RESUMO
The anti-atherogenic potential of liver X receptors (LXRs) has been attributed to their inhibitory role in macrophage-mediated inflammation and promotion of reverse cholesterol transport. This study aimed to evaluate the efficacy of an LXR agonist, 1,8-cineole (Eucalyptol), in atherosclerosis through network pharmacology, molecular docking, and in vivo efficacy studies in high-fat-diet-induced atherosclerosis in hamsters. Network pharmacology analysis was performed by identifying potential targets of 1,8-Cineole and atherosclerosis, followed by the construction of component-target-disease and protein-protein interaction networks. Gene Ontology and KEGG pathway enrichment analysis of targets were performed. The top 5 targets were selected for molecular docking studies. Atherosclerosis was induced in male Golden Syrian hamsters, and the results of network pharmacology were verified. Fifty-one overlapped targets were identified for 1,8-cineole and atherosclerosis. In the protein-protein interaction studies, the top 5 ranked proteins were PPARG, FXR, ABCA-1, ABCG1, and LXRΑ. KEGG pathway analysis and molecular docking showed that ABCA-1 and LXRΑ were correlated in atherosclerosis. Animal studies showed amelioration of atherosclerotic lesions in the aorta of animals treated with 1,8-cineole compared to disease control aortas. A dose-dependent attenuation in ABCA-1 levels and inflammatory markers was observed in animals treated with 1,8-cineole, comparable to its levels in normal animals. In conclusion, 1,8-cineole showed anti-atherosclerotic effects in Golden Syrian hamsters via LXRΑ-induced ABCA-1 overexpression.
RESUMO
The aim of this study was to investigate the insecticidal properties of essential oil derived from Eucalyptus cinerea leaves and its main component, 1,8-cineole, against two significant pests of stored dates, Ectomyelois ceratoniae and Ephestia kuehniella (Pyralidae). The impact of the treatment on the sensory characteristics of date fruits was assessed to verify the complete absence of off-odours and off-flavours. Gas chromatography - mass spectrometry analysis of E. cinerea essential oil revealed that the primary compound was 1,8-cineole (74.5%). Fumigant toxicity of the two pests, indicated that first instar larvae (L1) exhibited greater tolerance to E. cinerea EO and 1,8-cineole than L5, while adult forms were more susceptible than larvae. The E. cinerea EO had a noticeable pest contact activity when used at a concentration of 0.35 µL/cm2 caused 100 and 88.3% mortality to E. ceratoniae and E. kueheniella, respectively, after 1 hour of exposure. Hedonic evaluation showed that consumers' appreciation of fumigated dates was not significantly different to the no treated dates.
RESUMO
Food-borne pathogenic bacteria are a major public health concern globally. Traditional control methods using antibiotics have limitations, leading to the exploration of alternative strategies. Essential oils such as cardamom possess antimicrobial properties and have shown efficacy against food-borne pathogenic bacteria. The utilization of essential oils and their bioactive constituents in food preservation is a viable strategy to prolong the shelf-life of food products while ensuring their quality and safety. To the best of our knowledge, there are no studies that have utilized 1,8-cineole (the main active constituent of cardamom essential oil) as a preservative in meat, so this study might be the first to utilize 1,8-cineole as an antibacterial agent in meat preservation. The application of 1,8-cineole had a significant suppressive impact on the growth rate of Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in meat samples stored for 7 days at 4 °C. Additionally, the surface color of the meat samples was not negatively impacted by the application of 1,8-cineole. The minimum inhibitory concentration was 12.5-25 mg/ml, and the minimum bactericidal concentration was 25-50.0 mg/ml. The bacterial cell membrane may be the target of cardamom, causing leakage of intracellular proteins, ATP, and DNA. The obtained data in this study may pave a new avenue for using 1,8-cineole as a new perspective for dealing with this problem of food-borne pathogens and food preservation, such as meat.
Assuntos
Elettaria , Listeria monocytogenes , Óleos Voláteis , Eucaliptol , Microbiologia de Alimentos , Carne/microbiologia , Óleos Voláteis/farmacologia , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Testes de Sensibilidade MicrobianaRESUMO
This study examined the effects of 1,8-cineole on reducing oxidative stress injury and restoring mitochondrial function in oxygen-glucose deprivation and reoxygenation (OGD/R) HT22 cells via the nuclear factor erythrocyte 2 related factor 2 (Nrf2) pathway. The optimal concentration of 1,8-cineole to reduce OGD/R injury was screened via cell morphology, cell survival rate, and lactate dehydrogenase (LDH) leakage rate. Oxidative damage was observed by measuring superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) activities, and reactive oxygen species (ROS), glutathione (GSH), protein carbonyl, malondialdehyde (MDA), lipid peroxidation (LPO) content, and 8-hydroxy-2 deoxyguanosine (8-OHDG) expression. Mitochondrial function was observed by mitochondrial membrane potential (MMP) and ATPase activity. Nrf2 pathways were observed by the expression levels of total Nrf2, nucleus Nrf2, reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H): quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), the mRNA levels of HO-1 and NQO1. Among different concentrations of 1,8-cineole for promoting HT22 cell proliferation and attenuated OGD/R injury, 10 µmol/L 1,8-cineole was the best. After 1,8-cineole treatment, SOD, GSH-PX, and CAT activities and GSH content increased, while ROS, MDA, LPO, protein carbonyl, and 8-OHDG levels decreased. 1,8-Cineole could restore MMP and increase mitochondrial enzyme activity. It could also increase the total Nrf2, nucleus Nrf2, NQO1, and HO-1, and Nrf2 inhibitor brusatol reduced the effect of 1,8-cineole. Immunofluorescence assay showed that 1,8-cineole could facilitate the transfer of Nrf2 into the nucleus. 1,8-cineole increased the mRNA levels of NQO1 and HO-1. The above results showed that 1,8-cineole could alleviate OGD/R-induced oxidative damage and restores mitochondrial function by activating the Nrf2 signal pathway.
Assuntos
Fator 2 Relacionado a NF-E2 , Oxigênio , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Eucaliptol/farmacologia , Eucaliptol/metabolismo , Glucose/metabolismo , Transdução de Sinais , Estresse Oxidativo , Antioxidantes/farmacologia , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias/metabolismo , Heme Oxigenase-1/metabolismoRESUMO
Terpenoid is an important group of compounds not only as biocomponents but also as useful secondary metabolites. A volatile terpenoid 1,8-cineole, which is used as a food additive, flavoring agent, cosmetic, etc., is also attracting attention from a medical perspective due to its antiinflammation and antioxidation. The 1,8-cineole fermentation using a recombinant Escherichia coli strain has been reported, although a carbon source supplement is necessary for a high-yield 1,8-cineole production. We constructed the 1,8-cineole-producing cyanobacteria toward a carbon-free and sustainable 1,8-cineole production. cnsA, the 1,8-cineole synthase gene in Streptomyces clavuligerus ATCC 27064, was introduced and overexpressed in the cyanobacterium Synechococcus elongatus PCC 7942. We succeeded in producing an average of 105.6 µg g-1 wet cell weight of 1,8-cineole in S. elongatus 7942 without supplementing any carbon source. Using the cyanobacteria expression system is an efficient approach to producing 1,8-cineole by photosynthesis.
Assuntos
Engenharia Metabólica , Synechococcus , Eucaliptol/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Synechococcus/genética , Terpenos/metabolismoRESUMO
Inflammatory bowel disease, comprising Crohn's disease (CD) and ulcerative colitis (UC), is often debilitating. The disease etiology is multifactorial, involving genetic susceptibility, microbial dysregulation, abnormal immune activation, and environmental factors. Currently, available drug therapies are associated with adverse effects when used long-term. Therefore, the search for new drug candidates to treat IBD is imperative. The peroxisome proliferator-activated receptor-γ (PPARγ) is highly expressed in the colon. PPARγ plays a vital role in regulating colonic inflammation. 1,8-cineole, also known as eucalyptol, is a monoterpene oxide present in various aromatic plants which possess potent anti-inflammatory activity. Molecular docking and dynamics studies revealed that 1,8-cineole binds to PPARγ and if it were an agonist, that would explain the anti-inflammatory effects of 1,8-cineole. Therefore, we investigated the role of 1,8-cineole in colonic inflammation, using both in vivo and in vitro experimental approaches. Dextran sodium sulfate (DSS)-induced colitis was used as the in vivo model, and tumor necrosis factor-α (TNFα)-stimulated HT-29 cells as the in vitro model. 1,8-cineole treatment significantly decreased the inflammatory response in DSS-induced colitis mice. 1,8-cineole treatment also increased nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into the nucleus to induce potent antioxidant effects. 1,8-cineole also increased colonic PPARγ protein expression. Similarly, 1,8-cineole decreased proinflammatory chemokine production and increased PPARγ protein expression in TNFα-stimulated HT-29 cells. 1,8-cineole also increased PPARγ promoter activity time-dependently. Because of its potent anti-inflammatory effects, 1,8-cineole may be valuable in treating IBD.
Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Colite/metabolismo , Colite Ulcerativa/metabolismo , Colo/patologia , Sulfato de Dextrana , Eucaliptol/farmacologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Vapor pressures and other thermodynamic properties of liquids, such as density and enthalpy of mixtures, are the key parameters in chemical engineering for designing new process units, and are also essential for understanding the physical chemistry, macroscopic and molecular behavior of fluid systems. In this work, vapor pressures between 278.15 and 323.15 K, densities and enthalpies of mixtures between 288.15 and 318.15 K for the binary mixture (2-propanol + 1,8-cineole) have been measured. From the vapor pressure data, activity coefficients and excess Gibbs energies were calculated via the Barker's method and the Wilson equation. Excess molar volumes and excess molar enthalpies were also obtained from the density and calorimetric measurements. Thermodynamic consistency test between excess molar Gibbs energies and excess molar enthalpies has been carried out using the Gibbs-Helmholtz equation. Robinson-Mathias, and Peng-Robinson-Stryjek-Vera together with volume translation of Peneloux equations of state (EoS) are considered, as well as the statistical associating fluid theory that offers a molecular vision quite suitable for systems having highly non-spherical or associated molecules. Of these three models, the first two fit the experimental vapor pressure results quite adequately; in contrast, only the last one approaches the volumetric behavior of the system. A brief comparison of the thermodynamic excess molar functions for binary mixtures of short-chain alcohol + 1,8-cineole (cyclic ether), or +di-n-propylether (lineal ether) is also included.
Assuntos
1-Propanol , 2-Propanol , Eucaliptol , Termodinâmica , Gases , PropanóisRESUMO
Antrodia cinnamomea is a valuable edible and medicinal mushroom with antitumor, hepatoprotective, and antiviral effects that play a role in intestinal flora regulation. Spore-inoculation submerged fermentation has become the most efficient and well-known artificial culture process for A. cinnamomea. In this study, a specific low-molecular compound named 1,8-cineole (cineole) from Cinnamomum kanehirae Hay was first reported to have remarkably promoted the asexual sporulation of A. cinnamomea in submerged fermentation (AcSmF). Then, RNA sequencing, real-time quantitative PCR, and a literature review were performed to predict the molecular regulatory mechanisms underlying the cineole-promoted sporulation of AcSmF. The available evidence supports the hypothesis that after receiving the signal of cineole through cell receptors Wsc1 and Mid2, Pkc1 promoted the expression levels of rlm1 and wetA and facilitated their transfer to the cell wall integrity (CWI) signal pathway, and wetA in turn promoted the sporulation of AcSmF. Moreover, cineole changed the membrane functional state of the A. cinnamomea cell and thus activated the heat stress response by the CWI pathway. Then, heat shock protein 90 and its chaperone Cdc37 promoted the expression of stuA and brlA, thus promoting sporulation of AcSmF. In addition, cineole promoted the expression of areA, flbA, and flbD through the transcription factor NCP1 and inhibited the expression of pkaA through the ammonium permease of MEP, finally promoting the sporulation of AcSmF. This study may improve the efficiency of the inoculum (spores) preparation of AcSmF and thereby enhance the production benefits of A. cinnamomea.
Assuntos
Antrodia , Cinnamomum , Transcriptoma , Fermentação , Eucaliptol/farmacologiaRESUMO
The objective of this study was to develop novel invaethosomes (I-ETS) and invaflexosomes (I-FXS) to enhance the dermal delivery of clotrimazole (CZ). Twenty model CZ-loaded I-ETS and I-FXS formulations were created according to a face-centered central composite experimental design. CZ-loaded vesicle formulations containing a constant concentration of 0.025% w/v CZ and various amounts of ethanol, d-limonene, and polysorbate 20 as penetration enhancers were prepared using the thin film hydration method. The physicochemical characteristics, skin permeability, and antifungal activity were characterized. The skin permeability of the experimental CZ-loaded I-ETS/I-FXS was significantly higher than that of conventional ethosomes, flexosomes, and the commercial product (1% w/w CZ cream). The mechanism of action was confirmed to be skin penetration of low ethanol base vesicles through the disruption of the skin microstructure. The optimal I-ETS in vitro antifungal activity against C. albicans differed significantly from that of ETS and the commercial cream (control). The response surface methodology predicted by Design Expert® was helpful in understanding the complicated relationship between the causal factors and the response variables of the 0.025% w/v CZ-loaded I-ETS/I-FXS formulation. Based on the available information, double vesicles seem to be promising versatile carriers for dermal drug delivery of CZ.
Assuntos
Antifúngicos , Clotrimazol , Clotrimazol/farmacologia , Clotrimazol/química , Antifúngicos/farmacologia , Antifúngicos/química , Pele , Sistemas de Liberação de Medicamentos/métodos , Candida albicans , Etanol/química , Administração CutâneaRESUMO
The control of E. coli activity from forming biofilm and persister cells is an essential factor in both the health and food industries. The efficacy of antimicrobial treatment is often limited due to their low penetrability as biofilm formation protect cells within from physical or chemical threats. Among other factors, osmotic stress has shown to have a high capacity to enhance the antimicrobial activities against various pathogens. Thus, this study aimed to test the hypothesis that the antimicrobial activity of cineole (CN) could be enhanced under osmotic stress to inhibit biofilm and persister cells. Time-kill analysis revealed that CN under NaCl-induced osmotic stress (CN-S) had better inhibitory effect on E. coli biofilm. 5% CN-S altered the integrity, hydration, motilities and exopolysaccharide production of E. coli cells. Also, the outer membrane permeability, surface roughness and hydrophobicity which determine initial cell adhesion, aggregation and colony assembly were significantly perturbed. Furthermore, the expression levels of virulence genes stx1, stx2, eae, flhD, and the TA system antitoxin genes mazE, hipB were downregulated. When applied to cucumber, the rate of increase in internalized bacterial cells significantly reduced after storage at 4 °C for 48 h. Thus, the results suggested that the application of osmotic stress could minimize the working concentration of antimicrobials in real food systems, which could be helpful in counteracting the growing concern of microbial resistance.
Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Sistemas Toxina-Antitoxina , Eucaliptol , Escherichia coli O157/genética , Antibacterianos/farmacologia , Pressão Osmótica , Biofilmes , Proteínas de Ligação a DNA , Proteínas de Escherichia coli/genéticaRESUMO
Eucalyptol (1.8-cineole), an active component in traditional Chinese medicine Artemisia argyi for moxibustion. Previous studies have shown that eucalyptol has anti-tumor effects on leukemia and colon cancer. Nonetheless, the effect and mechanism of eucalyptol on neuroblastoma remains unclear. In the present study, we intended to reveal the effect and mechanism of eucalyptol treatment on the neuroblastoma cell line SH-SY5Y through transcriptome analysis. In the group treated with eucalyptol, 566 brain genes were up-regulated, while 757 genes were down-regulated. GO function analysis showed that positive regulation of cell cycle was down-regulated in biological processes. Meanwhile, cancer-related pathways were identified in KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis, including pathways in cancer, PI3K-Akt signaling pathway, cAMP signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, p53 signaling pathway, and additional pathways. Furthermore, we found a key gene, such as MYC, by constructing a network of cancer related pathways with differentially expressed genes and transcription factor analysis. In conclusion, our research indicates that MYC might play a central role in the anit-tumor mechanisms of eucalyptol.
Assuntos
Neuroblastoma , Humanos , Neuroblastoma/tratamento farmacológico , Eucaliptol/farmacologia , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , Linhagem Celular , TranscriptomaRESUMO
For the first time, the present study unravels a cardiospecific therapeutic approach for Pulmonary Arterial Hypertension (PAH), a disease with a very poor prognosis and high mortality rates due to right ventricle (RV) dysfunction. We first established a new in vitro model of high-pressure-induced hypertrophy that closely resembles heart defects associated with PAH and validated our in vitro findings on a preclinical in vivo model of monocrotaline (MCT)-induced PAH. Our results showed the in vitro antihypertrophic effect of 1,8-cineole, a monoterpene widely found in several essential oils. Also, a decrease in RV hypertrophy and fibrosis, and an improvement in heart function in vivo was observed, when 1,8-cineole was applied topically. Furthermore, 1,8-cineole restored gap junction protein connexin43 distribution at the intercalated disks and mitochondrial functionality, suggesting it may act by preserving cardiac cell-to-cell communication and bioenergetics. Overall, our results point out a promising therapeutic compound that can be easily applied topically, thus paving the way for the development of effective cardiac-specific therapies to greatly improve PAH outcomes.
Assuntos
Cardiomiopatias , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Disfunção Ventricular Direita , Animais , Conexina 43 , Modelos Animais de Doenças , Eucaliptol/uso terapêutico , Ventrículos do Coração/metabolismo , Homeostase , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Disfunção Ventricular Direita/metabolismoRESUMO
Bisphenol A (BPA), an environmental pollutant, can cause multiple organ tissue damage by inducing oxidative stress. Cineole (CIN) is a terpene oxide existing in a variety of plant essential oils, which has anti-inflammatory, analgesic, and antioxidant effects. This study examined the effects of 200 nM BPA and 20 µM CIN on apoptosis, autophagy, and immunology in grass carp hepatocytes (L8824). The treatments were categorized as NC, CIN, BPA + CIN, and BPA. The findings demonstrated that BPA exposure could increase ROS levels and oxidative stress-related indicators, decrease the expression of the Nrf2/keap1 pathway and the Wnt/ß-catenin pathway, increase the expression of genes involved in the apoptotic pathway (Bax and Caspase3), and decrease the expression of the anti-apoptotic gene Bcl-2 by lowering mitochondrial membrane potential. BPA also reduced the expression of genes linked to autophagy (ATG5, Beclin1, LC3). Changes in immunological function after BPA exposure were also shown by changes in the amounts of antimicrobial peptides (HEPC, ß-defensin, LEAP2) and cytokines (INF-γ, IL-1ß, IL-2, and TNF-α). After the co-treatment of CIN and BPA, CIN can inhibit BPA-induced apoptosis and recover from autophagy and immune function to a certain extent by binding to keap1 to exert an anti-oxidative regulatory effect of Nrf2 incorporation into the nucleus. Molecular docking provides strong evidence for the interaction of CIN ligands with keap1 receptors. Therefore, these results indicated that CIN could inhibit BPA-induced apoptosis, autophagy inhibition and immunosuppression in grass carp hepatocytes by regulating the Wnt/ß-catenin pathway with Nrf2/keap1/ROS. This study provided further information to the risk assessment of the neuroendocrine disruptor BPA on aquatic organisms and offered suggestions and resources for further research into the function of natural extracts in the body's detoxification process.
Assuntos
Carpas , Fator 2 Relacionado a NF-E2 , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Eucaliptol/farmacologia , Carpas/metabolismo , beta Catenina/metabolismo , Simulação de Acoplamento Molecular , Apoptose , Autofagia , Hepatócitos , Estresse Oxidativo , Terapia de ImunossupressãoRESUMO
Imidacloprid (IMI), a systemic neonicotinoid insecticide widely used in agriculture, resulting in persistence in aquatic environments that threaten the survival of organisms. Eucalyptol (EUC), a monoterpenoid found in plants, can be applied to medicine, food, and aquaculture. However, the potential protective effects of EUC on cell damage under neonicotinoid pesticide toxicity, and the role of ER stress and its mediated apoptosis and necroptosis in it, remain unclear. Therefore, we treated Ctenopharyngodon idellus kidney (CIK) cells with 20 mg/L IMI and 20 µM EUC for 48 h. The results showed that IMI exposure caused a higher GRP78 levels, activated ATF6, PERK-eIF2α and IRE1-XBP1 pathways, led to the decline of ATPase activities and ATP content, induced the expression of cytokine (TNF-α, IL-1ß, IL-6 and INF-γ), triggered BCL2/BAX-mediated apoptosis and RIP1/RIP3/MLKL-dependent necroptosis in the CIK cell line. Surprisingly, EUC had an effect against IMI-induced cytotoxicity, showing that it effectively mitigated the above-mentioned IMI-exposure-induced changes. Taken together, these results suggested that EUC could alleviated IMI-induced cell death and dysimmunity by recovering ER stress/mitochondria imbalance. These results partly explained the mechanism of biological threat on fish under IMI exposure and the potential application value of EUC in aquaculture.
Assuntos
Carpas , Animais , Apoptose , Retículo Endoplasmático , Eucaliptol/farmacologia , Rim/metabolismo , Mitocôndrias , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , NitrocompostosRESUMO
Combination drug therapy has become an effective strategy for chronic metabolic disease, especially cardiovascular disease. In the present study, possible drug combinations were screened and the mechanism of the combinations against cardiac hypertrophy was examined within 1,8-cineole, ß-caryophyllene, linalool, and ß-pinene.H9c2 cells were treatment with 1,8-cineole, ß-caryophyllene, linalool, and ß-pinene individually or in combination for 24 h after isoprenaline stimulation. Cell viability was detected by the MTT assay. Subsequently, bioinformatic analysis and network pharmacology were used to reveal the multi-targeted synergistic therapeutic effect of the combination treatment compounds on cardiac hypertrophy. Ultimately, western blot and elisa was performed to analyses the protein expression in vivo. MTT results found that 1,8-cineole and ß-caryophyllene synergistically increased cell viability with CalcuSyn software analyses. Specifically, bioinformatic and network pharmacology analysis showed PTGS2, TNF, IL-6, AKT1, NOS2, and CAT were identified as the key targets. P13K-AKT signaling pathway was involved in the reversal of cardiac hypertrophy by the combination of 1,8-cineole and ß-caryophyllene. The in vitro results indicated that the combination synergistically treated the isoprenaline-induced mice against structural and functional myocardial damage via the P13K-AKT signaling pathway. Collectively, the combined application of 1,8-cineole and ß-caryophyllene synergistically reverses cardiac hypertrophy in isoprenaline-induced H9c2 cells and mice.
Assuntos
Cardiomegalia , Proteínas Proto-Oncogênicas c-akt , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Eucaliptol/farmacologia , Eucaliptol/uso terapêutico , Isoproterenol/efeitos adversos , Camundongos , Sesquiterpenos Policíclicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RatosRESUMO
Bisphenol A (BPA) is an endocrine disruptor, that can cause immune dysfunction. Cineole (CIN) has that effect of regulating immune function and resist oxidation. Neutrophil extracellular traps (NETs) are one of the ways to resist pathogen invasion. In order to explore the effects of BPA and CIN on the release of chicken NETs and the antagonistic effect of CIN, take chicken peripheral blood neutrophils as object of study, grouping as NC, CIN, BPA + CIN and BPA. SEM, flow cytometry, RT-PCR, Western-blot and other methods were used to detect related indicators. The results showed that BPA inhibited the activities of GPX, SOD and CAT, increased the contents of MDA and NO, increased the activity of iNOS. BPA exposure inhibited the expression of myeloperoxidase (MPO), neutrophil elastase (NE) and histone, and inhibited the release of NETs. BPA activated downstream apoptosis and necroptosis through the p38 mitogen-activated protein kinase (p38-MAPK) pathway, which increased the expression of cytochrome C (CytC), bcl-2 associated K protein gene (bak), cysteinyl aspartate specific proteinase 3 (caspase-3), cysteinyl aspartate specific proteinase 9 (caspase-9), receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 1 (RIPK3) and mixed lineage kinase domain-like protein (MLKL), decreased the expression of B-cell lymphoma-2 (bcl-2). However, the co-exposure of CIN and BPA partially recovered the release of NETs, alleviated BPA-induced oxidative stress, and inhibited the activation of p38-MAPK pathway, necroptosis, and mitochondrial apoptosis pathway. These results indicated that CIN modulated p38 pathway alleviated BPA-induced neutrophil necroptosis and apoptosis, and increased NETs formation.
Assuntos
Armadilhas Extracelulares , Apoptose/genética , Ácido Aspártico , Compostos Benzidrílicos , Eucaliptol/metabolismo , Armadilhas Extracelulares/metabolismo , Fenóis , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
The fall webworm, Hyphantria cunea (Drury), is a harmful polyphagous global defoliator. The major chemical components of Artemisia annua essential oil (EO) was found to contain (±)-camphor (16.42%), 1,8-cineole (6.22%), α-pinene (6%), caryophyllene (5.19%), and α-selinene (5.17%). The highest toxicity was recorded for EO of A. annua (LD50 = 305.05 µg/larva), followed by (±)-camphor (LD50 = 465.03 µg/larva) and 1,8-cineole (LD50 = 573.49 µg/larva). The binary mixtures of compounds expressed a weaker activity compared to individuals. The (±)-camphor was found to be antagonistic to 1,8-cineole. The biochemical compounds of treated larvae were also determined. The activity level of alanin and aspartate aminotransferase decreased sharply while acid and alkaline phosphatase increased. Activity of lactate dehydrogenase was significantly higher than the control group at 24 h, but decreased significantly after 48 h in all treatments. The activity of esterases were decreased in the treated larvae. The glutathione S-transferase significantly increased in all time intervals. Overall the current results suggest that the sweet wormwood (A. annua) EO and its components could be a safe and environmentally friendly approach in possible control of fall webworm (H. cunea).
Assuntos
Artemisia annua , Mariposas , Óleos Voláteis , Animais , Artemisia annua/química , Cânfora , Eucaliptol , Larva , Óleos Voláteis/química , Óleos Voláteis/toxicidadeRESUMO
The most abundant volatile compounds of sweet wormwood (Artemisia annua L.) essential oil were artemisia ketone (25.4 %) and trans-caryophyllene (10.2 %), followed by 1,8-cineole, camphor, germacrene D and ß-selinene. The major volatile compounds in the hydrosol were camphor (25.1 %), 1,8-cineole (20.5 %) and artemisia ketone (10.7 %), followed by trans-pinocarveol and yomogi alcohol. Tested essential oil was rich in oxygenated monoterpenes and sesquiterpene hydrocarbons, while the former were identified as the major class of volatile compounds in the hydrosol, due to higher water solubility. Classification of all sweet wormwood chemotypes, according to essential oil composition, in available literature (17 studies and 61 accessions) could be done according to four chemotypes: artemisia ketone+artemisia alcohol (most abundant), artemisia ketone, camphor and nonspecific chemotype. According to this classification, essential oil of sweet wormwood from this study belongs to artemisia ketone (content varied between 22.1 and 55.8 %). Bearing in mind that hydrosols are a by-product of industrial production of essential oils, and the fact that sweet wormwood hydrosol has high contents of camphor, 1,8-cineole and artemisia ketone, there is a great potential for the use of this aromatic plant primary processing waste product as a water replacement in cosmetic industry, beverages flavoring, for food preservation, as well as in post-harvest pre-storage treatments in organic agriculture.
Assuntos
Artemisia annua , Artemisia , Óleos Voláteis , Cânfora , Eucaliptol , SérviaRESUMO
BACKGROUND: Curcumin is a natural product obtained from the rhizome of Curcuma longa. Rosemary (Rosmarinus officinalis) is a medicinal and aromatic plant that is widely spread in the Mediterranean region. Both Curcumin and rosemary essential oil are natural products of high medicinal and pharmacological significance. The hepatoprotective effect of both natural products is well-established; however, the mechanism of such action is not fully understood. Thus, this study is an attempt to explore the hepatoprotective mechanism of action of these remedies through their effect on MEK and ERK proteins. Furthermore, the effect of rosemary essential oil on the plasma concentration of curcumin has been scrutinized. MATERIALS AND METHODS: The major constituents of REO were qualitatively and quantitatively determined by GC/MS and GC/FID, respectively. Curcumin and rosemary essential oil were given to mice in a pre-treatment model, followed by induction of liver injury through a high dose of paracetamol. Serum liver enzymes, lipid peroxidation, antioxidant activities, the inflammatory and apoptotic biomarkers, as well as the MEK and ERK portions, were verified. The plasma levels of curcumin were determined in the presence and absence of rosemary essential oil. RESULTS: The major constituents of REO were 1,8-cineole (51.52%), camphor (10.52%), and α-pinene (8.41%). The results revealed a superior hepatoprotective activity of the combination when compared to each natural product alone, as demonstrated by the lowered liver enzymes, lipid peroxidation, mitigated inflammatory and apoptotic biomarkers, and enhanced antioxidant activities. Furthermore, the combination induced the overexpression of MEK and ERK proteins, providing evidence for the involvement of this cascade in the hepatoprotective activity of such natural products. The administration of rosemary essential oil with curcumin enhanced the curcuminoid plasma level. CONCLUSION: The co-administration of both curcumin and rosemary essential oil together enhanced both their hepatoprotective activity and the level of curcumin in plasma, indicating a synergistic activity between both natural products.
Assuntos
Curcumina , Óleos Voláteis , Rosmarinus , Camundongos , Animais , Curcumina/farmacologia , Antioxidantes/farmacologia , Sistema de Sinalização das MAP Quinases , Óleos Voláteis/farmacologia , Biomarcadores , Quinases de Proteína Quinase Ativadas por MitógenoRESUMO
Advanced glycation end products (AGEs) are stable products produced by the reaction of macromolecules such as proteins, lipids or nucleic acids with glucose or other reducing monosaccharides, which can be identified by immunohistochemistry in the senile plaques and neurofibrillary tangles of Alzheimer's disease (AD) patients. Growing evidence suggests that AGEs are important risk factors for the development and progression of AD. 1,8-cineole (CIN) is a monoterpenoid compound which exists in many plant essential oils and has been proven to have neuroprotective activity, but its specific effect and molecular mechanisms are not clear. In this study, AGEs-induced neuronal injury and intracerebroventricular-AGE animals as the possible models for AD were employed to investigate the effects of CIN on AD pathology as well as the molecular mechanisms involved both in vivo and in vitro. Our study demonstrated that CIN could ameliorate tau phosphorylation by down-regulating the activity of GSK-3ß and reducing Aß production by inhibiting the activity of BACE-1 both in vivo and in vitro. It is suggested that CIN has certain therapeutic value in the treatment of AD.