Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
1.
J Gene Med ; 26(8): e3725, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39134478

RESUMO

INTRODUCTION: Esophageal cancer is one of the major cancers in China. Most patients with esophageal cancer are diagnosed at an advanced stage, and the 5 year survival rate is discouraging. Combined chemotherapy is a common method for the treatment of esophageal cancer. METHODS: In this study, distearoyl phosphatidyl ethanolamine polyethylene glycol 2000 (DSPE-PEG2000) nanoliposomes (NLPs) encapsulating the anticancer drugs docetaxel (DOX) and oridonin (ORD) were prepared, and their ability to enhance the release of anticancer drugs was determined. The NLP system was characterized by transmission electron microscopy, particle size and encapsulation efficiency. In addition, the release characteristics and pharmacodynamics of these drugs were also studied in detail. RESULTS: When the DOX/ORD ratio was 2:1, the higher proportion of DOX led to a stronger synergy effect. DOX/ORD NLPs were prepared by the high-pressure homogenization method and had a uniform spherical morphology. The mean particle size and polydispersity index were determined to be 246.4 and 0.163, respectively. The stability results showed that no significant change was observed in particle size, zeta potential, Encapsulation efficiency and dynamic light scattering for DOX/ORD NLPs during the observation period. The results of in vitro release illustrated that the acidic environment of tumor might be beneficial to drug release. The three-dimensional tumorsphere showed that DOX/ORD NLPs can reach the interior of tumor spheres, which destroys the structure of cells, resulting in irregular spherical tumor spheres. The in vivo study results indicated that DOX/ORD NLPs had an obvious targeting effect on subcutaneous tumors and have the potential to actively deliver drugs to tumor tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to detect apoptosis. The results showed that DOX/ORD NLP treatment could significantly induce apoptosis and inhibit tumor growth. CONCLUSION: The DOX/ORD NLPs prepared in this study can enhance the anti-tumor activity, and are expected to be a promising co-delivery platform for the treatment of esophageal cancer.


Assuntos
Diterpenos do Tipo Caurano , Docetaxel , Neoplasias Esofágicas , Lipossomos , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/administração & dosagem , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Docetaxel/farmacologia , Docetaxel/administração & dosagem , Docetaxel/química , Lipossomos/química , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Nanopartículas/química , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Camundongos Nus , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Fármacos por Nanopartículas/química
2.
Small ; 20(24): e2308520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169139

RESUMO

Rheumatoid arthritis (RA) progression involves multiple cell types, and sequential drug action on target cells is necessary for RA treatment. Nanocarriers are widely used for RA treatment; however, the targeted delivery and on-demand release of multiple drugs remains challenging. Therefore, in this study, a dual-sensitive polymer is developed using chondroitin sulfate (CS) for the co-delivery of the cartilage repair agent, glucosamine (GlcN), and anti-inflammatory drug, tofacitinib (Tof). In the joint cavity, acidic pH facilitates the cleavage of GlcN from CS polymer to repair the cartilage damage. Subsequently, macrophage uptake via CS-CD44 binding and intracellular reactive oxygen species (ROS) mediate conversion of (methylsulfanyl)propylamine to a hydrophilic segment jointly triggered rapid Tof/GlcN release via micelle disassembly. The combined effects of Tof, GlcN, and ROS depletion promote the M1-to-M2 polarization shift to attenuate inflammation. The synergistic effects of these agents against RA are confirmed in vitro and in vivo. Overall, the dual pH/ROS-sensitive CS nanoplatform simultaneously delivers GlcN and Tof, providing a multifunctional approach for RA treatment with synergistic drug effects.


Assuntos
Artrite Reumatoide , Glucosamina , Piperidinas , Pirimidinas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Piperidinas/química , Piperidinas/farmacologia , Concentração de Íons de Hidrogênio , Glucosamina/química , Animais , Pirimidinas/química , Pirimidinas/farmacologia , Camundongos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Sinergismo Farmacológico , Nanopartículas/química , Células RAW 264.7 , Humanos
3.
Chembiochem ; 25(10): e202400149, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38530114

RESUMO

Labeling of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) associated proteins (Cas) remains an immense challenge for their genome engineering applications. To date, cysteine-mediated bioconjugation is the most efficient strategy for labeling Cas proteins. However, introducing a cysteine residue in the protein at the right place might be challenging without perturbing the enzymatic activity. We report a method that does not require cysteine residues for small molecule presentation on the CRISPR-associated protein SpCas9 for in vitro protein detection, probing cellular protein expression, and nuclear co-delivery of molecules in mammalian cells. We repurposed a simple protein purification tag His6 peptide for non-covalent labeling of molecules on the CRISPR enzyme SpCas9. The small molecule labeling enabled us to rapidly detect SpCas9 in a biochemical assay. We demonstrate that small molecule labeling can be utilized for probing bacterial protein expression in realtime. Furthermore, we coupled SpCas9's nuclear-targeting ability in co-delivering the presenting small molecules to the mammalian cell nucleus for prospective genome engineering applications. Furthermore, we demonstrate that the method can be generalized to label oligonucleotides for multiplexing CRISPR-based genome editing and template-mediated DNA repair applications. This work paves the way for genomic loci-specific bioactive small molecule and oligonucleotide co-delivery toward genetic and epigenetic regulations.


Assuntos
Sistemas CRISPR-Cas , Cisteína , Epigênese Genética , Humanos , Cisteína/química , Cisteína/metabolismo , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Células HEK293 , Edição de Genes/métodos
4.
Arch Biochem Biophys ; : 110176, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39393663

RESUMO

Molecular dynamics (MD) simulations were employed to investigate the simultaneous association of sorafenib (SF) and 5-fluorouracil (5-FU) with generation 4 (G4) acetyl-terminated poly(amidoamine) (PAMAM) dendrimers conjugated with folic acid (G4ACE-FA). Simulations were conducted under physiological (pH 7.4) and acidic (pH < 5) conditions, representing the environments of healthy and cancerous cells, respectively. The average radius of gyration (Rg) of G4ACE-FA was determined to be approximately 1.85 ± 0.01 nm and 2.31 ± 0.03 nm under physiological and acidic conditions, respectively. Drug loading did not exert a significant influence on the size and conformational compactness of G4ACE-FA at both neutral and low pH. However, a discernible increase in dendrimer size was observed upon simultaneous encapsulation and/or conjugation of both drug molecules. The relaxation times of G4ACE-FA were calculated to be 10.2 ns and 9.6 ns at neutral and low pH, respectively, indicating comparable equilibrium rates under both pH environments. The incorporation of small 5-FU molecules did not demonstrably alter the dendrimer's microstructure. The observed doubling of the relaxation time under acidic conditions can be attributed to the relatively compact structure of the dendrimer at neutral pH and the continuous intrastructural rearrangements occurring at acidic pH. The prolonged relaxation time observed in the G4ACE-FA:5-FU:SF complex is attributed to competitive interactions between 5-FU and SF molecules during simultaneous encapsulation by the dendrimer. Analysis of the unloaded and loaded structures of G4ACE-FA under varying pH conditions revealed a densely packed conformation at neutral pH and a more open, sponge-like structure at low pH. The solvent-accessible surface area (SASA) of the dendrimer was assessed at both pH conditions. At neutral pH, SASA values were approximately 124.0±2.8 nm2, 127.5±2.6 nm2, 131.3±2.6 nm2, and 133.3±2.6 nm2 for unloaded G4ACE-FA and the G4ACE-FA:5-FU, G4ACE-FA:SF, and G4ACE-FA:5-FU:SF complexes, respectively. Drug incorporation had a minimal effect on SASA at neutral pH. At low pH, the corresponding values were 198.2±4.7 nm2, 195.8±4.8 nm2, 212.5±6.1 nm2, and 215.4±4.2 nm2. These findings suggest that 5-FU encapsulation resulted in minimal changes to the dendrimer's surface exposure to the solvent, potentially due to its small size. In contrast, SF interaction led to a more pronounced increase in SASA, indicating structural expansion to accommodate SF conjugation. The equilibrium stoichiometry of the G4ACE-FA:5-FU complex was determined to be 1:11 and 1:3 at neutral and low pH, respectively. Similarly, the G4ACE-FA:SF complex exhibited equilibrium stoichiometries of 1:10 and 1:4 at neutral and low pH. The G4ACE-FA:5-FU:SF complex displayed stoichiometries of 1:11:10 at neutral pH and 1:3:3 at low pH. Collectively, these findings suggest that G4ACE-FA holds promise as a versatile nanovector capable of tightly binding drug molecules at neutral pH and facilitating their release within tumor cells, thereby enabling targeted drug delivery. Furthermore, the co-loading of 5-FU and SF did not compromise the loading capacity of G4ACE-FA. At neutral pH, 5-FU molecules were distributed evenly across the dendrimer surface and within its cavities, with 6 molecules encapsulated internally and 5 conjugated on the surface. At low pH, all bound 5-FU molecules were located at the dendrimer periphery. Similarly, at neutral pH, SF molecules were found both internally (6 molecules) and on the surface (4 molecules). At low pH, 2 SF molecules were found on the surface and 2 were internally complexed. The preferred binding sites of 5-FU and SF remained largely unchanged when co-loaded onto the dendrimer. This suggests that co-delivery of 5-FU and SF using G4ACE-FA could be a promising strategy for enhancing the therapeutic efficacy of these chemotherapeutic agents.

5.
Mol Pharm ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365693

RESUMO

Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 µM and IC50/PTX = 0.07-0.75 µM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 µM; SI = 1.2), free PTX (IC50 = 0.97 µM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.

6.
Mol Pharm ; 21(4): 2012-2024, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497779

RESUMO

The nonviral delivery systems that combine genes with photosensitizers for multimodal tumor gene/photodynamic therapy (PDT) have attracted much attention. In this study, a series of ROS-sensitive cationic bola-lipids were applied for the gene/photosensitizer codelivery. Zn-DPA was introduced as a cationic headgroup to enhance DNA binding, while the hydrophobic linking chains may facilitate the formation of lipid nanoparticles (LNP) and the encapsulation of photosensitizer Ce6. The length of the hydrophobic chain played an important role in the gene transfection process, and 14-TDZn containing the longest chains showed better DNA condensation, gene transfection, and cellular uptake. 14-TDZn LNPs could well load photosensitizer Ce6 to form 14-TDC without a loss of gene delivery efficiency. 14-TDC was used for codelivery of p53 and Ce6 to achieve enhanced therapeutic effects on the tumor cell proliferation inhibition and apoptosis. Results showed that the codelivery system was more effective in the inhibition of tumor cell proliferation than individual p53 or Ce6 monotherapy. Mechanism studies showed that the production of ROS after Ce6 irradiation could increase the accumulation of p53 protein in tumor cells, thereby promoting caspase-3 activation and inducing apoptosis, indicating some synergistic effect. These results demonstrated that 14-TDC may serve as a promising nanocarrier for gene/PDT combination therapy.


Assuntos
Lipossomos , Nanopartículas , Fotoquimioterapia , Porfirinas , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Nanopartículas/química , DNA , Porfirinas/química
7.
Pharm Res ; 41(7): 1493-1505, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38918308

RESUMO

PURPOSE: Joint destruction is a major burden and an unsolved problem in rheumatoid arthritis (RA) patients. We designed an intra-articular mesoporous silica nanosystem (MSN-TP@PDA-GlcN) with anti-inflammatory and joint protection effects. The nanosystem was synthesized by encapsulating triptolide (TP) in mesoporous silica nanoparticles and coating it with pH-sensitive polydopamine (PDA) and glucosamine (GlcN) grafting on the PDA. The nano-drug delivery system with anti-inflammatory and joint protection effects should have good potency against RA. METHODS: A template method was used to synthesize mesoporous silica (MSN). MSN-TP@PDA-GlcN was synthesized via MSN loading with TP, coating with PDA and grafting of GlcN on PDA. The drug release behavior was tested. A cellular inflammatory model and a rat RA model were used to evaluate the effects on RA. In vivo imaging and microdialysis (MD) system were used to analyze the sustained release and pharmacokinetics in RA rats. RESULTS: TMSN-TP@PDA-GlcN was stable, had good biocompatibility, and exhibited sustained release of drugs in acidic environments. It had excellent anti-inflammatory effects in vitro and in vivo. It also effectively repaired joint destruction in vivo without causing any tissue toxicity. In vivo imaging and pharmacokinetics experiments showed that the nanosystem prolonged the residence time, lowered the Cmax value and enhanced the relative bioavailability of TP. CONCLUSIONS: These results demonstrated that MSN-TP@PDA-GlcN sustained the release of drugs in inflammatory joints and produced effective anti-inflammatory and joint protection effects on RA. This study provides a new strategy for the treatment of RA.


Assuntos
Anti-Inflamatórios , Artrite Reumatoide , Diterpenos , Liberação Controlada de Fármacos , Indóis , Nanopartículas , Fenantrenos , Polímeros , Dióxido de Silício , Animais , Dióxido de Silício/química , Artrite Reumatoide/tratamento farmacológico , Nanopartículas/química , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Fenantrenos/química , Fenantrenos/administração & dosagem , Fenantrenos/farmacocinética , Fenantrenos/farmacologia , Ratos , Diterpenos/administração & dosagem , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacologia , Indóis/administração & dosagem , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Polímeros/química , Porosidade , Masculino , Compostos de Epóxi/química , Compostos de Epóxi/administração & dosagem , Glucosamina/química , Glucosamina/administração & dosagem , Ratos Sprague-Dawley , Portadores de Fármacos/química , Humanos , Camundongos , Preparações de Ação Retardada , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
8.
Environ Res ; 244: 117264, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776941

RESUMO

Nanoparticles are fascinating and encouraging carriers for cancer treatment due to their extraordinary properties and potential applications in targeted drug delivery, treatment, and diagnosis. Experimental studies including in vitro and in vivo examinations show that nanoparticles can cause a revolution in different aspects of cancer therapy. Normal tissue toxicity and early and late consequences are the major limitations of cancer therapy by radiotherapy and chemotherapy. However, the delivery of drugs into tumors or reducing the accumulation of drugs in normal tissues can permit a more satisfactory response of malignancies to therapy with more inferior side effects. Cardiac toxicity is one of the major problems for chemotherapy and radiotherapy. Therefore, several experimental studies have been performed to minimize the degenerative impacts of cancer treatment on the heart and also enhance the influences of radiotherapy and chemotherapy agents in cancers. This review article emphasizes the benefits of nanoparticle-based drug delivery techniques, including minimizing the exposure of the heart to anticancer drugs, enhancing the accumulation of drugs in cancers, and expanding the effectiveness of radiotherapy. The article also discusses the challenges and problems accompanied with nanoparticle-based drug delivery techniques such as toxicity, which need to be addressed through further research. Moreover, the article emphasizes the importance of developing safe and effective nanoparticle-based therapies that can be translated into clinical practice.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/tratamento farmacológico , Antineoplásicos/efeitos adversos , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia
9.
J Nanobiotechnology ; 22(1): 431, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034407

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease with multifactorial etiology and intricate pathogenesis. In RA, repeated monotherapy is frequently associated with inadequate efficacy, drug resistance, and severe side effects. Therefore, a shift has occurred in clinical practice toward combination therapy. However, conventional combination therapy encounters several hindrances, including low selectivity to arthritic joints, short half-lives, and varying pharmacokinetics among coupled drugs. Emerging nanotechnology offers an incomparable opportunity for developing advanced combination therapy against RA. First, it allows for co-delivering multiple drugs with augmented physicochemical properties, targeted delivery capabilities, and controlled release profiles. Second, it enables therapeutic nanomaterials development, thereby expanding combination regimens to include multifunctional nanomedicines. Lastly, it facilitates the construction of all-in-one nanoplatforms assembled with multiple modalities, such as phototherapy, sonodynamic therapy, and imaging. Thus, nanotechnology offers a promising solution to the current bottleneck in both RA treatment and diagnosis. This review summarizes the rationale, advantages, and recent advances in nano-empowered combination therapy for RA. It also discusses safety considerations, drug-drug interactions, and the potential for clinical translation. Additionally, it provides design tips and an outlook on future developments in nano-empowered combination therapy. The objective of this review is to achieve a comprehensive understanding of the mechanisms underlying combination therapy for RA and unlock the maximum potential of nanotechnology, thereby facilitating the smooth transition of research findings from the laboratory to clinical practice.


Assuntos
Artrite Reumatoide , Humanos , Artrite Reumatoide/tratamento farmacológico , Animais , Nanomedicina/métodos , Nanotecnologia/métodos , Terapia Combinada , Antirreumáticos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Nanopartículas/química
10.
J Nanobiotechnology ; 22(1): 296, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811964

RESUMO

BACKGROUND: Combination therapy involving immune checkpoint blockade (ICB) and other drugs is a potential strategy for converting immune-cold tumors into immune-hot tumors to benefit from immunotherapy. To achieve drug synergy, we developed a homologous cancer cell membrane vesicle (CM)-coated metal-organic framework (MOF) nanodelivery platform for the codelivery of a TLR7/8 agonist with an epigenetic inhibitor. METHODS: A novel biomimetic codelivery system (MCM@UN) was constructed by MOF nanoparticles UiO-66 loading with a bromodomain-containing protein 4 (BRD4) inhibitor and then coated with the membrane vesicles of homologous cancer cells that embedding the 18 C lipid tail of 3M-052 (M). The antitumor immune ability and tumor suppressive effect of MCM@UN were evaluated in a mouse model of triple-negative breast cancer (TNBC) and in vitro. The tumor immune microenvironment was analyzed by multicolor immunofluorescence staining. RESULTS: In vitro and in vivo data showed that MCM@UN specifically targeted to TNBC cells and was superior to the free drug in terms of tumor growth inhibition and antitumor immune activity. In terms of mechanism, MCM@UN blocked BRD4 and PD-L1 to prompt dying tumor cells to disintegrate and expose tumor antigens. The disintegrated tumor cells released damage-associated molecular patterns (DAMPs), recruited dendritic cells (DCs) to efficiently activate CD8+ T cells to mediate effective and long-lasting antitumor immunity. In addition, TLR7/8 agonist on MCM@UN enhanced lymphocytes infiltration and immunogenic cell death and decreased regulatory T-cells (Tregs). On clinical specimens, we found that mature DCs infiltrating tumor tissues of TNBC patients were negatively correlated with the expression of BRD4, which was consistent with the result in animal model. CONCLUSION: MCM@UN specifically targeted to TNBC cells and remodeled tumor immune microenvironment to inhibit malignant behaviors of TNBC.


Assuntos
Receptor 7 Toll-Like , Receptor 8 Toll-Like , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Camundongos , Feminino , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Nanopartículas/química , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos BALB C , Proteínas de Ciclo Celular/metabolismo , Imunoterapia/métodos , Epigênese Genética/efeitos dos fármacos , Proteínas que Contêm Bromodomínio
11.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279291

RESUMO

Previously reported amphiphilic linear and graft copolymers, derived from the ionic liquid [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TMAMA_Cl‾), along with their conjugates obtained through modification either before or after polymerization with p-aminosalicylate anions (TMAMA_PAS‾), were employed as matrices in drug delivery systems (DDSs). Based on the counterion type in TMAMA units, they were categorized into single drug systems, manifesting as ionic polymers with chloride counterions and loaded isoniazid (ISO), and dual drug systems, featuring ISO loaded in self-assembled PAS conjugates. The amphiphilic nature of these copolymers was substantiated through the determination of the critical micelle concentration (CMC), revealing an increase in values post-ion exchange (from 0.011-0.063 mg/mL to 0.027-0.181 mg/mL). The self-assembling properties were favorable for ISO encapsulation, with drug loading content (DLC) ranging between 15 and 85% in both single and dual systems. In vitro studies indicated ISO release percentages between 16 and 61% and PAS release percentages between 20 and 98%. Basic cytotoxicity assessments using the 2,5-diphenyl-2H-tetrazolium bromide (MTT) test affirmed the non-toxicity of the studied systems toward human non-tumorigenic lung epithelial cell line (BEAS-2B) cell lines, particularly in the case of dual systems bearing both ISO and PAS simultaneously. These results confirmed the effectiveness of polymeric carriers in drug delivery, demonstrating their potential for co-delivery in combination therapy.


Assuntos
Líquidos Iônicos , Polímeros , Humanos , Polímeros/química , Portadores de Fármacos/química , Cloretos , Sistemas de Liberação de Medicamentos , Micelas
12.
Molecules ; 29(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893415

RESUMO

The synergistic effect of drug and gene delivery is expected to significantly improve cancer therapy. However, it is still challenging to design suitable nanocarriers that are able to load simultaneously anticancer drugs and nucleic acids due to their different physico-chemical properties. In the present work, an amphiphilic block copolymer comprising a biocompatible poly(ethylene glycol) (PEG) block and a multi-alkyne-functional biodegradable polycarbonate (PC) block was modified with a number of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) side chains applying the highly efficient azide-alkyne "click" chemistry reaction. The resulting cationic amphiphilic copolymer with block and graft architecture (MPEG-b-(PC-g-PDMAEMA)) self-associated in aqueous media into nanosized micelles which were loaded with the antioxidant, anti-inflammatory, and anticancer drug quercetin. The drug-loaded nanoparticles were further used to form micelleplexes in aqueous media through electrostatic interactions with DNA. The obtained nanoaggregates-empty and drug-loaded micelles as well as the micelleplexes intended for simultaneous DNA and drug codelivery-were physico-chemically characterized. Additionally, initial in vitro evaluations were performed, indicating the potential application of the novel polymer nanocarriers as drug delivery systems.


Assuntos
DNA , Portadores de Fármacos , Metacrilatos , Micelas , Nylons , Quercetina , Quercetina/química , Quercetina/farmacologia , Metacrilatos/química , DNA/química , Nylons/química , Portadores de Fármacos/química , Humanos , Polietilenoglicóis/química , Nanopartículas/química , Polímeros/química
13.
Saudi Pharm J ; 32(9): 102153, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39211513

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. Sorafenib (Sf) is currently the first-line treatment for HCC. However, due to the side effects and unsatisfied efficiency of Sf, it is urgent to combine different therapeutic agents to inhibit HCC progression and increase the therapeutic efficacy. Here, our study constructed a Sf and KIAA1199-siRNA co-loaded liposome Sf-Lp-KIAA, which was prepared by electrostatic interaction of KIAA1199-siRNA and Sf loaded liposome (Sf-Lp). The particle size, zeta potential, the in vitro cumulative release was investigated. The physical and chemical properties were characterized, and the inhibition of HepG2 growth and metastasis in vitro was investigated. The cellular uptake of the co-loaded liposome was significantly higher than that of free siRNA, and the drug/siRNA could be co-delivered to the target cells. Sf-Lp-KIAA could significantly inhibit the growth, migration, invasion and down-regulate KIAA1199 expression of HepG2 cells in vitro than that of single Sf treated group. In addition, the co-delivery liposome accumulated in the HepG2 subcutaneous tumor model and suppress tumor growth after systemic administration without induce obvious toxicity. The present study implied that the co-delivery of Sf and KIAA1199-siRNA through the co-loaded liposomes exerted synergistic antitumor effects on HCC, which would lay a foundation for HCC therapy in the future.

14.
Small ; 19(37): e2301420, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154213

RESUMO

The current immunotherapy strategies for triple negative breast cancer (TNBC) are greatly limited due to the immunosuppressive tumor microenvironment (TME). Immunization with cancer vaccines composed of tumor cell lysates (TCL) can induce an effective antitumor immune response. However, this approach also has the disadvantages of inefficient antigen delivery to the tumor tissues and the limited immune response elicited by single-antigen vaccines. To overcome these limitations, a pH-sensitive nanocalcium carbonate (CaCO3 ) carrier loaded with TCL and immune adjuvant CpG (CpG oligodeoxynucleotide 1826) is herein constructed for TNBC immunotherapy. This tailor-made nanovaccine, termed CaCO3 @TCL/CpG, not only neutralizes the acidic TME through the consumption of lactate by CaCO3 , which increases the proportion of the M1/M2 macrophages and promotes infiltration of effector immune cells but also activates the dendritic cells in the tumor tissues and recruits cytotoxic T cells to further kill the tumor cells. In vivo fluorescence imaging study shows that the pegylated nanovaccine could stay longer in the blood circulation and extravasate preferentially into tumor site. Besides, the nanovaccine exhibits high cytotoxicity in 4T1 cells and significantly inhibits tumor growth of tumor-bearing mice. Overall, this pH-sensitive nanovaccine is a promising nanoplatform for enhanced immunotherapy of TNBC.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Imunoterapia/métodos , Adjuvantes Imunológicos , Linfócitos T Citotóxicos , Concentração de Íons de Hidrogênio , Microambiente Tumoral
15.
Mol Pharm ; 20(9): 4478-4490, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37524050

RESUMO

Tanshinone IIA (TS-IIA) and salvianic acid A (SAA) are the main pharmacological active constituents of Danshen, which exhibit potent effects on atherosclerosis. A combination of TS-IIA and SAA might exert a synergistic antiatherosclerotic effect. However, the opposite solubility profiles of TS-IIA and SAA might lead to difficulty in achieving a synergistic combined effect of the two active components. Therefore, in this work, we fabricated a ROS-responsive prodrug micelle for the codelivery of TS-IIA and SAA (TS-IIA-PM) by self-assembling amphiphilic block copolymer PEG5000-SAA/PLA10000-APBA. The amphiphilic polymer was characterized by 1H NMR, FTIR, and alizarin red S competition tests. The ROS responsiveness of TS-IIA-PM was evidenced by time-course monitoring of particle size and morphology changes and drug release behavior in the presence of 1 mM H2O2. We found TS-IIA-PM was stable according to its critical micelle concentration and the unchanged particle sizes in 10% FBS for 7 days. The results of in vitro and in vivo tests revealed that TS-IIA-PM was safe and biocompatible. Furthermore, it was observed that TS-IIA and prodrug micelle could produce synergistic antiatherosclerotic effect based on the results of the antioxidant study, which was further confirmed by a series of pharmocodynamics studies, such as in vitro DiI-oxLDL uptake study, oil red O staining, cholesterol efflux study, inflammatory cytokine analysis, in vivo CD68 immunostaining, and lipid disposition staining studies. Collectively, TS-IIA-PM holds great potential for the safe and efficient codelivery of TS-IIA and SAA for synergistic antiatherosclerosis.


Assuntos
Pró-Fármacos , Pró-Fármacos/química , Micelas , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Polímeros/química
16.
Environ Res ; 239(Pt 2): 117292, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806480

RESUMO

Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier. The niosomal nanoparticles containing surfactants (Span 60 and Tween 60) and cholesterol at 2:1 M ratio were prepared through the film hydration method. A systematic evaluation of nanoniosomes was carried out. The release profile demonstrated two phases (initial burst followed by sustained release) and a pH-dependent release schedule over 72 h. The optimized niosomal preparation displayed superior storage stability for up to 2 months at 4 °C, exhibiting extremely minor changes in pharmaceutical encapsulation efficiency and size. Free dual drugs (Asc + Cur) and dual-drug loaded niosomes (Niosomal (Asc + Cur)) enhanced the apoptotic activity and cytotoxicity and inhibited cell migration which confirmed the synergistic effect of co-encapsulated drugs. Also, significant up-regulation of p53 and Bax genes was observed in cells treated with Asc + Cur and Niosomal (Asc + Cur), while the anti-apoptotic Bcl-2 gene was down-regulated. These results were in correlation with the increase in the enzyme activity of SOD, CAT, and caspase, and the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) upon treatment with the mentioned drugs. Furthermore, these anti-cancer effects were higher when using Niosomal (Asc + Cur) than Asc + Cur. Histopathological examination also revealed that Niosomal (Asc + Cur) had a lower mitosis index, invasion, and pleomorphism than Asc + Cur. These findings indicated that niosomal formulation for co-delivery of Asc and Cur would offer a promising delivery system for an effective breast cancer treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Lipossomos/química , Lipossomos/farmacologia , Lipossomos/uso terapêutico , Curcumina/farmacologia , Curcumina/química , Polissorbatos/química , Polissorbatos/uso terapêutico
17.
Nanomedicine ; 48: 102641, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549554

RESUMO

Epithelial-mesenchymal transition (EMT) is the culprit of tumor invasion and metastasis. As a critical transcription factor that induces EMT, snail is of great importance in tumor progression, and knocking down its expression by small interfering RNA (siRNA) may inhibit tumor metastasis. Herein, we developed a core-shelled bioinspired low-density lipoprotein (bio-LDL) in which snail siRNA-loaded calcium phosphate nanoparticles were wrapped as the core and doxorubicin was embedded in the outer phospholipids modified with a synthetic peptide of apoB100 targeting LDL receptor-abundant tumor cells. Bio-LDL exhibited pH-responsive release, lysosomal escape ability, enhanced cytotoxicity and apoptotic induction. Bio-LDL could significantly inhibit the expression of snail and regulate EMT-related proteins to reduce tumor migration and invasion in vitro. Bio-LDL also displayed favorable tumor targeting and synergistic inhibition of tumor growth and metastasis in vivo. Therefore, the multifunctional bio-LDL will be a promising co-delivery vector and holds potential value for clinical translation.


Assuntos
Lipoproteínas LDL , Neoplasias , Humanos , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Morte Celular , RNA Interferente Pequeno , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal
18.
Drug Dev Ind Pharm ; 49(1): 62-74, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36803267

RESUMO

Due to the complexity of the pathophysiology of non-small cell lung cancer (NSCLC) and the susceptibility of single chemotherapy to drug resistance, the combination of drugs and small interfering RNA (siRNA) may produce a desired therapeutic effect on NSCLC through the action of multiple pathways. We designed to develop poly-γ-glutamic acid-modified cationic liposomes (γ-PGA-CL) to co-deliver pemetrexed disodium (PMX) and siRNA to treat NSCLC. Firstly, γ-PGA was modified on the surface of PMX and siRNA co-loaded cationic liposomes by electrostatic interaction (γ-PGA modified PMX/siRNA-CL). In order to evaluate whether the prepared γ-PGA modified PMX/siRNA-CL could be taken up by tumor cells and exert significant anti-tumor effects, in vitro and in vivo studies were performed, with A549 cells and LLC-bearing BABL/c mice as experimental models, respectively. The particle size and zeta potential of γ-PGA modified PMX/siRNA-CL was (222.07 ± 1.23) nm and (-11.38 ± 1.44) mV. A preliminary stability experiment showed the complex could protect siRNA from degradation. In vitro cell uptake experiment indicated the complex group exerted stronger fluorescence intensity and expressed higher flow detection value. Cytotoxicity study showed the cell survival rate of γ-PGA-CL was (74.68 ± 0.94)%. Polymerase chain reaction (PCR) analysis and western blot technology displayed that the complex could inhibit the expression of Bcl-2 mRNA and protein to promote cell apoptosis. In vivo anti-tumor experiments represented the complex group showed a significant inhibitory effect on tumor growth, while the vector showed no obvious toxicity. Therefore, the current studies proved the feasibility of combining PMX and siRNA by γ-PGA-CL as a potential strategy for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Pemetrexede/farmacologia , Lipossomos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácido Glutâmico/uso terapêutico , RNA Interferente Pequeno , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral
19.
J Microencapsul ; 40(4): 246-262, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880479

RESUMO

The aims of this study were to develop co-delivery systems of paclitaxel (PTX) and etoposide prodrug (4'-O-benzyloxycarbonyl-etoposide, ETP-cbz) based on non-cross-linked human serum albumin (HSA) and poly(lactide-co-glycolide) nanoparticles and to evaluate the synergistic potential of these drugs in vitro. The nanoformulations were prepared by the high-pressure homogenisation technique and characterised using DLS, TEM, SEM, AFM, HPLC, CZE, in-vitro release, and cytotoxicity in human and murine glioma cells. All nanoparticles had 90-150 nm in size and negative ζ-potentials. The Neuro2A cells were the most sensitive to both HSA- and PLGA-based co-delivery systems (IC50 0.024 µM and 0.053 µM, respectively). The drugs' synergistic effect (combination index < 0.9) was observed in the GL261 cells for both types of co-delivery formulations and in the Neuro2A cells for the HSA-based system. These nanodelivery systems may be useful to improve combination chemotherapy for brain tumour treatment. To our knowledge, this is the first report describing the non-cross-linked HSA-based co-delivery nanosuspension which was prepared using nab™ technology.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Pró-Fármacos , Humanos , Camundongos , Animais , Paclitaxel/farmacologia , Etoposídeo/farmacologia , Pró-Fármacos/farmacologia , Albumina Sérica Humana , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
20.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569548

RESUMO

Finding a long-term cure for tumor patients still represents a major challenge. Immunotherapies offer promising therapy options, since they are designed to specifically prime the immune system against the tumor and modulate the immunosuppressive tumor microenvironment. Using nucleic-acid-based vaccines or cellular vaccines often does not achieve sufficient activation of the immune system in clinical trials. Additionally, the rapid degradation of drugs and their non-specific uptake into tissues and cells as well as their severe side effects pose a challenge. The encapsulation of immunomodulatory molecules into nanocarriers provides the opportunity of protected cargo transport and targeted uptake by antigen-presenting cells. In addition, different immunomodulatory cargos can be co-delivered, which enables versatile stimulation of the immune system, enhances anti-tumor immune responses and improves the toxicity profile of conventional chemotherapeutic agents.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa