Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Biotechnol Lett ; 45(1): 83-94, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36441275

RESUMO

OBJECTIVES: The succession of microbial communities and intermediates during methane production was determined by pyrosequencing and GC-MS to investigate the mechanism of biomethanation enhancement from coal. RESULTS: The maximum methane production at 1.2 V was significantly higher than that at 0 V. Bacterial flora have been changed as a result of the addition of an electric field, e.g., the abundance of Pseudomonas significantly increased to enhance the coal degradation which improved the methane yield by facilitating the electron transfer. The fungal structure was also found stabilized by the electric field when compared to the control after 7 days of cultivation. The predominance of Methanosarcina could also stimulate interspecies electron transfer. The GC-MS analysis revealed that the electric field can selectively promote the metabolism of refractory intermediates such as esters and aromatics during coal biodegradation. CONCLUSION: The application of an electric field could enhance methane production from coal by changing the structure and succession of microbial communities, improving electron transfer, and enhancing the fermentation of intermediates during coal biodegradation.


Assuntos
Carvão Mineral , Microbiota , Carvão Mineral/microbiologia , Bactérias/genética , Bactérias/metabolismo , Fermentação , Metano/metabolismo
2.
Molecules ; 28(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37110537

RESUMO

To study the importance of the adsorption mechanism of methane (CH4) and carbon dioxide (CO2) in coal for coalbed methane development, we aimed to reveal the influence mechanism of adsorption pressure, temperature, gas properties, water content, and other factors on gas molecular adsorption behavior from the molecular level. In this study, we selected the nonsticky coal in Chicheng Coal Mine as the research object. Based on the coal macromolecular model, we used the molecular dynamics (MD) and Monte Carlo (GCMC) methods to simulate and analyze the conditions of different pressure, temperature, and water content. The change rule and microscopic mechanism of the adsorption amount, equal adsorption heat, and interaction energy of CO2 and CH4 gas molecules in the coal macromolecular structure model establish a theoretical foundation for revealing the adsorption characteristics of coalbed methane in coal and provide technical support for further improving coalbed methane extraction.

3.
Microb Ecol ; 84(3): 780-793, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34686899

RESUMO

The global trend of transiting to more renewable energy sources requires transition fuels, such as coal seam gas, to supplement and secure energy needs. In order to optimise strategies and technologies for enhancing gas production, an understanding of the fundamental microbial processes and interactions would be advantageous. Models have recently begun mapping the microbial roles and interactions in coal seam environments, from direct coal degradation to methanogenesis. This study seeks to expand those models by observing community compositional shifts in the presence of differing organic matter by conducting 16S rRNA microbial surveys using formation water from the Surat and Sydney Basins grown on varying types of organic matter (black and brown coal, oil shale, humic acid, and lignin). A total of 135 microbes were observed to become enriched in the presence of added organic matter in comparison to carbon-free treatments. These surveys allowed detailed analysis of microbial compositions in order to extrapolate which taxa favour growth in the presence of differing organic matter. This study has experimentally demonstrated shifts in the microbial community composition due to differing carbon sources and, for the first time, generated a conceptual model to map putative degradation pathways regarding subsurface microbial consortia.


Assuntos
Carvão Mineral , Microbiota , RNA Ribossômico 16S/genética , Metano/metabolismo , Consórcios Microbianos/genética
4.
Environ Sci Technol ; 56(5): 3225-3233, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142487

RESUMO

Subsurface microbial (biogenic) methane production is an important part of the global carbon cycle that has resulted in natural gas accumulations in many coal beds worldwide. Laboratory studies suggest that complex carbon-containing nutrients (e.g., yeast or algae extract) can stimulate methane production, yet the effectiveness of these nutrients within coal beds is unknown. Here, we use downhole monitoring methods in combination with deuterated water (D2O) and a 200-liter injection of 0.1% yeast extract (YE) to stimulate and isotopically label newly generated methane. A total dissolved gas pressure sensor enabled real-time gas measurements (641 days preinjection and for 478 days postinjection). Downhole samples, collected with subsurface environmental samplers, indicate that methane increased 132% above preinjection levels based on isotopic labeling from D2O, 108% based on pressure readings, and 183% based on methane measurements 266 days postinjection. Demonstrating that YE enhances biogenic coalbed methane production in situ using multiple novel measurement methods has immediate implications for other field-scale biogenic methane investigations, including in situ methods to detect and track microbial activities related to the methanogenic turnover of recalcitrant carbon in the subsurface.


Assuntos
Carvão Mineral , Metano , Carbono , Gás Natural
5.
Sensors (Basel) ; 22(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146124

RESUMO

In this study, a measurement system for gas generation of coal-rock under temperature-pressure coupling was developed by adding gas extraction, collection, and flow-monitoring devices to the original stainless-steel liquid seepage pipeline of an MTS-815 rock triaxial testing machine, which can be used to study the production mechanism of coalbed methane in a real geological environment. The system has the functions of axial loading, confining pressure loading, continuous heating, gas gathering, etc., and has the advantages of good air tightness, high accuracy and stability, long-term loading and heating, and controllable single variables. The preliminary test for the gas production of anthracite in the Shaanxi Formation of the Qinshui Basin under temperature-pressure coupling was carried out by the developed test system. The results show that the test system can provide accurate and effective measurement means for the study of gas production by coal-rock deformation and is expected to provide effective help for the control and exploitation of coalbed methane.

6.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268694

RESUMO

Micropores are the primary sites for methane occurrence in coal. Studying the regularity of methane occurrence in micropores is significant for targeted displacement and other yield-increasing measures in the future. This study used simplified graphene sheets as pore walls to construct coal-structural models with pore sizes of 1 nm, 2 nm, and 4 nm. Based on the Grand Canonical Monte Carlo (GCMC) and molecular dynamics theory, we simulated the adsorption characteristics of methane in pores of different sizes. The results showed that the adsorption capacity was positively correlated with the pore size for pure gas adsorption. The adsorption capacity increased with pressure and pore size for competitive adsorption of binary mixtures in pores. As the average isosteric heat decreased, the interaction between the gas and the pore wall weakened, and the desorption amount of CH4 decreased. In ultramicropores, the high concentration of CO2 (50-70%) is more conducive to CH4 desorption; however, when the CO2 concentration is greater than 70%, the corresponding CH4 adsorption amount is meager, and the selected adsorption coefficient SCO2/CH4 is small. Therefore, to achieve effective desorption of methane in coal micropores, relatively low pressure (4-6 MPa) and a relatively low CO2 concentration (50-70%) should be selected in the process of increasing methane production by CO2 injection in later stages. These research results provide theoretical support for gas injection to promote CH4 desorption in coal pores and to increase yield.

7.
Sensors (Basel) ; 18(2)2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443871

RESUMO

Coalbed methane (CBM) is one kind of clean-burning gas and has been valued as a new form of energy that will be used widely in the near future. When producing CBM, the working level within a CBM wellbore annulus needs to be monitored to dynamically adjust the gas drainage and extraction processes. However, the existing method of measuring the working level does not meet the needs of accurate adjustment, so we designed a new sensor for this purpose. The principle of our sensor is a liquid pressure formula, i.e., the sensor monitors the two-phase flow patterns and obtains the mean density of the two-phase flow according to the pattern recognition result in the first step, and then combines the pressure data of the working level to calculate the working level using the liquid pressure formula. The sensor was tested in both the lab and on site, and the tests showed that the sensor's error was ±8% and that the sensor could function well in practical conditions and remain stable in the long term.

8.
Bull Environ Contam Toxicol ; 99(3): 385-390, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710527

RESUMO

There is a growing concern over the contamination of surface water and the associated environmental and public health consequences from the recent proliferation of hydraulic fracturing in the USA. Petroleum hydrocarbon-derived contaminants of concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)] and various dissolved cations and anions were spatially determined in surface waters around 15 coalbed methane fracking wells in Sullivan County, IN, USA. At least one BTEX compound was detected in 69% of sampling sites (n = 13) and 23% of sampling sites were found to be contaminated with all of the BTEX compounds. Toluene was the most common BTEX compound detected across all sampling sites, both upstream and downstream from coalbed methane fracking wells. The average concentration of toluene at a reservoir and its outlet nearby the fracking wells was ~2× higher than other downstream sites. However, one of the upstream sites was found to be contaminated with BTEX at similar concentrations as in a reservoir site nearby the fracking well. Calcium (~60 ppm) and sulfates (~175 ppm) were the dominant cations and anions, respectively, in surface water around the fracking sites. This study represents the first report of BTEX contamination in surface water from coalbed methane hydraulic fracturing wells.


Assuntos
Monitoramento Ambiental , Fraturamento Hidráulico , Metano/análise , Compostos Orgânicos Voláteis/análise , Poluentes Químicos da Água/análise , Benzeno/análise , Derivados de Benzeno , Hidrocarbonetos , Indiana , Petróleo , Sulfatos , Tolueno/análise , Poluição da Água/estatística & dados numéricos , Poços de Água , Xilenos/análise
9.
Sensors (Basel) ; 16(11)2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27869708

RESUMO

The measurement of wellbore annulus gas-liquid two-phase flow in CBM (coalbed methane) wells is of great significance for reasonably developing gas drainage and extraction processes, estimating CBM output, judging the operating conditions of CBM wells and analyzing stratum conditions. Hence, a specially designed sensor is urgently needed for real-time measurement of gas-liquid two-phase flow in CBM wellbore annulus. Existing flow sensors fail to meet the requirements of the operating conditions of CBM wellbore annulus due to such factors as an inapplicable measurement principle, larger size, poor sealability, high installation accuracy, and higher requirements for fluid media. Therefore, based on the principle of a target flowmeter, this paper designs a new two-phase flow sensor that can identify and automatically calibrate different flow patterns of two-phase flows. Upon the successful development of the new flow sensor, lab and field tests were carried out, and the results show that the newly designed sensor, with a measurement accuracy of ±2.5%, can adapt to the operating conditions of CBM wells and is reliable for long-term work.

10.
Sensors (Basel) ; 16(9)2016 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-27649206

RESUMO

The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

11.
Environ Monit Assess ; 188(4): 208, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26946495

RESUMO

Tertiary-butyl alcohol (TBA), a high-production volume (HPV) chemical, was sporadically detected in groundwater and coalbed methane (CBM) wells in southeastern Colorado's hydrocarbon-rich Raton Basin. TBA concentrations in shallow water wells averaged 75.1 µg/L, while detections in deeper CBM wells averaged 14.4 µg/L. The detection of TBA prompted a forensic investigation to try to identify potential sources. Historic and recent data were reviewed to determine if there was a discernable pattern of TBA occurrence. Supplemental samples from domestic water wells, monitor wells, CBM wells, surface waters, and hydraulic fracturing (HF) fluids were analyzed for TBA in conjunction with methyl tertiary-butyl ether (MTBE) and ethyl tertiary-butyl ether (ETBE), proxies for evidence of contamination from reformulated gasoline or associated oxygenates. Exploratory microbiological sampling was conducted to determine if methanotrophic organisms co-occurred with TBA in individual wells. Meaningful comparisons of historic TBA data were limited due to widely varying reporting limits. Mapping of TBA occurrence did not reveal any spatial patterns or physical associations with CBM operations or contamination plumes. Additionally, TBA was not detected in HF fluids or surface water samples. Given the widespread use of TBA in industrial and consumer products, including water well completion materials, it is likely that multiple diffuse sources exist. Exploratory data on stable isotopes, dissolved gases, and microbial profiling provide preliminary evidence that methanotrophic activity may be producing TBA from naturally occurring isobutane. Reported TBA concentrations were significantly below a conservative risk-based drinking water screening level of 8000 µg/L derived from animal toxicity data.


Assuntos
Água Subterrânea/química , Poluentes Químicos da Água/análise , terc-Butil Álcool/análise , Colorado , Monitoramento Ambiental , Etil-Éteres , Gasolina/análise , Hidrocarbonetos/análise , Éteres Metílicos/análise
12.
Sci Rep ; 14(1): 14689, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38918551

RESUMO

As the mechanization of the CBM extraction process advances and geological conditions continuously evolve, the production data from CBM wells is deviating increasingly from linearity, thereby presenting a significant challenge in accurately predicting future gas production from these wells. When it comes to predicting the production of CBM, a single deep-learning model can face several drawbacks such as overfitting, gradient explosion, and gradient disappearance. These issues can ultimately result in insufficient prediction accuracy, making it important to carefully consider the limitations of any given model. It's impressive to see how advanced technology can enhance the prediction accuracy of CBM. In this paper, the use of a CNN model to extract features from CBM well data and combine it with Bi-LSTM and a Multi-Head Attention mechanism to construct a production prediction model for CBM wells-the CNN-BL-MHA model-is fascinating. It is even more exciting that predictions of gas production for experimental wells can be conducted using production data from Wells W1 and W2 as the model's database. We compared and analyzed the prediction results obtained from the CNN-BL-MHA model we constructed with those from single models like ARIMA, LSTM, MLP, and GRU. The results show that the CNN-BL-MHA model proposed in the study has shown promising results in improving the accuracy of gas production prediction for CBM wells. It's also impressive that this model demonstrated super stability, which is essential for reliable predictions. Compared to the single deep learning model used in this study, its prediction accuracy can be improved up to 35%, and the prediction results match the actual yield data with lower error.

13.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38849297

RESUMO

Biogenic coalbed methane (CBM) is a developing clean energy source. However, it is unclear how the mechanisms of bio-methane production with different sizes of coal. In this work, pulverized coal (PC) and lump coal (LC) were used for methane production by mixed fungi-methanogen microflora. The lower methane production from LC was observed. The aromatic carbon of coal was degraded slightly by 2.17% in LC, while 11.28% in PC. It is attributed to the proportion of lignin-degrading fungi, especially Penicillium, which was reached 67.57% in PC on the 7th day, higher than that of 11.38% in LC. The results suggested that the limited interaction area in LC led to microorganisms hardly utilize aromatics. It also led the accumulation of aromatic organics in the fermentation broth in PC. Increasing the reaction area of coal and facilitating the conversion of aromatic carbon are suggested means to increase methane production in situ.


Assuntos
Biodegradação Ambiental , Carvão Mineral , Fungos , Lignina , Metano , Metano/metabolismo , Carvão Mineral/microbiologia , Fungos/metabolismo , Fungos/classificação , Lignina/metabolismo , Fermentação , Penicillium/metabolismo
14.
Microbiol Spectr ; 12(2): e0350823, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38236038

RESUMO

Trace elements are associated with the microbial degradation of organic matter and methanogenesis, as enzymes in metabolic pathways often employ trace elements as essential cofactors. However, only a few studies investigated the effects of trace elements on the metabolic activity of microbial communities associated with biogenic coalbed methane production. We aimed to determine the effects of strategically selected trace elements on structure and function of active bacterial and methanogenic communities to stimulate methane production in subsurface coalbeds. Microcosms were established with produced water and coal from coalbed methane wells located in the Powder River Basin, Wyoming, USA. In initial pilot experiments with eight different trace elements, individual amendments of Co, Cu, and Mo lead to significantly higher methane production. Transcript levels of mcrA, the key marker gene for methanogenesis, positively correlated with increased methane production. Phylogenetic analysis of the mcrA cDNA library demonstrated compositional shifts of the active methanogenic community and increase of their diversity, particularly of hydrogenotrophic methanogens. High-throughput sequencing of cDNA obtained from 16S rRNA demonstrated active and abundant bacterial groups in response to trace element amendments. Active Acetobacterium members increased in response to Co, Cu, and Mo additions. The findings of this study yield new insights into the importance of essential trace elements on the metabolic activity of microbial communities involved in subsurface coalbed methane and provide a better understanding of how microbial community composition is shaped by trace elements.IMPORTANCEMicrobial life in the deep subsurface of coal beds is limited by nutrient replenishment. While coal bed microbial communities are surrounded by carbon sources, we hypothesized that other nutrients such as trace elements needed as cofactors for enzymes are missing. Amendment of selected trace elements resulted in compositional shifts of the active methanogenic and bacterial communities and correlated with higher transcript levels of mcrA. The findings of this study yield new insights to not only identify possible limitations of microbes by replenishment of trace elements within their specific hydrological placement but also into the importance of essential trace elements for the metabolic activity of microbial communities involved in subsurface coalbed methane production and provides a better understanding of how microbial community composition is shaped by trace elements. Furthermore, this finding might help to revive already spent coal bed methane well systems with the ultimate goal to stimulate methane production.


Assuntos
Carvão Mineral , Oligoelementos , Carvão Mineral/microbiologia , Oligoelementos/metabolismo , Metano , RNA Ribossômico 16S/genética , Filogenia , Bactérias/genética
15.
Sci Rep ; 14(1): 11343, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762559

RESUMO

Horizontal wells have significant advantages in coal bed methane exploration and development blocks. However, its application in new exploration and development blocks could be challenging. Limited geological data, uncertain geological conditions, and the emergence of micro-faults in pre-drilled target coal seams make it hard to accurately control the well trajectory. The well trajectory prior to drilling needs to be optimized to ensure that the drilling trajectory is within the target coal seam and to prevent any reduction in drilling ratio (defined here as the percentage of the drilling trajectory in the entire horizontal section of the well located in the target coal seam) caused by faults. In this study, the well trajectory optimization is achieved by implementing the following process to drill pilot hole, acquire 2D resonance, and azimuthal gamma logging while drilling. The pilot hole drilling can obtain the characteristic parameters of the target coal seam and the top and bottom rock layers in advance, which can provide judgment values for the landing site design and real-time monitoring of whether the wellbore trajectory extends along the target coal seam; 2D resonance exploration can obtain the construction of set orientation before drilling and the development of small faults and formation fluctuations in the horizontal section, which can optimize the well trajectory in advance; the azimuth gamma logging while drilling technology can monitor the layers drilled by the current drill bit in real time, and can provide timely and accurate well trajectory adjustment methods.The horizontal well-Q in the Block-W of the Qinshui Basin was taken as a case study and underwent technical mechanism research and applicability analysis. The implementation of this new innovative process resulted in a successful drilling of a 711 m horizontal section, with a target coal seam drilling rate of 80%. Compared to previous L-type wells, the drilling rate increased by about 20%, and the drilling cycle shortened by 25%. The technical experience gained from this successful case provides valuable insight for low-cost exploration and development of new coalbed methane blocks.

16.
J Environ Manage ; 131: 318-24, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24211379

RESUMO

Coalbed natural gas (CBNG) co-produced waters can contain sodium (Na(+)) concentrations that may be environmentally detrimental if discharged to receiving bodies of water or applied to land surfaces. A field demonstration and companion laboratory studies were conducted to evaluate the use of a Bear River zeolite (BR-zeolite) for mitigating impacts associated with Na(+) in CBNG waters. Bench-scale kinetic and adsorption isotherm studies were performed to determine both the rate and extent of sodium Na(+) adsorption and assess the effects of bicarbonate (HCO3(-)) and chloride (Cl(-)) anions. Results of these studies showed that the adsorption of Na(+) on BR-zeolite followed the Langmuir adsorption model with maximum adsorption equal to 21 and 18 g Na(+)/kg zeolite with 0.0012 and 0.0006 L/mg Langmuir coefficients (KL) for sodium bicarbonate and sodium chloride, respectively. The kinetics study indicated that the sorption of Na(+) was inversely related to the size of the zeolite particles with significantly greater adsorption for smaller particles. The field demonstration evaluated the effectiveness of BR-zeolite for mitigating infiltration losses from Na(+) in CBNG waters. The field site utilized 12 open boreholes, each installed to a depth of approximately 1.8 m. Each borehole was lined with a 3.0 m long, 15 cm diameter schedule 40 PVC pipe and fitted with an automatic data logging pressure transducer for measuring water levels over time. The BR-zeolite was found to mitigate much of the deleterious effect that high sodium adsorption ratio (SAR = 27 (mol/m(3))(1/2)) CBNG co-produced water had on soil permeabilities.


Assuntos
Recuperação e Remediação Ambiental/métodos , Gás Natural , Purificação da Água/métodos , Zeolitas/química , Cinética
17.
Microorganisms ; 11(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36838269

RESUMO

Biogenic coalbed methane (CBM) is an important alternative energy that can help achieve carbon neutrality. Accordingly, its exploration and development have become a research hotspot in the field of fossil energy. In this review, the latest detection technologies for and experimental research on biogenic CBM in China in recent decades are summarized. The factors influencing the generation of biogenic CBM and the identification method of biogenic CBM are systematically analyzed. The technologies to detect biogas and the research methods to study microbial diversity are summarized. The literature shows that biogenic CBM is easily produced in the presence of highly abundant organic matter of low maturity, and the organic matter reaching a certain thickness can compensate for the limitation of biogenic CBM gas production due to the small abundance of organic matter to a certain extent. Biogenic CBM production could be increased in an environment with low salinity, medium alkalinity, and rich Fe2+ and Ni2+ sources. Furthermore, biogenic CBM can be identified by considering three aspects: (1) the presence of gas composition indicators; (2) the content of heavy hydrocarbon; and (3) variation in the abundance of biomarkers. In recent years, research methods to study the microbial community and diversity of CBM-producing environments in China have mainly included 16S rRNA gene library, fluorescence in situ hybridization, and high-throughput sequencing, and the dominant microorganisms have been determined in various basins in China. The results of numerous studies show that the dominant bacterial phyla are commonly Firmicutes and Proteobacteria, while the archaeal fraction mainly includes Methanoculleus, Methanobacterium, Methanocorpusculum, and Methanothrix. This review summarizes and discusses the advances in biogenic CBM production and the associated microbial community in order to promote further development of coal biotransformation and CO2 bio-utilization to meet energy demands under carbon neutrality.

18.
Microorganisms ; 11(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37512830

RESUMO

The rise of coalbed methane bioengineering enables the conversion and utilization of carbon dioxide through microbial action and the carbon cycle. The environment of underground coal reservoirs is the result of a comprehensive effort by microorganisms. Some studies on reservoir microorganisms have progressed in laboratory conditions. However, it does not replicate the interaction between microorganisms and the environment on site. Hydraulic fracturing is an engineering technology to improve the natural permeability of tight reservoirs and is also a prerequisite for increasing biomethane production. In addition to expanding the pore and fracture systems of coal reservoirs, hydraulic fracturing also improves the living conditions of microbial communities in underground space. The characteristics of microbial communities in the reservoir after hydraulic fracturing are unclear. To this end, we applied the 16S rRNA sequencing technique to coalbed methane production water after hydraulic fracturing south of the Qinshui Basin to analyze the microbial response of the hydraulic fracturing process in the coal reservoir. The diversity of microbial communities associated with organic degradation was improved after hydraulic fracturing in the coal reservoir. The proportion of Actinobacteria in the reservoir water of the study area increased significantly, and the abundance of Aminicenantes and Planctomycetes increased, which do not exist in non-fracturing coalbed methane wells or exist at very low abundance. There are different types of methanogens in the study area, especially in fracturing wells. Ecological factors also determine the metabolic pathway of methanogens in coal seams. After hydraulic fracturing, the impact on the reservoir's microbial communities remains within months. Hydraulic fracturing can strengthen the carbon circulation process, thereby enhancing the block's methane and carbon dioxide circulation. The study provides a unique theoretical basis for microbially enhanced coalbed methane.

19.
Microorganisms ; 11(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37317267

RESUMO

As an essential unconventional natural gas resource, China's coalbed methane resources are only commercially exploited in a few areas, such as the Qinshui Basin and the Ordos. The rise of coalbed methane bioengineering makes it possible to realize the conversion and utilization of carbon dioxide through microbial action and the carbon cycle. According to the metabolic behavior of the underground microbial community, if the coal reservoir is modified, it may stimulate the microorganism to continuously produce biomethane to prolong the production life of depleted coalbed methane wells. This paper systematically discusses the microbial response to promoting microbial metabolism by nutrients (microbial stimulation), introducing exogenous microorganisms or domestication of in situ microorganisms (microbial enhancement), pretreating coal to change its physical or chemical properties to improve bioavailability, and improving environmental conditions. However, many problems must be solved before commercialization. The whole coal reservoir is regarded as a giant anaerobic fermentation system. Some issues still need to be solved during the implementation of coalbed methane bioengineering. Firstly, the metabolic mechanism of methanogenic microorganisms should be clarified. Secondly, it is urgent to study the optimization of high-efficiency hydrolysis bacteria and nutrient solutions in coal seams. Finally, the research on the underground microbial community ecosystem and biogeochemical cycle mechanism must be improved. The study provides a unique theory for the sustainable development of unconventional natural gas resources. Furthermore, it provides a scientific basis for realizing the carbon dioxide reuse and carbon element cycle in coalbed methane reservoirs.

20.
Heliyon ; 9(9): e19558, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809915

RESUMO

As an important component of coal structure, the macropores have a great influence on CBM recovery. In this paper, the macropores characteristic of two coal samples collected from 3# coal seam in the south of Qinshui Basin, China was analyzed on the basic of mercury intrusion porosimetry, and a fully coupled triple-porosity/double permeability mathematical model for CBM recovery was established according to the physical structure of coal and the non-Darcy flow of methane in macropores. Then, the various factors affecting the macropores permeability were discussed and the influence of size distribution and connectivity of macropores on CBM recovery was investigated. The following conclusions have been drawn from these efforts: (1) in 3# coal seam of the south of Qinshui Basin, the macropores have an extremely heterogeneous pore size distribution with the high variation, and their connectivity is not good because they are mainly composed of the conical and cylindrical pores with one dead end and the open pores, the structure characteristics of macropores are not conducive to CBM recovery; (2) the fully coupled triple-porosity/double permeability mathematical model containing the non-Darcy flow of methane in the macropores includes the methane occurrence-migration field, hydraulic field, thermal field and stress field as well as the complex intercoupling between them, and the model was verified by the fitting of methane production history, with an average error of 3.24%; (3) the macropores permeability is closely related to the Knudsen number controlled by methane pressure and temperature in macropores and the intrinsic permeability which is an internal attribute of macropores affected by size distribution and connectivity of pore; (4) the pressure drop of reservoir plays a major role in the macropores permeability, which promotes the increase of macropores permeability with time, and the high intrinsic permeability of macropores corresponding to the good pore size distribution and connectivity is more conducive to the improvement of fracture permeability and methane production rate of coal reservoir during CBM recovery. It is recommended that coal seams including the macropores with uniform size distribution and good connectivity should be preferentially used for the development of CBM.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa