Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Food Microbiol ; 95: 103687, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33397617

RESUMO

Bacterial species belonging to the genus Clostridium have been recognized as causative agents of blown pack spoilage (BPS) in vacuum packed meat products. Whole-genome sequencing of six New Zealand psychrotolerant clostridia isolates derived from three meat production animal types and their environments was performed to examine their roles in BPS. Comparative genome analyses have provided insight into the genomic diversity and physiology of these bacteria and divides clostridia into two separate species clusters. BPS-associated clostridia encode a large and diverse spectrum of degradative carbohydrate-active enzymes (CAZymes) that enable them to utilize the intramuscular carbohydrate stores and facilitate sporulation. In total, 516 glycoside hydrolases (GHs), 93 carbohydrate esterases (CEs), 21 polysaccharide lyases (PLs), 434 glycosyl transferases (GTs) and 211 carbohydrate-binding protein modules (CBM) with predicted activities involved in the breakdown and transport of carbohydrates were identified. Clostridia genomes have different patterns of CAZyme families and vary greatly in the number of genes within each CAZy category, suggesting some level of functional redundancy. These results suggest that BPS-associated clostridia occupy similar environmental niches but apply different carbohydrate metabolism strategies to be able to co-exist and cause meat spoilage.


Assuntos
Clostridium/genética , Clostridium/isolamento & purificação , Produtos da Carne/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bovinos , Clostridium/classificação , Esterases/genética , Esterases/metabolismo , Embalagem de Alimentos , Inocuidade dos Alimentos , Genoma Bacteriano , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Produtos da Carne/análise , Nova Zelândia , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Vácuo
2.
Microbes Environ ; 38(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37164688

RESUMO

Cold-adapted or psychrotrophic fermentative anaerobic bacteria were isolated from rice field soil in a temperate area in Japan using anaerobic enrichment cultures incubated at 5°C. Most isolates were obligately anaerobic, spore-forming rods and affiliated with different lineages of the genus Clostridium based on 16S rRNA gene sequences. The growth temperature ranges and physiological properties of three representative clostridial isolates (C5S7, C5S11T, and C5S18) were examined. Strain C5S7 grew at 0°C, but not at 20°C, and was identified as Clostridium estertheticum, a psychrophile isolated from spoiled, vacuum-packed, chilled meat (blown pack spoilage, BPS). Strain C5S7 produced butyrate, n-butanol, and abundant gases (H2 and CO2) as major fermentation products from the carbohydrates utilized. Strain C5S11T, which was recently described as Clostridium gelidum sp. nov., possessed psychrotrophic properties and grew at temperatures between 0 and 25°C. Strain C5S11T was saccharolytic, decomposed polysaccharides, such as inulin, pectin, and xylan, and produced acetate, butyrate, and gases. Strain C5S18 also grew at 0°C and the optimum growth temperature was 15°C. Strain C5S18 did not ferment carbohydrates and grew in a manner that was dependent on proteinaceous substrates. This strain was identified as the psychrotolerant species, Clostridium tagluense, originally isolated from a permafrost sample. Collectively, the present results indicate that psychrotrophic anaerobic bacteria with different physiological properties actively degrade organic matter in rice field soil, even in midwinter, in a cooperative manner using different substrates. Furthermore, different psychrotrophic species of the genus Clostridium with the ability to cause BPS inhabit cultivated soil in Japan.


Assuntos
Bactérias Anaeróbias , Oryza , Filogenia , RNA Ribossômico 16S/genética , Japão , Solo , Clostridium/genética , Butiratos/metabolismo , Carboidratos , Gases/metabolismo , DNA Bacteriano/química
3.
Front Microbiol ; 13: 856810, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418954

RESUMO

The spoilage of vacuum-packed meat by Clostridium estertheticum complex (CEC), which is accompanied by or without production of copious amounts of gas, has been linked to the acetone-butyrate-ethanol fermentation, but the mechanism behind the variable gas production has not been fully elucidated. The reconstruction and comparison of intra- and interspecies metabolic pathways linked to meat spoilage at the genomic level can unravel the genetic basis for the variable phenotype. However, this is hindered by unavailability of CEC genomes, which in addition, has hampered the determination of genetic diversity and its drivers within CEC. Therefore, the current study aimed at determining the diversity of CEC through comprehensive comparative genomics. Fifty CEC genomes from 11 CEC species were compared. Recombination and gene gain/loss events were identified as important sources of natural variation within CEC, with the latter being pronounced in genomospecies2 that has lost genes related to flagellar assembly and signaling. Pan-genome analysis revealed variations in carbohydrate metabolic and hydrogenases genes within the complex. Variable inter- and intraspecies gas production in meat by C. estertheticum and Clostridium tagluense were associated with the distribution of the [NiFe]-hydrogenase hyp gene cluster whose absence or presence was associated with occurrence or lack of pack distention, respectively. Through comparative genomics, we have shown CEC species exhibit high genetic diversity that can be partly attributed to recombination and gene gain/loss events. We have also shown genetic basis for variable gas production in meat can be attributed to the presence/absence of the hyp gene cluster.

4.
Front Microbiol ; 12: 727022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589074

RESUMO

Isolates within the Clostridium estertheticum complex (CEC) have routinely been identified through the 16S rRNA sequence, but the high interspecies sequence similarity reduces the resolution necessary for species level identification and often results in ambiguous taxonomic classification. The current study identified CEC isolates from meat juice (MJS) and bovine fecal samples (BFS) and determined the phylogeny of species within the CEC through whole genome sequence (WGS)-based analyses. About 1,054 MJS were screened for CEC using quantitative real-time PCR (qPCR). Strains were isolated from 33 MJS and 34 BFS qPCR-positive samples, respectively. Pan- and core-genome phylogenomics were used to determine the species identity of the isolates. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were used to validate the species identity. The phylogeny of species within the CEC was determined through a combination of these methods. Twenty-eight clostridia strains were isolated from MJS and BFS samples out of which 13 belonged to CEC. At 95% ANI and 70% dDDH thresholds for speciation, six CEC isolates were identified as genomospecies2 (n=3), Clostridium tagluense (n=2) and genomospecies3 (n=1). Lower thresholds of 94% ANI and 58% dDDH were required for the classification of seven CEC isolates into species C. estertheticum and prevent an overlap between species C. estertheticum and Clostridium frigoriphilum. Combination of the two species and abolishment of current subspecies classification within the species C. estertheticum are proposed. These data demonstrate the suitability of phylogenomics to identify CEC isolates and determine the phylogeny within CEC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa