Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 600
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(21): 4694-4709.e16, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832525

RESUMO

Cytoplasmic divisions are thought to rely on nuclear divisions and mitotic signals. We demonstrate in Drosophila embryos that cytoplasm can divide repeatedly without nuclei and mitotic CDK/cyclin complexes. Cdk1 normally slows an otherwise faster cytoplasmic division cycle, coupling it with nuclear divisions, and when uncoupled, cytoplasm starts dividing before mitosis. In developing embryos where CDK/cyclin activity can license mitotic microtubule (MT) organizers like the spindle, cytoplasmic divisions can occur without the centrosome, a principal organizer of interphase MTs. However, centrosomes become essential in the absence of CDK/cyclin activity, implying that the cytoplasm can employ either the centrosome-based interphase or CDK/cyclin-dependent mitotic MTs to facilitate its divisions. Finally, we present evidence that autonomous cytoplasmic divisions occur during unperturbed fly embryogenesis and that they may help extrude mitotically stalled nuclei during blastoderm formation. We postulate that cytoplasmic divisions occur in cycles governed by a yet-to-be-uncovered clock mechanism autonomous from CDK/cyclin complexes.


Assuntos
Citocinese , Embrião não Mamífero , Animais , Núcleo Celular , Centrossomo , Ciclinas/metabolismo , Drosophila , Mitose , Fuso Acromático/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo
2.
Annu Rev Genet ; 57: 117-134, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012023

RESUMO

Organismal development requires the reproducible unfolding of an ordered sequence of discrete steps (cell fate determination, migration, tissue folding, etc.) in both time and space. Here, we review the mechanisms that grant temporal specificity to developmental steps, including molecular clocks and timers. Individual timing mechanisms must be coordinated with each other to maintain the overall developmental sequence. However, phenotypic novelties can also arise through the modification of temporal patterns over the course of evolution. Two main types of variation in temporal patterning characterize interspecies differences in developmental time: allochrony, where the overall developmental sequence is either accelerated or slowed down while maintaining the relative duration of individual steps, and heterochrony, where the duration of specific developmental steps is altered relative to the rest. New advances in in vitro modeling of mammalian development using stem cells have recently enabled the revival of mechanistic studies of allochrony and heterochrony. In both cases, differences in the rate of basic cellular functions such as splicing, translation, protein degradation, and metabolism seem to underlie differences in developmental time. In the coming years, these studies should identify the genetic differences that drive divergence in developmental time between species.


Assuntos
Evolução Biológica , Mamíferos , Animais , Embrião de Mamíferos , Diferenciação Celular/genética
3.
Annu Rev Biochem ; 83: 159-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24606145

RESUMO

This article introduces three reviews on the theme of circadian rhythms.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Biologia/métodos , Biologia/tendências , Humanos , Cinética , Substâncias Macromoleculares
4.
Trends Genet ; 40(5): 387-397, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336520

RESUMO

The coastline is a particularly challenging environment for its inhabitants. Not only do they have to cope with the solar day and the passing of seasons, but they must also deal with tides. In addition, many marine species track the phase of the moon, especially to coordinate reproduction. Marine animals show remarkable behavioral and physiological adaptability, using biological clocks to anticipate specific environmental cycles. Presently, we lack a basic understanding of the molecular mechanisms underlying circatidal and circalunar clocks. Recent advances in genome engineering and the development of genetically tractable marine model organisms are transforming how we study these timekeeping mechanisms and opening a novel era in marine chronobiology.


Assuntos
Organismos Aquáticos , Edição de Genes , Animais , Organismos Aquáticos/genética , Genoma/genética , Relógios Biológicos/genética , Ritmo Circadiano/genética
5.
Proc Natl Acad Sci U S A ; 121(21): e2401567121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748573

RESUMO

Nearly all circadian clocks maintain a period that is insensitive to temperature changes, a phenomenon known as temperature compensation (TC). Yet, it is unclear whether there is any common feature among different systems that exhibit TC. From a general timescale invariance, we show that TC relies on the existence of certain period-lengthening reactions wherein the period of the system increases strongly with the rates in these reactions. By studying several generic oscillator models, we show that this counterintuitive dependence is nonetheless a common feature of oscillators in the nonlinear (far-from-onset) regime where the oscillation can be separated into fast and slow phases. The increase of the period with the period-lengthening reaction rates occurs when the amplitude of the slow phase in the oscillation increases with these rates while the progression speed in the slow phase is controlled by other rates of the system. The positive dependence of the period on the period-lengthening rates balances its inverse dependence on other kinetic rates in the system, which gives rise to robust TC in a wide range of parameters. We demonstrate the existence of such period-lengthening reactions and their relevance for TC in all four model systems we considered. Theoretical results for a model of the Kai system are supported by experimental data. A study of the energy dissipation also shows that better TC performance requires higher energy consumption. Our study unveils a general mechanism by which a biochemical oscillator achieves TC by operating in parameter regimes far from the onset where period-lengthening reactions exist.

6.
Annu Rev Genomics Hum Genet ; 24: 305-332, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37220313

RESUMO

Genetic data contain a record of our evolutionary history. The availability of large-scale datasets of human populations from various geographic areas and timescales, coupled with advances in the computational methods to analyze these data, has transformed our ability to use genetic data to learn about our evolutionary past. Here, we review some of the widely used statistical methods to explore and characterize population relationships and history using genomic data. We describe the intuition behind commonly used approaches, their interpretation, and important limitations. For illustration, we apply some of these techniques to genome-wide autosomal data from 929 individuals representing 53 worldwide populations that are part of the Human Genome Diversity Project. Finally, we discuss the new frontiers in genomic methods to learn about population history. In sum, this review highlights the power (and limitations) of DNA to infer features of human evolutionary history, complementing the knowledge gleaned from other disciplines, such as archaeology, anthropology, and linguistics.


Assuntos
Arqueologia , Genômica , Humanos , Projeto Genoma Humano , Antropologia , Evolução Biológica
7.
Circ Res ; 134(6): 618-634, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484033

RESUMO

The timing of life on Earth is remarkable: between individuals of the same species, a highly similar temporal pattern is observed, with shared periods of activity and inactivity each day. At the individual level, this means that over the course of a single day, a person alternates between two states. They are either upright, active, and communicative or they lie down in a state of (un)consciousness called sleep where even the characteristic of neuronal signals in the brain shows distinctive properties. The circadian clock governs both of these time stamps-activity and (apparent) inactivity-making them come and go consistently at the same approximate time each day. This behavior thus represents the meeting of two pervasive systems: the circadian clock and metabolism. In this article, we will describe what is known about how the circadian clock anticipates daily changes in oxygen usage, how circadian clock regulation may relate to normal physiology, and to hypoxia and ischemia that can result from pathologies such as myocardial infarction and stroke.


Assuntos
Relógios Circadianos , Humanos , Relógios Circadianos/fisiologia , Sono/fisiologia , Hipóxia , Encéfalo , Oxigênio , Ritmo Circadiano
8.
Circ Res ; 134(6): 635-658, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484029

RESUMO

Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Coração , Relógios Circadianos/fisiologia , Sono/fisiologia , Miocárdio/metabolismo
9.
Circ Res ; 134(6): 748-769, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484026

RESUMO

Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Envelhecimento/fisiologia , Mamíferos
10.
Circ Res ; 134(6): 659-674, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484028

RESUMO

Circadian rhythms in physiology and behavior are ≈24-hour biological cycles regulated by internal biological clocks (ie, circadian clocks) that optimize organismal homeostasis in response to predictable environmental changes. These clocks are present in virtually all cells in the body, including cardiomyocytes. Many decades ago, clinicians and researchers became interested in studying daily patterns of triggers for sudden cardiac death, the incidence of sudden cardiac death, and cardiac arrhythmias. This review highlights historical and contemporary studies examining the role of day/night rhythms in the timing of cardiovascular events, delves into changes in the timing of these events over the last few decades, and discusses cardiovascular disease-specific differences in the timing of cardiovascular events. The current understanding of the environmental, behavioral, and circadian mechanisms that regulate cardiac electrophysiology is examined with a focus on the circadian regulation of cardiac ion channels and ion channel regulatory genes. Understanding the contribution of environmental, behavioral, and circadian rhythms on arrhythmia susceptibility and the incidence of sudden cardiac death will be essential in developing future chronotherapies.


Assuntos
Arritmias Cardíacas , Relógios Circadianos , Humanos , Ritmo Circadiano , Miócitos Cardíacos , Morte Súbita Cardíaca/etiologia , Eletrofisiologia Cardíaca
11.
Circ Res ; 134(6): 711-726, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484035

RESUMO

The brain is a complex organ, fundamentally changing across the day to perform basic functions like sleep, thought, and regulating whole-body physiology. This requires a complex symphony of nutrients, hormones, ions, neurotransmitters and more to be properly distributed across the brain to maintain homeostasis throughout 24 hours. These solutes are distributed both by the blood and by cerebrospinal fluid. Cerebrospinal fluid contents are distinct from the general circulation because of regulation at brain barriers including the choroid plexus, glymphatic system, and blood-brain barrier. In this review, we discuss the overlapping circadian (≈24-hour) rhythms in brain fluid biology and at the brain barriers. Our goal is for the reader to gain both a fundamental understanding of brain barriers alongside an understanding of the interactions between these fluids and the circadian timing system. Ultimately, this review will provide new insight into how alterations in these finely tuned clocks may lead to pathology.


Assuntos
Barreira Hematoencefálica , Encéfalo , Barreira Hematoencefálica/fisiologia , Homeostase/fisiologia , Ritmo Circadiano , Biologia
12.
Proc Natl Acad Sci U S A ; 120(9): e2215840120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36802439

RESUMO

Biomarkers developed from DNA methylation (DNAm) data are of growing interest as predictors of health outcomes and mortality in older populations. However, it is unknown how epigenetic aging fits within the context of known socioeconomic and behavioral associations with aging-related health outcomes in a large, population-based, and diverse sample. This study uses data from a representative, panel study of US older adults to examine the relationship between DNAm-based age acceleration measures in the prediction of cross-sectional and longitudinal health outcomes and mortality. We examine whether recent improvements to these scores, using principal component (PC)-based measures designed to remove some of the technical noise and unreliability in measurement, improve the predictive capability of these measures. We also examine how well DNAm-based measures perform against well-known predictors of health outcomes such as demographics, SES, and health behaviors. In our sample, age acceleration calculated using "second and third generation clocks," PhenoAge, GrimAge, and DunedinPACE, is consistently a significant predictor of health outcomes including cross-sectional cognitive dysfunction, functional limitations and chronic conditions assessed 2 y after DNAm measurement, and 4-y mortality. PC-based epigenetic age acceleration measures do not significantly change the relationship of DNAm-based age acceleration measures to health outcomes or mortality compared to earlier versions of these measures. While the usefulness of DNAm-based age acceleration as a predictor of later life health outcomes is quite clear, other factors such as demographics, SES, mental health, and health behaviors remain equally, if not more robust, predictors of later life outcomes.


Assuntos
Envelhecimento , Epigênese Genética , Humanos , Idoso , Estudos Transversais , Envelhecimento/genética , Metilação de DNA , Biomarcadores , Aceleração
13.
Annu Rev Nutr ; 44(1): 25-50, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848598

RESUMO

The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.


Assuntos
Ritmo Circadiano , Comportamento Alimentar , Humanos , Ritmo Circadiano/fisiologia , Animais , Comportamento Alimentar/fisiologia , Ingestão de Alimentos/fisiologia , Relógios Circadianos/fisiologia
14.
Circ Res ; 132(2): 223-237, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36656971

RESUMO

Driven by autonomous molecular clocks that are synchronized by a master pacemaker in the suprachiasmatic nucleus, cardiac physiology fluctuates in diurnal rhythms that can be partly or entirely circadian. Cardiac contractility, metabolism, and electrophysiology, all have diurnal rhythms, as does the neurohumoral control of cardiac and kidney function. In this review, we discuss the evidence that circadian biology regulates cardiac function, how molecular clocks may relate to the pathogenesis of heart failure, and how chronotherapeutics might be applied in heart failure. Disrupting molecular clocks can lead to heart failure in animal models, and the myocardial response to injury seems to be conditioned by the time of day. Human studies are consistent with these findings, and they implicate the clock and circadian rhythms in the pathogenesis of heart failure. Certain circadian rhythms are maintained in patients with heart failure, a factor that can guide optimal timing of therapy. Pharmacologic and nonpharmacologic manipulation of circadian rhythms and molecular clocks show promise in the prevention and treatment of heart failure.


Assuntos
Relógios Circadianos , Insuficiência Cardíaca , Animais , Humanos , Ritmo Circadiano , Coração , Insuficiência Cardíaca/terapia , Biologia , Relógios Circadianos/fisiologia
15.
Arterioscler Thromb Vasc Biol ; 44(7): 1628-1645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813696

RESUMO

BACKGROUND: Pericoronary epicardial adipose tissue (EAT) is a unique visceral fat depot that surrounds the adventitia of the coronary arteries without any anatomic barrier. Clinical studies have demonstrated the association between EAT volume and increased risks for coronary artery disease (CAD). However, the cellular and molecular mechanisms underlying the association remain elusive. METHODS: We performed single-nucleus RNA sequencing on pericoronary EAT samples collected from 3 groups of subjects: patients undergoing coronary bypass surgery for severe CAD (n=8), patients with CAD with concomitant type 2 diabetes (n=8), and patients with valvular diseases but without concomitant CAD and type 2 diabetes as the control group (n=8). Comparative analyses were performed among groups, including cellular compositional analysis, cell type-resolved transcriptomic changes, gene coexpression network analysis, and intercellular communication analysis. Immunofluorescence staining was performed to confirm the presence of CAD-associated subclusters. RESULTS: Unsupervised clustering of 73 386 nuclei identified 15 clusters, encompassing all known cell types in the adipose tissue. Distinct subpopulations were identified within primary cell types, including adipocytes, adipose stem and progenitor cells, and macrophages. CD83high macrophages and FOSBhigh adipocytes were significantly expanded in CAD. In comparison to normal controls, both disease groups exhibited dysregulated pathways and altered secretome in the primary cell types. Nevertheless, minimal differences were noted between the disease groups in terms of cellular composition and transcriptome. In addition, our data highlight a potential interplay between dysregulated circadian clock and altered physiological functions in adipocytes of pericoronary EAT. ANXA1 (annexin A1) and SEMA3B (semaphorin 3B) were identified as important adipokines potentially involved in functional changes of pericoronary EAT and CAD pathogenesis. CONCLUSIONS: We built a complete single-nucleus transcriptomic atlas of human pericoronary EAT in normal and diseased conditions of CAD. Our study lays the foundation for developing novel therapeutic strategies for treating CAD by targeting and modifying pericoronary EAT functions.


Assuntos
Tecido Adiposo , Doença da Artéria Coronariana , Pericárdio , Transcriptoma , Humanos , Pericárdio/metabolismo , Pericárdio/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/metabolismo , Idoso , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Adipócitos/metabolismo , Adipócitos/patologia , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/patologia , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/cirurgia , Perfilação da Expressão Gênica/métodos , Estudos de Casos e Controles , Ponte de Artéria Coronária , Análise de Célula Única , Macrófagos/metabolismo , Macrófagos/patologia , Redes Reguladoras de Genes , Tecido Adiposo Epicárdico
16.
Mol Cell Proteomics ; 22(11): 100655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793502

RESUMO

Molecular clocks and daily feeding cycles support metabolism in peripheral tissues. Although the roles of local clocks and feeding are well defined at the transcriptional level, their impact on governing protein abundance in peripheral tissues is unclear. Here, we determine the relative contributions of local molecular clocks and daily feeding cycles on liver and muscle proteomes during the active phase in mice. LC-MS/MS was performed on liver and gastrocnemius muscle harvested 4 h into the dark phase from WT, Bmal1 KO, and dual liver- and muscle-Bmal1-rescued mice under either ad libitum feeding or time-restricted feeding during the dark phase. Feeding-fasting cycles had only minimal effects on levels of liver proteins and few, if any, on the muscle proteome. In contrast, Bmal1 KO altered the abundance of 674 proteins in liver and 80 proteins in muscle. Local rescue of liver and muscle Bmal1 restored ∼50% of proteins in liver and ∼25% in muscle. These included proteins involved in fatty acid oxidation in liver and carbohydrate metabolism in muscle. For liver, proteins involved in de novo lipogenesis were largely dependent on Bmal1 function in other tissues (i.e., the wider clock system). Proteins regulated by BMAL1 in liver and muscle were enriched for secreted proteins. We found that the abundance of fibroblast growth factor 1, a liver secreted protein, requires BMAL1 and that autocrine fibroblast growth factor 1 signaling modulates mitochondrial respiration in hepatocytes. In liver and muscle, BMAL1 is a more potent regulator of dark phase proteomes than daily feeding cycles, highlighting the need to assess protein levels in addition to mRNA when investigating clock mechanisms. The proteome is more extensively regulated by BMAL1 in liver than in muscle, and many metabolic pathways in peripheral tissues are reliant on the function of the clock system as a whole.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Cromatografia Líquida , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Proteoma/metabolismo , Espectrometria de Massas em Tandem
17.
Proc Natl Acad Sci U S A ; 119(44): e2209933119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279450

RESUMO

Circadian clocks are synchronized by external timing cues to align with one another and the environment. Various signaling pathways have been shown to independently reset the phase of the clock. However, in the body, circadian clocks are exposed to a multitude of potential timing cues with complex temporal dynamics, raising the question of how clocks integrate information in response to multiple signals. To investigate different modes of signal integration by the circadian clock, we used Circa-SCOPE, a method we recently developed for high-throughput phase resetting analysis. We found that simultaneous exposure to different combinations of known pharmacological resetting agents elicits a diverse range of responses. Often, the response was nonadditive and could not be readily predicted by the response to the individual signals. For instance, we observed that dexamethasone is dominant over other tested inputs. In the case of signals administered sequentially, the background levels of a signal attenuated subsequent resetting by the same signal, but not by signals acting through a different pathway. This led us to examine whether the circadian clock is sensitive to relative rather than absolute levels of the signal. Importantly, our analysis revealed the involvement of a signal-specific fold-change detection mechanism in the clock response. This mechanism likely stems from properties of the signaling pathway that are upstream to the clock. Overall, our findings elucidate modes of input integration by the circadian clock, with potential relevance to clock resetting under both physiological and pathological conditions.


Assuntos
Relógios Circadianos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Transdução de Sinais , Sinais (Psicologia) , Dexametasona/farmacologia
18.
Am J Physiol Cell Physiol ; 327(1): C213-C219, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38586876

RESUMO

Muscle isometric torque fluctuates according to time-of-day with such variation owed to the influence of circadian molecular clock genes. Satellite cells (SCs), the muscle stem cell population, also express molecular clock genes with several contractile-related genes oscillating in a diurnal pattern. Currently, limited evidence exists regarding the relationship between SCs and contractility, although long-term SC ablation alters muscle contractile function. Whether there are acute alterations in contractility following SC ablation and with respect to the time-of-day is unknown. We investigated whether short-term SC ablation affected contractile function at two times of day and whether any such alterations led to different extents of eccentric contraction-induced injury. Using an established mouse model to deplete SCs, we characterized muscle clock gene expression and ex vivo contractility at two times-of-day (morning: 0700 and afternoon: 1500). Morning-SC+ animals demonstrated ∼25%-30% reductions in tetanic/eccentric specific forces and, after eccentric injury, exhibited ∼30% less force-loss and ∼50% less dystrophinnegative fibers versus SC- counterparts; no differences were noted between Afternoon groups (Morning-SC+: -5.63 ± 0.61, Morning-SC-: -7.93 ± 0.61; N/cm2; P < 0.05) (Morning-SC+: 32 ± 2.1, Morning-SC-: 64 ± 10.2; dystrophinnegative fibers; P < 0.05). As Ca++ kinetics underpin force generation, we also evaluated caffeine-induced contracture force as an indirect marker of Ca++ availability and found similar force reductions in Morning-SC+ vs. SC- mice. We conclude that force production is reduced in the presence of SCs in the morning but not in the afternoon, suggesting that SCs may have a time-of-day influence over contractile function.NEW & NOTEWORTHY Muscle isometric torque fluctuates according to time-of-day with such variation owed to molecular clock regulation. Satellite cells (SCs) have recently demonstrated diurnal characteristics related to muscle physiology. In our work, force production was reduced in the presence versus absence of SCs in the morning but, not in the afternoon. Morning-SC+ animals, producing lower force, sustained lesser degrees of injury versus SC- counterparts. One potential mechanism underpinning lower forces produced appears to be lower calcium availability.


Assuntos
Ritmo Circadiano , Contração Muscular , Células Satélites de Músculo Esquelético , Animais , Células Satélites de Músculo Esquelético/metabolismo , Camundongos , Ritmo Circadiano/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fatores de Tempo
19.
J Cell Biochem ; 125(2): e30513, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38229522

RESUMO

Wound healing can be influenced by genes that control the circadian cycle, including Per2 and BMAL1, which coordinate the functions of several organs, including the skin. The aim of the study was to evaluate the role of PER2 during experimental skin wound healing. Two groups (control and Per2-KO), consisting of 14 male mice each, were anesthetized by inhalation, and two 6 mm wounds were created on their dorsal skin using a punch biopsy. A silicone ring was sutured around the wound perimeter to restrict contraction. The wound healing process was clinically measured daily (closure index) until complete wound repair. On Day 6, histomorphometric analysis was performed using the length and thickness of the epithelial migration tongue, in addition to counting vessels underlying the lesion by immunofluorescence assay and maturation of collagen fibers through picrosirius staining. Bromodeoxyuridine (BrdU) incorporation and quantification were performed using the subcutaneous injection technique 2 h before euthanasia and through immunohistochemical analysis of the proliferative index. In addition, the qualitative analysis of myofibroblasts and periostin distribution in connective tissue was performed by immunofluorescence. Statistically significant differences were observed in the healing time between the experimental groups (means: 15.5 days for control mice and 13.5 days for Per2-KO; p = 0.001). The accelerated healing observed in the Per2-KO group (p < 0.05) was accompanied by statistical differences in wound diameter and length of the migrating epithelial tongue (p = 0.01) compared to the control group. Regarding BrdU immunoreactivity, higher expression was observed in the intact epithelium of Per2-KO animals (p = 0.01), and this difference compared to control was also present, to a lesser extent, at the wound site (p = 0.03). Immunofluorescence in the connective tissue underlying the wound showed a higher angiogenic potential in the Per2-KO group in the intact tissue area and the wound region (p < 0.01), where increased expression of myofibroblasts was also observed. Qualitative analysis revealed the distribution of periostin protein and collagen fibers in the connective tissue underlying the wound, with greater organization and maturation during the analyzed period. Our research showed that the absence of the Per2 gene positively impacts the healing time of the skin in vivo. This acceleration depends on the increase of epithelial proliferative and angiogenic capacity of cells carrying the Per2 deletion.


Assuntos
Pele , Cicatrização , Camundongos , Masculino , Animais , Cicatrização/genética , Bromodesoxiuridina , Pele/lesões , Epiderme , Colágeno , Proteínas Circadianas Period/genética
20.
Neurogenetics ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967831

RESUMO

The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa