assuntos
Batrachochytrium , Interações Hospedeiro-Patógeno , Animais , Batrachochytrium/genética , Batrachochytrium/fisiologia , Anuros/microbiologia , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Adaptação Fisiológica , Filogenia
4.
Ecol Lett ; 27(1): e14372, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288868

RESUMO

The onset of global climate change has led to abnormal rainfall patterns, disrupting associations between wildlife and their symbiotic microorganisms. We monitored a population of pumpkin toadlets and their skin bacteria in the Brazilian Atlantic Forest during a drought. Given the recognized ability of some amphibian skin bacteria to inhibit the widespread fungal pathogen Batrachochytrium dendrobatidis (Bd), we investigated links between skin microbiome health, susceptibility to Bd and host mortality during a die-off event. We found that rainfall deficit was an indirect predictor of Bd loads through microbiome disruption, while its direct effect on Bd was weak. The microbiome was characterized by fewer putative Bd-inhibitory bacteria following the drought, which points to a one-month lagged effect of drought on the microbiome that may have increased toadlet susceptibility to Bd. Our study underscores the capacity of rainfall variability to disturb complex host-microbiome interactions and alter wildlife disease dynamics.


Assuntos
Quitridiomicetos , Microbiota , Micoses , Animais , Secas , Micoses/veterinária , Anfíbios/microbiologia , Bactérias , Animais Selvagens , Pele/microbiologia
5.
Fungal Genet Biol ; 170: 103858, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101696

RESUMO

The chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen. To date, most Bd research has been restricted to the limited number of samples that could be isolated using culturing techniques, potentially causing a selection bias for strains that can grow on media and missing other unculturable or fastidious strains that are also present on amphibians. We thus attempted to characterize potentially non-culturable genetic lineages of Bd from distinct amphibian taxa using sequence capture technology on DNA extracted from host tissue and swabs. We focused our efforts on host taxa from two different regions that likely harbored distinct Bd clades: (1) wild-caught leopard frogs (Rana) from North America, and (2) a Japanese Giant Salamander (Andrias japonicus) at the Smithsonian Institution's National Zoological Park that exhibited signs of disease and tested positive for Bd using qPCR, but multiple attempts failed to isolate and culture the strain for physiological and genetic characterization. We successfully enriched for and sequenced thousands of fungal genes from both host clades, and Bd load was positively associated with number of recovered Bd sequences. Phylogenetic reconstruction placed all the Rana-derived strains in the Bd-GPL clade. In contrast, the A. japonicus strain fell within the Bd-Asia3 clade, expanding the range of this clade and generating additional genomic data to confirm its placement. The retrieved ITS locus matched public barcoding data from wild A. japonicus and Bd infections found on other amphibians in India and China, suggesting that this uncultured clade is widespread across Asia. Our study underscores the importance of recognizing and characterizing the hidden diversity of fastidious strains in order to reconstruct the spatiotemporal and evolutionary history of Bd. The success of the sequence capture approach highlights the utility of directly sequencing pathogen DNA from host tissue to characterize cryptic diversity that is missed by culture-reliant approaches.


Assuntos
Quitridiomicetos , Animais , Filogenia , Quitridiomicetos/genética , Anfíbios/genética , Anfíbios/microbiologia , Evolução Biológica , DNA
6.
Proc Biol Sci ; 291(2027): 20241157, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39081176

RESUMO

Outbreaks of emerging infectious diseases are influenced by local biotic and abiotic factors, with host declines occurring when conditions favour the pathogen. Deterioration in the population of the micro-endemic Tanzanian Kihansi spray toad (Nectophrynoides asperginis) occurred after the construction of a hydropower dam, implicating habitat modification in this species decline. Population recovery followed habitat augmentation; however, a subsequent outbreak of chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd) led to the spray toad's extinction in the wild. We show using spatiotemporal surveillance and mitogenome assembly of Bd from archived toad mortalities that the outbreak was caused by invasion of the BdCAPE lineage and not the panzootic lineage BdGPL. Molecular dating reveals an emergence of BdCAPE across southern Africa overlapping with the timing of the spray toad's extinction. That our post-outbreak surveillance of co-occurring amphibian species in the Udzungwa Mountains shows widespread infection by BdCAPE yet no signs of ill-health or decline suggests these other species can tolerate Bd when environments are stable. We conclude that, despite transient success in mitigating the impact caused by dams' construction, invasion by BdCAPE caused the ultimate die-off that led to the extinction of the Kihansi spray toad.


Assuntos
Batrachochytrium , Extinção Biológica , Genoma Mitocondrial , Micoses , Animais , Micoses/veterinária , Micoses/epidemiologia , Micoses/microbiologia , Anuros/microbiologia , Tanzânia , Bufonidae/microbiologia , Quitridiomicetos/fisiologia
7.
Conserv Biol ; : e14363, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183637

RESUMO

Finding effective pathogen mitigation strategies is one of the biggest challenges humans face today. In the context of wildlife, emerging infectious diseases have repeatedly caused widespread host morbidity and population declines of numerous taxa. In areas yet unaffected by a pathogen, a proactive management approach has the potential to minimize or prevent host mortality. However, typically critical information on disease dynamics in a novel host system is lacking, empirical evidence on efficacy of management interventions is limited, and there is a lack of validated predictive models. As such, quantitative support for identifying effective management interventions is largely absent, and the opportunity for proactive management is often missed. We considered the potential invasion of the chytrid fungus, Batrachochytrium salamandrivorans (Bsal), whose expected emergence in North America poses a severe threat to hundreds of salamander species in this global salamander biodiversity hotspot. We developed and parameterized a dynamic multistate occupancy model to forecast host and pathogen occurrence, following expected emergence of the pathogen, and evaluated the response of salamander populations to different management scenarios. Our model forecasted that taking no action is expected to be catastrophic to salamander populations. Proactive action was predicted to maximize host occupancy outcomes relative to wait-and-see reactive management, thus providing quantitative support for proactive management opportunities. The eradication of Bsal was unlikely under all the evaluated management options. Contrary to our expectations, even early pathogen detection had little effect on Bsal or host occupancy outcomes. Our results provide quantitative support that proactive management is the optimal strategy for promoting persistence of disease-threatened salamander populations. Our approach fills a critical gap by defining a framework for evaluating management options prior to pathogen invasion and can thus serve as a template for addressing novel disease threats that jeopardize wildlife and human health.


Apoyo cuantitativo para los beneficios de la gestión proactiva del control de enfermedades silvestres Resumen Uno de los mayores retos en la actualidad es encontrar estrategias eficaces de mitigación de patógenos. En el contexto de la fauna silvestre, las enfermedades infecciosas emergentes han causado en varias ocasiones una morbilidad generalizada de los hospedadores y el declive de las poblaciones de numerosos taxones. En zonas aún no afectadas por un patógeno, un enfoque de gestión proactivo tiene el potencial de minimizar o prevenir la mortalidad de los hospederos. Sin embargo, en general se carece de información crítica sobre la dinámica de la enfermedad en el nuevo sistema huésped, las pruebas empíricas sobre la eficacia de las intervenciones de gestión son limitadas y faltan modelos predictivos validados. Por lo tanto, no existe un apoyo cuantitativo para identificar intervenciones de gestión eficaces y a menudo se pierde la oportunidad de una gestión proactiva. Consideramos la posible invasión del hongo quitridio Batrachochytrium salamandrivorans (Bsal), cuya aparición prevista en América del Norte supone una grave amenaza para cientos de especies de salamandras en este punto caliente de la biodiversidad mundial de salamandras. Desarrollamos y parametrizamos un modelo dinámico de ocupación multiestado para predecir la presencia de hospederos y patógenos, tras la aparición esperada del patógeno, y evaluamos la respuesta de las poblaciones de salamandras a diferentes escenarios de gestión. Nuestro modelo predijo que no tomar ninguna medida sería catastrófico para las poblaciones de salamandras. También predijo que la acción proactiva maximizaría los resultados de ocupación de hospederos en relación con la gestión reactiva de esperar y ver, proporcionando así un apoyo cuantitativo a las oportunidades de gestión proactiva. La erradicación de Bsal fue improbable bajo todas las opciones de gestión evaluadas. Contrariamente a nuestras expectativas, incluso la detección temprana del patógeno tuvo poco efecto sobre los resultados de ocupación de Bsal o del hospedador. Nuestros resultados apoyan cuantitativamente a la gestión proactiva como la estrategia óptima para promover la persistencia de poblaciones de salamandras amenazadas por la enfermedad. Nuestro enfoque llena un vacío crítico al definir un marco para evaluar las opciones de gestión antes de la invasión de patógenos y, por lo tanto, puede servir como plantilla para hacer frente a nuevas amenazas de enfermedades que ponen en peligro la vida silvestre y la salud humana.

8.
Oecologia ; 205(3-4): 437-443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143251

RESUMO

Batrachochytrium dendrobatidis (Bd) is a pathogenic chytrid fungus that is particularly lethal for amphibians. Bd can extirpate amphibian populations within a few weeks and remain in water in the absence of amphibian hosts. Most efforts to determine Bd presence and quantity in the field have focused on sampling hosts, but these data do not give us a direct reflection of the amount of Bd in the water, which are useful for parameterizing disease models, and are not effective when hosts are absent or difficult to sample. Current methods for screening Bd presence and quantity in water are time, resource, and money intensive. Here, we developed a streamlined method for detecting Bd in water with low turbidity (e.g., water samples from laboratory experiments and relatively clear pond water from a natural lentic system). We centrifuged water samples with known amounts of Bd to form a pellet and extracted the DNA from that pellet. This method was highly effective and the resulting concentrations across all tested treatments presented a highly linear relationship with the expected values. While the experimentally derived values were lower than the inoculation doses, the values were highly correlated and a conversion factor allows us to extrapolate the actual Bd concentration. This centrifuge-based method is effective, repeatable, and would greatly expand the domain of tractable questions to be explored in the field of Bd ecology. Importantly, this method increases equity in the field, because it is time- and cost-efficient and requires few resources.


Assuntos
Batrachochytrium , Centrifugação , Animais , Microbiologia da Água , DNA Fúngico , Quitridiomicetos , Anfíbios/microbiologia
9.
Dis Aquat Organ ; 159: 15-27, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087616

RESUMO

The chytrid Batrachochytrium dendrobatidis (Bd) is a widespread fungus causing amphibian declines across the globe. Although data on Bd occurrence in Eastern Europe are scarce, a recent species distribution model (SDM) for Bd reported that western and north-western parts of Ukraine are highly suitable to the pathogen. We verified the SDM-predicted range of Bd in Ukraine by sampling amphibians across the country and screening for Bd using qPCR. A total of 446 amphibian samples (tissue and skin swabs) from 11 species were collected from 36 localities. We obtained qPCR-positive results for 33 samples including waterfrogs (Pelophylax esculentus complex) and fire- and yellow-bellied toads (Bombina spp.) from 8 localities. We found that Bd-positive localities had significantly higher predicted Bd habitat suitability than sites that were pathogen-free. Amplification and sequencing of the internal transcribed spacer (ITS) region of samples with the highest Bd load revealed matches with ITS haplotypes of the globally distributed BdGPL strain, and a single case of the BdASIA-2/BdBRAZIL haplotype. We found that Bd was non-randomly distributed across Ukraine, with infections present in the western and north-central forested peripheries of the country with a relatively cool, moist climate. On the other hand, our results suggest that Bd is absent or present in low abundance in the more continental central, southern and eastern regions of Ukraine, corroborating the model-predicted distribution of chytrid fungus. These areas could potentially serve as climatic refugia for Bd-susceptible amphibian hosts.


Assuntos
Batrachochytrium , Micoses , Ucrânia/epidemiologia , Animais , Micoses/veterinária , Micoses/epidemiologia , Micoses/microbiologia , Batrachochytrium/genética , Batrachochytrium/isolamento & purificação , Anfíbios/microbiologia , Modelos Biológicos , Quitridiomicetos/isolamento & purificação , Quitridiomicetos/genética
10.
Dis Aquat Organ ; 159: 1-7, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989788

RESUMO

Chytridiomycosis is a devastating disease and is a key cause of amphibian population declines around the world. Despite active research on this amphibian disease system for over 2 decades, we still do not have treatment methods that are safe and that can be broadly used across species. Here, we show evidence that voriconazole is a successful method of treatment for 1 species of amphibian in captivity and that this treatment could offer benefits over other treatment options like heat or itraconazole, which are not able to be used for all species and life stages. We conducted 2 treatments of chytridiomycosis using voriconazole. The treatment was effective and resulted in 100% pathogen clearance, and mortality ceased. Additionally, treating frogs with voriconazole requires less handling than treatment methods like itraconazole and requires no specialized equipment, like heat treatment. We highlight that clinical treatment trials should be conducted to identify an optimum dosage and treatment time and that trials should test whether this treatment is safe and effective for tadpoles and other species.


Assuntos
Antifúngicos , Quitridiomicetos , Micoses , Voriconazol , Animais , Voriconazol/uso terapêutico , Antifúngicos/uso terapêutico , Micoses/veterinária , Micoses/tratamento farmacológico , Micoses/microbiologia , Quitridiomicetos/efeitos dos fármacos , Anuros
11.
Dis Aquat Organ ; 158: 173-178, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813857

RESUMO

Working with aquatic organisms often requires handling multiple individuals in a single session, potentially resulting in cross-contamination by live pathogens or DNA. Most researchers address this problem by disposing of gloves between animals. However, this generates excessive waste and may be impractical for processing very slippery animals that might be easier to handle with cotton gloves. We tested methods to decontaminate cotton or nitrile gloves after contamination with cultured Batrachochytrium dendrobatidis (Bd) or after handling heavily Bd-infected Xenopus laevis with layered cotton and nitrile gloves. Bleach eliminated detectable Bd DNA from culture-contaminated nitrile gloves, but gloves retained detectable Bd DNA following ethanol disinfection. After handling a Bd-infected frog, Bd DNA contamination was greatly reduced by removal of the outer cotton glove, after which either bleach decontamination or ethanol decontamination followed by drying hands with a paper towel lowered Bd DNA below the detection threshold of our assay. These results provide new options to prevent pathogen or DNA cross-contamination, especially when handling slippery aquatic organisms. However, tradeoffs should be considered when selecting an animal handling procedure, such as the potential for cotton gloves to abrade amphibian skin or disrupt skin mucus. Disposing of gloves between animals should remain the gold standard for maintaining biosecurity in sensitive situations.


Assuntos
Descontaminação , Luvas Protetoras , Animais , Descontaminação/métodos , Luvas Protetoras/microbiologia , Batrachochytrium , DNA Fúngico , Micoses/veterinária , Micoses/prevenção & controle , Micoses/microbiologia
12.
Ecol Lett ; 26(2): 313-322, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36592335

RESUMO

The sixth mass extinction is a consequence of complex interplay between multiple stressors with negative impact on biodiversity. We here examine the interaction between two globally widespread anthropogenic drivers of amphibian declines: the fungal disease chytridiomycosis and antifungal use in agriculture. Field monitoring of 26 amphibian ponds in an agricultural landscape shows widespread occurrence of triazole fungicides in the water column throughout the amphibian breeding season, together with a negative correlation between early season application of epoxiconazole and the prevalence of chytrid infections in aquatic newts. While triazole concentrations in the ponds remained below those that inhibit growth of Batrachochytrium dendrobatidis, they bioaccumulated in the newts' skin up to tenfold, resulting in cutaneous growth-suppressing concentrations. As such, a concentration of epoxiconazole, 10 times below that needed to inhibit fungal growth, prevented chytrid infection in anuran tadpoles. The widespread presence of triazoles may thus alter chytrid dynamics in agricultural landscapes.


Assuntos
Quitridiomicetos , Micoses , Praguicidas , Animais , Melhoramento Vegetal , Micoses/epidemiologia , Micoses/veterinária , Anfíbios/microbiologia , Triazóis/farmacologia
13.
Emerg Infect Dis ; 29(2): 411-414, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692470

RESUMO

Skin fungi are among the most dangerous drivers of global amphibian declines, and few mitigation strategies are known. For Batrachochytrium salamandrivorans (Chytridiomycota), available treatments rely on temperature, partially combined with antifungal drugs. We report the clearance of B. salamandrivorans in 2 urodelan species using a solely drug-based approach.


Assuntos
Quitridiomicetos , Micoses , Animais , Micoses/veterinária , Micoses/microbiologia , Batrachochytrium , Anfíbios/microbiologia
14.
Proc Biol Sci ; 290(2007): 20230510, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752840

RESUMO

Understanding wildlife responses to novel threats is vital in counteracting biodiversity loss. The emerging pathogen Batrachochytrium salamandrivorans (Bsal) causes dramatic declines in European salamander populations, and is considered an imminent threat to global amphibian biodiversity. However, real-life disease outcomes remain largely uncharacterized. We performed a multidisciplinary assessment of the longer-term impacts of Bsal on highly susceptible fire salamander (Salamandra salamandra) populations, by comparing four of the earliest known outbreak sites to uninfected sites. Based on large-scale monitoring efforts, we found population persistence in strongly reduced abundances to over a decade after Bsal invasion, but also the extinction of an initially small-sized population. In turn, we found that host responses varied, and Bsal detection remained low, within surviving populations. Demographic analyses indicated an ongoing scarcity of large reproductive adults with potential for recruitment failure, while spatial comparisons indicated a population remnant persisting within aberrant habitat. Additionally, we detected no early signs of severe genetic deterioration, yet nor of increased host resistance. Beyond offering additional context to Bsal-driven salamander declines, results highlight how the impacts of emerging hypervirulent pathogens can be unpredictable and vary across different levels of biological complexity, and how limited pathogen detectability after population declines may complicate surveillance efforts.


Assuntos
Quitridiomicetos , Urodelos , Animais , Quitridiomicetos/fisiologia , Batrachochytrium , Anfíbios
15.
Glob Chang Biol ; 29(14): 3857-3868, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310166

RESUMO

Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.


Assuntos
Anfíbios , Raios Ultravioleta , Animais , Raios Ultravioleta/efeitos adversos , Mudança Climática , Larva , Fenótipo
16.
Ecol Appl ; 33(1): e2724, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054297

RESUMO

Novel infectious diseases, particularly those caused by fungal pathogens, pose considerable risks to global biodiversity. The amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) has demonstrated the scale of the threat, having caused the greatest recorded loss of vertebrate biodiversity attributable to a pathogen. Despite catastrophic declines on several continents, many affected species have experienced population recoveries after epidemics. However, the potential ongoing threat of endemic Bd in these recovered or recovering populations is still poorly understood. We investigated the threat of endemic Bd to frog populations that recovered after initial precipitous declines, focusing on the endangered rainforest frog Mixophyes fleayi. We conducted extensive field surveys over 4 years at three independent sites in eastern Australia. First, we compared Bd infection prevalence and infection intensities within frog communities to reveal species-specific infection patterns. Then, we analyzed mark-recapture data of M. fleayi to estimate the impact of Bd infection intensity on apparent mortality rates and Bd infection dynamics. We found that M. fleayi had lower infection intensities than sympatric frogs across the three sites, and cleared infections at higher rates than they gained infections throughout the study period. By incorporating time-varying individual infection intensities, we show that healthy M. fleayi populations persist despite increased apparent mortality associated with infrequent high Bd loads. Infection dynamics were influenced by environmental conditions, with Bd prevalence, infection intensity, and rates of gaining infection associated with lower temperatures and increased rainfall. However, mortality remained constant year-round despite these fluctuations in Bd infections, suggesting major mortality events did not occur over the study period. Together, our results demonstrate that while Bd is still a potential threat to recovered populations of M. fleayi, high rates of clearing infections and generally low average infection loads likely minimize mortality caused by Bd. Our results are consistent with pathogen resistance contributing to the coexistence of M. fleayi with endemic Bd. We emphasize the importance of incorporating infection intensity into disease models rather than infection status alone. Similar population and infection dynamics likely exist within other recovered amphibian-Bd systems around the globe, promising longer-term persistence in the face of endemic chytridiomycosis.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Anuros , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Biodiversidade
17.
Oecologia ; 202(2): 445-454, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37349661

RESUMO

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused catastrophic frog declines on several continents, but disease outcome is mediated by a number of factors. Host life stage is an important consideration and many studies have highlighted the vulnerability of recently metamorphosed or juvenile frogs compared to adults. The majority of these studies have taken place in a laboratory setting, and there is a general paucity of longitudinal field studies investigating the influence of life stage on disease outcome. In this study, we assessed the effect of endemic Bd on juvenile Mixophyes fleayi (Fleay's barred frog) in subtropical eastern Australian rainforest. Using photographic mark-recapture, we made 386 captures of 116 individuals and investigated the effect of Bd infection intensity on the apparent mortality rates of frogs using a multievent model correcting for infection state misclassification. We found that neither Bd infection status nor infection intensity predicted mortality in juvenile frogs, counter to the expectation that early life stages are more vulnerable to disease, despite average high infection prevalence (0.35, 95% HDPI [0.14, 0.52]). Additionally, we found that observed infection prevalence and intensity were somewhat lower for juveniles than adults. Our results indicate that in this Bd-recovered species, the realized impacts of chytridiomycosis on juveniles were apparently low, likely resulting in high recruitment contributing to population stability. We highlight the importance of investigating factors relating to disease outcome in a field setting and make recommendations for future studies.


Assuntos
Quitridiomicetos , Micoses , Humanos , Animais , Austrália , Anuros/microbiologia , Micoses/veterinária , Micoses/microbiologia
18.
Oecologia ; 202(1): 165-174, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37147397

RESUMO

Chytridiomycosis is affecting hundreds of amphibian species worldwide, but while in tropical areas, adult individuals have been the focus of most investigations, the exact role played by infection intensity of breeding adults is not well understood in temperate areas. We conducted mark-recapture-capture surveys during spiny common toad breeding seasons from 2006 to 2018 at the site of the first recorded outbreak of chytridiomycosis in Europe, the Peñalara Massif (Sierra de Guadarrama National Park, central Spain), and collected infection samples and several variables related to the reproductive effort of male individuals. We used general linear mixed models to evaluate the contribution of study variables on the infection loads of adult male toads exhibited at their capturing date. We also analysed the differences on several male characteristics between the pond with the largest breeding population against the rest of the ponds. We found that the duration of time spent in the waterbody and the condition of the host predicted infection loads. Animals of good physical condition, that spent longer in water, have higher infection levels than individuals with the opposite set of traits. The pond supporting the largest breeding population housed smaller male toads and in poorer condition. Our results are consistent with a shift in reproductive strategy in response to infection and potentially a strategy of tolerance, rather than resistance to infection. These findings have applications for disease mitigation and theoretical implications related to the trade-offs made and the evolution of traits in response to the disease.


Assuntos
Quitridiomicetos , Micoses , Masculino , Animais , Batrachochytrium , Quitridiomicetos/fisiologia , Melhoramento Vegetal , Bufonidae , Micoses/epidemiologia , Micoses/veterinária
19.
Dis Aquat Organ ; 155: 141-146, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706644

RESUMO

The emerging fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens hundreds of amphibian species globally. During laboratory-based experiments it is often essential to quantify live Bd cells, but a comparison of the effectiveness of methods for counting and assessing the viability of the infectious zoospore life stage has not been done. A direct comparison of staining methods that assess viability will ensure that the most accurate and efficient method is used. Here, we compared the use of 2 relatively cheap common stains, trypan blue and methylene blue, and assessed their accuracy and precision for estimating the viability of Bd zoospores during both manual counting and colorimetric assays. We stained known proportions of killed Bd zoospores (0, 0.25, 0.50, 0.75, and 1.00) with each stain and estimated the proportion of stained (dead) and unstained (viable) cells in each sample using both manual counting and colorimetric assays. Trypan blue was found to be a much more effective stain than methylene blue for both microscopy and colorimetric assays. Additionally, counting zoospores via microscopy was both a more accurate and precise technique. We recommend using manual counts via microscopy using the trypan blue stain for assessing Bd zoospore viability.


Assuntos
Batrachochytrium , Azul de Metileno , Animais , Azul Tripano , Bioensaio/veterinária
20.
J Therm Biol ; 111: 103394, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585075

RESUMO

Ectotherm body temperatures fluctuate with environmental variability and host behavior, which may influence host-pathogen interactions. Fungal pathogens are a major threat to ectotherms and may be highly responsive to the fluctuating thermal profiles of individual hosts, especially cool-loving fungi exposed to high host temperatures. However, most studies estimate pathogen thermal performance based on averages of host or surrogate environmental temperatures, potentially missing effects of short-term host temperature shifts such as daily or hourly heat spikes. We recorded individual thermal profiles of Australian rainforest frogs using temperature-sensitive radio-transmitters. We then reproduced a subset of individual thermal profiles in growth chambers containing cultures of the near-global amphibian pathogen Batrachochytrium dendrobatidis (Bd) to investigate how realistic host temperature profiles affect Bd growth. We focused on thermal profiles that exceed the thermal optimum of Bd because the effects of realistic heat spikes on Bd growth are unresolved. Our laboratory incubation experiment revealed that Bd growth varied in response to relatively small differences in heat spike characteristics of individual frog thermal profiles, such as a single degree or a few hours, highlighting the importance of individual host behaviors in predicting population-level disease dynamics. The fungus also grew better than predicted under the most extreme and unpredictable frog temperature profile, recovering from two days of extreme (nearly 32 °C) heat spikes without negative effects on overall growth, suggesting we are underestimating the growth potential of the pathogen in nature. Combined with the previous finding that Bd reduces host heat tolerance, our study suggests that this pathogen may carry a competitive edge over hosts in the face of anthropogenic climate change.


Assuntos
Quitridiomicetos , Animais , Temperatura , Austrália , Anuros/microbiologia , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa