RESUMO
BACKGROUND AND AIMS: Hepatitis B virus X protein (HBx) play a key role in pathogenesis of HBV-induced hepatocellular carcinoma (HCC) by promoting epithelial to mesenchymal transition (EMT). In this study, we hypothesized that inhibition of HBx is an effective strategy to combat HCC. METHODOLOGY AND RESULTS: We designed and synthesized novel HBx gene specific single guide RNA (sgRNA) with CRISPR/Cas9 system and studied its in vitro effects on tumour properties of HepG2-2.15. Full length HBx gene was excised using HBx-CRISPR that resulted in significant knockdown of HBx expression in hepatoma cells. HBx-CRISPR also decreased levels of HBsAg and HBV cccDNA expression. A decreased expression of mesenchymal markers, proliferation and tumorigenic properties was observed in HBx-CRISPR treated cells as compared to controls in both two- and three- dimensional (2D and 3D) tumour models. Transcriptomics data showed that out of 1159 differentially expressed genes in HBx-CRISPR transfected cells as compared to controls, 70 genes were upregulated while 1089 genes associated with cell proliferation and EMT pathways were downregulated. CONCLUSION: Thus, targeting of HBx by CRISPR/Cas9 gene editing system reduces covalently closed circular DNA (cccDNA) levels, HBsAg production and mesenchymal characteristics of HBV-HCC cells. We envision inhibition of HBx by CRISPR as a novel therapeutic approach for HBV-induced HCC.
Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Antígenos de Superfície da Hepatite B/genética , Edição de Genes , Sistemas CRISPR-Cas , Transição Epitelial-Mesenquimal/genética , RNA Guia de Sistemas CRISPR-Cas , DNA Circular , Replicação Viral , Células Hep G2RESUMO
PURPOSE: Acinetobacter baumannii is emerging as a pathogen that is a focus of global concern due to the frequent occurrence of the strains those are extensively resistant to antibiotics. This study was aimed to analyze the clinical and microbiological characteristics of a cohort of patients with A. baumannii bloodstream infections (BSIs) in western China. METHODS: A retrospective study of the patients at West China Hospital of Sichuan University with A. baumannii BSIs between Jan, 2018 and May, 2023 was conducted. Antimicrobial susceptibility of A. baumannii isolates was tested by microdilution broth method. Whole-genome sequencing and genetic analysis were also performed for these isolates. RESULTS: Among the 117 patients included, longer intensive care unit stay, higher mortality, and more frequent invasive procedures and use of more than 3 classes of antibiotics were observed among the carbapenem-resistant A. baumannii (CRAB)-infected group (n = 76), compared to the carbapenem-susceptible A. baumannii (CSAB)-infected group (n = 41, all P ≤ 0.001). Twenty-four sequence types (STs) were determined for the 117 isolates, and 98.7% (75/76) of CRAB were identified as ST2. Compared to non-ST2 isolates, ST2 isolates exhibited higher antibiotic resistance, and carried more resistance and virulence genes (P < 0.05). In addition, 80 (68.4%) isolates were CRISPR-positive, showed higher antibiotic susceptibility, and harbored less resistance and virulence genes, in comparison to CRISPR-negative ones (P < 0.05). Phylogenetic clustering based on coregenome SNPs indicated a sporadic occurrence of clonal transmission. CONCLUSION: Our findings demonstrate a high frequency of ST2 among A. baumannii causing BSIs, and high antibiotic susceptibility of non-ST2 and CRISPR-positive isolates. It is necessary to strengthen the surveillance of this pathogen.
Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Bacteriemia , Testes de Sensibilidade Microbiana , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/classificação , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/tratamento farmacológico , Masculino , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Idoso , China/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana Múltipla/genética , Adulto , Idoso de 80 Anos ou mais , Carbapenêmicos/farmacologiaRESUMO
Midbrain dopaminergic neurons respond to rewards and have a crucial role in positive motivation and pleasure. Electrical stimulation of dopaminergic neurons and/or their axonal fibers and arborization has been often used to motivate animals to perform cognitive tasks. Still, the electrical stimulation is incompatible with electrophysiological recordings. In this light, optical stimulation following artificial expression of channelrhodopsin-2 (ChR2) in the cell membrane has been also used, but the expression level of ChR2 varies among researchers. Thus, we attempted to stably express ChR2 fused with a red fluorescence protein, mCherry, in dopaminergic neurons. Since dopamine transporter (DAT) gene is known as a marker for dopaminergic neurons, we inserted ChR2-mCherry into the downstream of the DAT gene locus of the rat genome by clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) genome editing and created DAT-ChR2-mCherry knock-in rats. Immunohistochemistry showed that ChR2-mCherry was expressed in dopaminergic neurons in homozygote knock-in rats, whereas whole-cell recordings revealed that ChR2-mCherry-positive neurons did not fire action potentials upon blue light stimulation, indicating that ChR2 was not functional for optogenetics. Nevertheless, fluorescent labeling of dopaminergic neurons mediated by mCherry could help characterize them physiologically and histologically.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Ratos , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteína Vermelha Fluorescente , Neurônios Dopaminérgicos/metabolismoRESUMO
CYP2D6 variants contain various single nucleotide polymorphisms as well as differing levels of metabolic activity. Among these, one of the less active variants CYP2D6*10 (100C > T) is the most prevalent mutation in East Asians, including Japanese. This mutation leads to an amino acid substitution from proline to serine, which reduces the stability of CYP2D6 and consequently decreases its metabolic activity. In this study, we used a genome editing technology called the Precise Integration into Target Chromosome (PITCh) system to stably express six drug-metabolizing enzymes (CYP3A4, POR, uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1), CYP1A2, CYP2C19, CYP2C9, and CYP2D6*10) in HepG2 (CYP2D6*10 KI-HepG2) cells to examine the effect of CYP2D6*10 on drug metabolism prediction. The protein expression levels of CYP2D6 in CYP2D6*10 KI-HepG2 cells were reduced relative to those in the CYP3A4-POR-UGT1A1-CYP1A2-CYP2C19-CYP2C9-CYP2D6 knock-in-HepG2 (CYPs-UGT1A1 KI-HepG2) cells. Consistent with the CYP2D6 protein expression results, CYP2D6 metabolic activity in CYP2D6*10 KI-HepG2 cells was reduced relative to CYPs-UGT1A1 KI-HepG2 cells. We successfully generated CYP2D6*10 KI-HepG2 cells with highly expressed, functional CYP2D6*10, as well as CYP1A2, 2C9, 2C19 and 3A4. CYP2D6*10 KI-HepG2 cells could be an invaluable model for hepatic metabolism and hepatotoxicity studies in East Asians, including Japanese.
Assuntos
Citocromo P-450 CYP2D6 , Hepatócitos , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Edição de Genes/métodos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Polimorfismo de Nucleotídeo Único , Modelos BiológicosRESUMO
Due to their superiority in the simple design and precise targeting, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have attracted significant interest for biosensing. On the one hand, CRISPR-Cas systems have the capacity to precisely recognize and cleave specific DNA and RNA sequences. On the other hand, CRISPR-Cas systems such as orthologs of Cas9, Cas12, and Cas13 exhibit cis-cleavage or trans-cleavage activities after recognizing the target sequence. Owing to the cleavage activities, CRISPR-Cas systems can be designed for biosensing by degrading tagged nucleic acids to produce detectable signals. To meet the requirements of point-of-care detection and versatile signal readouts, gold nanomaterials with excellent properties such as high extinction coefficients, easy surface functionalization, and biocompatibility are implemented in CRISPR-Cas-based biosensors. In combination with gold nanomaterials such as gold nanoparticles, gold nanorods, and gold nanostars, great efforts are devoted to fabricating CRISPR-Cas-based biosensors for the detection of diverse targets. This review focuses on the current advances in gold nanomaterials-implemented CRISPR-Cas-based biosensors, particularly the working mechanism and the performance of these biosensors. CRISPR-Cas systems, including CRISPR-Cas9, CRISPR-Cas12a, and CRISPR-Cas13a are discussed and highlighted. Meanwhile, prospects and challenges are also discussed in the design of biosensing strategies based on gold nanomaterials and CRISPR-Cas systems.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ácidos Nucleicos , Sistemas CRISPR-Cas , Edição de Genes , OuroRESUMO
Parkinson's disease (PD) is an age-related disorder with selective dopaminergic (DA) neuronal degeneration in the substantia nigra pars compacta. The presence of mainly α-synuclein-composed Lewy bodies in DA neurons is among the disease hallmarks in the brain of patients with PD. Human induced pluripotent stem cells (hiPSCs) are powerful tools to investigate PD pathophysiology and understand its molecular and cellular mechanisms better. In this study, we generated an α-synuclein-null hiPSC line introducing a nonsense mutation in the α-synuclein-encoding SNCA alleles using clustered regularly interspaced short palindromic repeats CRISPR-associated protein 9 (CRISPR-Cas9)-mediated gene editing. Our Western blotting analysis revealed the lack of α-synuclein protein expression in SNCA knockout hiPSC-derived cells. In addition, SNCA knockout hiPSCs retained healthy cell morphology, undifferentiated marker gene (e.g., NANOG, POU5F1, and SOX2) expression, and differentiation ability (based on the marker gene expression levels of the three germ layers). Finally, SNCA knockout hiPSC-derived DA neurons exhibited reduced vulnerability to the DA neurotoxin, 1-methyl-4-phenylpyridinium. In conclusion, the SNCA knockout hiPSC line we generated would provide a useful experimental tool for studying the physiological and pathological role of α-synuclein in PD.
Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes Neurotóxicas , Doença de Parkinson , Humanos , alfa-Sinucleína , Sistemas CRISPR-Cas , Neurônios Dopaminérgicos , Dopamina , Expressão GênicaRESUMO
Fatty liver disease is characterized as nonalcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Fatty liver disease is one of the most common causes of chronic liver disease worldwide among adults and children. It is characterized by excessive fat accumulation in the liver cells. It has a genetically heterogenous background with complex pathogenesis and progressions and is accompanied by significant morbidity, mortality, and healthcare costs. NAFLD's risk factors include metabolic syndrome, abdominal obesity, type 2 diabetes, and atherogenic dyslipidemia. ALD is associated with the excessive consumption of alcohol. Here, we describe the functions of various proteins encoded by gene variants contributing to the pathogenesis of nonalcoholic fatty liver disease and alcoholic fatty liver disease. Advancements in genome engineering technology have generated various in vivo and in vitro fatty liver disease models reflecting the genetic abnormalities contributing toward fatty liver disease. We will discuss currently developed different ALD and NAFLD models using the clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) genome editing tool.Furthermore, we will also discuss the salient features of CRISPR/Cas9 editing technology and Cas9 variants such as prime and base editors to replicate genetic topographies linked specifically to ALD and NAFLD. The advantages and limitations of currently available genome delivery methods necessary for optimal gene editing will also be discussed in this review. This review will provide the essential guidance for appropriate genome editing tool selection and proper gene delivery approaches for the effective development of ALD and NAFLD models, leading to the development of clinical therapeutics for fatty liver disease.
Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Adulto , Criança , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Edição de Genes , EtanolRESUMO
The thalassemia issue is a growing worldwide health concern that anticipates the number of patients suffering from the disease will soon increase significantly. Patients with ß-thalassemia intermedia (ß-TI) manifest mild to intermediate levels of anemia, which is a reason for it to be clinically located between thalassemia minor and ß-thalassemia major (ß-TM). Notably, the determination of the actual rate of ß-TI is more complicated than ß-TM. The leading cause of this illness could be partial repression of ß-globin protein production; accordingly, the rate of ß-globin gene repression is different in patients, and the gene repression intensity creates a different clinical status. This review article provides an overview of functional mechanisms, advantages, and disadvantages of the classic to latest new treatments for this group of patients, depending on the disease severity divided into the typical management strategies for patients with ß-TI such as fetal hemoglobin (Hb) induction, splenectomy, bone marrow transplantation (BMT), transfusion therapy, and herbal and chemical iron chelators. Recently, novel erythropoiesis-stimulating agents have been added. Novel strategies are subclassified into molecular and cellular interventions. Genome editing is one of the efficient molecular therapies for improving hemoglobinopathies, especially ß-TI. It encompasses high-fidelity DNA repair (HDR), base and prime editing, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 procedure, nuclease-free strategies, and epigenetic modulation. In cellular interventions, we mentioned the approach pattern to improve erythropoiesis impairments in translational models and patients with ß-TI that involve activin II receptor traps, Janus-associated kinase 2 (JAK2) inhibitors, and iron metabolism regulation.
Assuntos
Talassemia , Talassemia beta , Humanos , Talassemia/genética , Talassemia/terapia , Talassemia/complicações , Talassemia beta/genética , Talassemia beta/terapia , Talassemia beta/complicações , Ferro/metabolismo , Quelantes de Ferro/uso terapêutico , Globinas beta/genéticaRESUMO
The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.
Assuntos
Edição de Genes , Neoplasias , Sistemas CRISPR-Cas/genética , Genoma , Humanos , Neoplasias/genética , Neoplasias/terapiaRESUMO
Finding and explaining the functions of genes in plants have promising applications in crop improvement and bioprospecting and hence, it is important to compare various techniques available for gene function identification in plants. Today, the most popular technology among researchers to identify the functions of genes is the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-based genome editing method. But by no means can we say that CRISPR/Cas9 is the go-to method for all purposes. It comes with its own baggage. Researchers will agree and have lived through at least seven more technologies deployed to find the functions of genes, which come under three umbrellas: 1. genetic engineering, 2. transient expression, and 3. chemical/physical mutagenesis. Each of the methods evolved when the previous one ran into an insurmountable problem. In this review, we compare the eight technologies against one another on 14 parameters. This review lays bare the pros and cons, and similarities and dissimilarities of various methods. Every method comes with its advantages and disadvantages. For example, the CRISPR/Cas9-based genome editing is an excellent method for modifying gene sequences, creating allelic versions of genes, thereby aiding the understanding of gene function. But it comes with the baggage of unwanted or off-target mutations. Then, we have methods based on random or targeted knockout of the gene, knockdown, and overexpression of the gene. Targeted disruption of genes is required for complete knockout of gene function, which may not be accomplished by editing. We have also discussed the strategies to overcome the shortcomings of the targeted gene-knockout and the CRISPR/Cas9-based methods. This review serves as a comprehensive guide towards the understanding and comparison of various technologies available for gene function identification in plants and hence, it will find application for crop improvement and bioprospecting related research.
Assuntos
Edição de Genes/métodos , Engenharia Genética/métodos , Plantas/genética , Animais , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma de Planta/genética , Mutagênese/genética , Mutação/genéticaRESUMO
Nucleic acid detection is a necessary part of medical treatment and fieldwork. However, the current detection technologies are far from ideal. A lack of timely and accessible testing for identifying cases and close contacts has allowed severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative virus of the ongoing coronavirus disease-2019 (COVID-19) pandemic, to spread uncontrollably. The slow and expensive detection of mutations-predictors for chronic diseases such as cancer-form a barrier to personalized treatment. A recently developed diagnostic assay is ideal and field-ready-it relies on CRISPR-Cas13. CRISPR-Cas13 works similarly to other CRISPR systems: Cas13 is guided by a crRNA to cleave next to a specific RNA target sequence. Additionally, Cas13 boasts a unique collateral cleavage activity; collateral cleavage of a fluorescent reporter detects the presence of the target sequence in sample RNA. This system forms the basis of CRISPR-Cas13 diagnostic assays. CRISPR-Cas13 assays have >95% sensitivity and >99% specificity. Detection is rapid (<2 h), inexpensive ($0.05 per test), and portable-a test using lateral flow strips is akin to a pregnancy test. The recent adaptation of micro-well chips facilitates high-level multiplexing and is high-throughput. In this review, we cover the development of CRISPR-Cas13 assays for medical diagnosis, discuss the advantages of CRISPR-Cas13-based diagnosis over the traditional reverse transcription polymerase chain reaction (RT-PCR), and present examples of detection from real patient samples.
Assuntos
COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Viral/genética , SARS-CoV-2/genética , Humanos , SARS-CoV-2/isolamento & purificaçãoRESUMO
The exocyst is a conserved octameric complex that physically tethers a vesicle to the plasma membrane, prior to membrane fusion. It is important not only for secretion and membrane delivery but also, in mammalian cells, for cytokinesis, ciliogenesis, autophagy, tumorigenesis, and host defense. The combination of genome editing and advanced light microscopy of exocyst subunits in living cells has recently shown the complex to be much more dynamic than previously appreciated, and exposed how little we still know about its function and regulation.
Assuntos
Membrana Celular/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Autofagia , Carcinogênese , Compartimento Celular , Citoplasma/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Proteínas SNARE/metabolismoRESUMO
Viruses are essentially composed of a nucleic acid (segmented or not, DNA, or RNA) and a protein coat. Despite their simplicity, these small pathogens are responsible for significant economic and humanitarian losses that have had dramatic consequences in the course of human history. Since their discovery, scientists have developed different strategies to efficiently detect viruses, using all possible viral features. Viruses shape, proteins, and nucleic acid are used in viral detection. In this review, the development of these techniques, especially for plant and mammalian viruses, their strengths and weaknesses as well as the latest cutting-edge technologies that may be playing important roles in the years to come are described.
Assuntos
Técnicas de Laboratório Clínico/métodos , Viroses/diagnóstico , Vírus/isolamento & purificação , Animais , Técnicas de Laboratório Clínico/história , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Mamíferos/virologia , Plantas/virologia , Vírus/metabolismoRESUMO
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes/veterinária , Animais , Animais Geneticamente Modificados , Engenharia Genética , SuínosRESUMO
HMG-CoA reductase (Hmgcr) is the rate-limiting enzyme in the mevalonate pathway and is inhibited by statins. In addition to cholesterol, Hmgcr activity is also required for synthesizing nonsterol isoprenoids, such as dolichol, ubiquinone, and farnesylated and geranylgeranylated proteins. Here, we investigated the effects of Hmgcr inhibition on nonsterol isoprenoids in the liver. We have generated new genetic models to acutely delete genes in the mevalonate pathway in the liver using AAV-mediated delivery of Cre-recombinase (AAV-Cre) or CRISPR/Cas9 (AAV-CRISPR). The genetic deletion of Hmgcr by AAV-Cre resulted in extensive hepatocyte apoptosis and compensatory liver regeneration. At the biochemical level, we observed decreased levels of sterols and depletion of the nonsterol isoprenoids, dolichol and ubiquinone. At the cellular level, Hmgcr-null hepatocytes showed ER stress and impaired N-glycosylation. We further hypothesized that the depletion of dolichol, essential for N-glycosylation, could be responsible for ER stress. Using AAV-CRISPR, we somatically disrupted dehydrodolichyl diphosphate synthase subunit (Dhdds), encoding a branch point enzyme required for dolichol biosynthesis. Dhdds-null livers showed ER stress and impaired N-glycosylation, along with apoptosis and regeneration. Finally, the combined deletion of Hmgcr and Dhdds synergistically exacerbated hepatocyte ER stress. Our data show a critical role for mevalonate-derived dolichol in the liver and suggest that dolichol depletion is at least partially responsible for ER stress and apoptosis upon potent Hmgcr inhibition.
Assuntos
Estresse do Retículo Endoplasmático/genética , Hidroximetilglutaril-CoA Redutases/deficiência , Hidroximetilglutaril-CoA Redutases/genética , Fígado/metabolismo , Terpenos/metabolismo , Deleção de GenesRESUMO
Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia-reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered. Therefore, in the research, we subjected SK-N-BE(2) cells to oxygen-glucose deprivation/reperfusion (OGDR) insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to discover new potential therapeutic targets for cerebral ischaemia-reperfusion injury. We used Metascape to identify candidate genes which might involve in OGDR resistance. We found that the genes contributed to OGDR resistance were primarily involved in neutrophil degranulation, mitochondrial translation, and regulation of cysteine-type endopeptidase activity involved in apoptotic process and response to oxidative stress. We then knocked down some of the identified candidate genes individually. We demonstrated that MRPL19, MRPL32, MRPL52 and MRPL51 inhibition increased cell viability and attenuated OGDR-induced apoptosis. We also demonstrated that OGDR down-regulated the expression of MRPL19 and MRPL51 protein. Taken together, our data suggest that genome-scale screening with Cas9 is a reliable tool to analyse the cellular systems that respond to OGDR injury. MRPL19 and MRPL51 contribute to OGDR resistance and are supposed to be promising targets for the treatment of cerebral ischaemia-reperfusion damage.
Assuntos
Sistemas CRISPR-Cas , Glucose/deficiência , Proteínas Mitocondriais/antagonistas & inibidores , Neuroblastoma/patologia , Oxigênio/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Proteínas Ribossômicas/antagonistas & inibidores , Regulação da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Estresse Oxidativo , Proteínas Ribossômicas/genética , Células Tumorais CultivadasRESUMO
A missense mutation of the guanine nucleotide binding protein alpha stimulating activity polypeptide 1 (GNAS) gene, typically Arg201Cys or Arg201His (R201H/R201C), leads to constitutive activation of the Gsα-cyclic AMP (cAMP) signaling pathway that causes several diseases. However, no germline mutations of GNAS have been identified to date, likely due to their lethality, and no robust human cell models have been generated. Therefore, the aim of this study was to generate GNAS-mutated disease-specific induced pluripotent stem cells as a model for these diseases. We then analyzed the functionality of this induced pluripotent stem cell model and differentiated epithelial cells. We generated disease-specific induced pluripotent stem cells by introducing a mutation in GNAS with the clustered regularly interspaced short palindromic repeats (CRISPR) nickase method, which has lower off-target effects than the conventional CRISPR/Cas9 method. We designed the target vector to contain the R201H mutation in GNAS, which was transfected into human control induced pluripotent stem cells (Nips-B2) by electroporation. We confirmed the establishment of GNASR201H-mutated (GNASR201H/+) induced pluripotent stem cells that exhibited a pluripotent stem cell phenotype. We analyzed the effect of the mutation on cAMP production, and further generated teratomas for immunohistochemical analysis of the luminal epithelial structure. GNAS-mutated induced pluripotent stem cells showed significantly higher levels of intracellular cAMP, which remained elevated state for a long time upon hormonal stimulation with parathyroid hormone or adrenocorticotropic hormone. Immunohistochemical analysis revealed that several mucins, including MUC1, 2, and MUC5AC, are expressed in cytokeratin 18 (CK18)-positive epithelial cells. However, we found few CK18-positive cells in mutated induced pluripotent stem cell-derived teratoma tissues, and reduced MUCINs expression in mutated epithelial cells. There was no difference in CDX2 expression; however, mutated epithelial cells were positive for CEA and CA19-9 expression. GNASR201H-mutated induced pluripotent stem cells and GNASR201H-mutated epithelial cells have distinct phenotypic and differentiation characteristics. We successfully established GNASR201H-mutated human induced pluripotent stem cells with increased cAMP production. Considering the differentiation potential of induced pluripotent stem cells, these cells will be useful as a model for elucidating the pathological mechanisms of GNAS-mutated diseases.
Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Mutação , Teratoma/patologia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Cromograninas/antagonistas & inibidores , Subunidades alfa Gs de Proteínas de Ligação ao GTP/antagonistas & inibidores , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos SCID , Teratoma/genéticaRESUMO
BACKGROUND: Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS: We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS: BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION: The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.
Assuntos
Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Camundongos , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Substância Negra/efeitos dos fármacosRESUMO
The detection of circulating tumor DNA is important in cancer research and clinical practice. In the present study, we aimed to improve the sensitivity of downstream mutation detection of next-generation sequencing using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system to selectively target wild-type fragments but with low or no cleavage activity to mutant fragments, followed by amplification using polymerase chain reaction. We selected different mutant sites of epidermal growth factor receptor gene (EGFR)-exon19 deletions in patients with lung cancer and constructed mixed templates of mutant and wild-type DNA comprising ratios of 10% to 0.01% to test the effectiveness of the enrichment method. The results showed that after CRISPR/Cas9 enrichment, a low concentration of mutant DNA fragments (0.01%) could be detected by Sanger sequencing, which represented a 1000-fold increase compared with the untreated samples. We further verified the feasibility of the introduced method and obtained similar results in clinical samples from patients with non-small cell lung cancer, indicating that this method has the potential to detect low copy number mutations at the early stage.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Testes Genéticos/métodos , Neoplasias Pulmonares/genética , Mutação/genética , RNA Guia de Cinetoplastídeos/metabolismo , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/metabolismo , Receptores ErbB/sangue , Receptores ErbB/genética , Éxons/genética , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Limite de Detecção , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Reação em Cadeia da Polimerase , Sensibilidade e EspecificidadeRESUMO
The soybean fatty acid desaturase family is composed of seven genes, but the function of each gene has not been reported. Bioinformatics was used to analyse the structure of genes in this family, as well as the correlation between Δ12-fatty acid desaturase II (FAD2) expression and oleic acid content on different days after flowering of soybean. In the present study, CRISPR/Cas9 technology was used to construct single and double mutant knockout vectors of functional genes in the FAD2 family. Analysis of the molecular biology and expression patterns of genes in the FAD2 family, namely, GmFAD2-1A (Glyma.10G278000) and GmFAD2-2A (Glyma.19G147300), showed that they had little homology with other soybean FAD2 genes, and that their function was slightly changed. Sequencing of the target showed that the editing efficiency of the GmFAD2-1A and GmFAD2-2A genes was 95% and 55.56%, respectively, and that the double mutant editing efficiency was 66.67%. The mutations were divided into two main types, as follows: base deletion and insertion. A near-infrared grain analyser determined the following results: In the T2 generation, the oleic acid content increased from 17.10% to 73.50%; the linoleic acid content decreased from 62.91% to 12.23%; the protein content increased from 37.69% to 41.16%; in the T3 generation, the oleic acid content increased from 19.15% to 72.02%; the linoleic acid content decreased from 56.58% to 17.27%. In addition, the protein content increased from 37.52% to 40.58% compared to that of the JN38 control variety.