Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396705

RESUMO

Various attempts to amplify an AQP11 cDNA from tissues of the spiny dogfish (Squalus acanthias) were made. Two pairs of deoxy-inosine-containing degenerate primers were designed based on conserved amino acid sequences from an AQP11 alignment. These primers yielded some faint bands from gill cDNA that were sequenced. Blast searches with the sequences showed they were not AQP11. An elasmobranch AQP11 nucleotide sequence alignment was produced to identify conserved regions to make further degenerate primers. One primer pair produced a short 148 bp fragment showing particularly strong amplification in gill and intestine. It was sequenced and represented a piece of the AQP11 gene. However, as the fragment may have resulted from contaminating genomic DNA (in total RNA used to make cDNA), 5' and 3' RACE were performed to amplify the two ends of the putative cDNA. Furthermore, 5' and 3' RACE amplifications depend on the presence of a 5' cap nucleotide and a poly A tail, respectively on the putative AQP11 mRNA. Hence, successful amplification was only possible from cDNA and not genomic DNA. Nested RACE amplifications were performed using gill and intestinal RACE cDNA, but none of the DNA fragments sequenced were AQP11. Consequently, the spiny dogfish AQP11 gene may represent a pseudogene.


Assuntos
Squalus acanthias , Animais , Squalus acanthias/genética , DNA Complementar/genética , Pseudogenes/genética , Sequência de Bases , DNA/genética
2.
Biotechnol Bioeng ; 119(3): 994-1003, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953069

RESUMO

Transition of rapid, ready-to-use, and low-cost nucleic acid-based detection technologies from laboratories to points of sample collection has drastically accelerated. However, most of these approaches are still incapable of diagnosis starting from sampling through nucleic acid isolation and detection in the field. Here we developed a simple, portable, low-cost, colorimetric, and remotely controllable platform for reliable, high-throughput, and rapid diagnosis using loop-mediated isothermal amplification (LAMP) assays. It consists of a thermally isolated cup, low-cost electronic components, a polydimethylsiloxane sample well, and a fast prototyped case that covers electronic components. The steady-state temperature error of the system is <1%. We performed LAMP, Colony-LAMP, and Colony polymerase chain reactions (PCRs) using the yaiO2 primer set for Escherichia coli and Pseudomonas aeruginosa samples at 65°C and 30 min. We detected the end-point colorimetric readouts by the naked eye under day light. We confirmed the specificity and sensitivity of our approach using pure genomic DNA and crude bacterial colonies. We benchmarked our Colony-LAMP detection against Colony PCR. The number of samples tested can easily be modified for higher throughput in our system. We strongly believe that our platform can greatly contribute rapid and reliable diagnosis in versatile operational environments.


Assuntos
Colorimetria , Técnicas de Amplificação de Ácido Nucleico , Escherichia coli/genética , Reação em Cadeia da Polimerase , Pseudomonas aeruginosa/genética , Sensibilidade e Especificidade
3.
FASEB J ; 34(3): 3448-3460, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944382

RESUMO

In vivo DNA engineering such as recombineering (recombination-mediated genetic engineering) and DNA gap repair typically involve growing Escherichia coli (E coli) containing plasmids, followed by plasmid DNA extraction and purification prior to downstream PCR-mediated DNA modifications and DNA sequencing. We previously demonstrated that crude cell lysates could be used for some limited downstream DNA applications. Here, we show how live E coli cell PCR and one-step LiCl-isopropanol purification can streamline DNA engineering. In DNA gap repair, live-cell PCR allowed the convenient elimination of clones containing background plasmids prior to DNA sequencing. Live-cell PCR also enabled the generation of specific DNA sequences for DNA engineering up to 11 kilo base pairs in length and with up to 80 base pair terminal non-homology. Using gel electrophoresis and DNA melting curve analysis, we showed that LiCl-isopropanol DNA precipitation removed primers and small, nonspecific PCR products from live-cell PCR products in only ~10-minutes. DNA sequencing of purified products yielded Phred quality scores values of ~55%. These data indicate that live-cell PCR and LiCl-isopropanol DNA precipitation are ideal to prepare DNA for sequencing and other downstream DNA applications, and might therefore accelerate high-throughput DNA engineering pipelines.


Assuntos
DNA/genética , Reação em Cadeia da Polimerase/métodos , Escherichia coli/genética , Engenharia Genética/métodos , Plasmídeos/genética , Recombinação Genética/genética
4.
Antonie Van Leeuwenhoek ; 112(1): 109-114, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30187230

RESUMO

Molecular analysis of the filamentous actinobacteria Frankia is laborious because of the slow growth rate and required biomass needed for these techniques. An efficient and simple colony PCR protocol for Frankia was developed that saved time for analysis of any Frankia strains growing on a plate. Previously, it took 5-6 weeks to get the correct size Frankia colonies on plates and then a minimum of 5 weeks of growth in liquid culture for DNA extraction. With this technique, these colonies could be screened after 5-6 weeks of growth by colony PCR. The procedure used a combination of mechanical and heat treatments and required no added buffers or chemicals. Our results demonstrate rapid and efficient PCR.


Assuntos
Frankia/genética , Frankia/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , DNA Bacteriano/genética , Frankia/classificação , Frankia/crescimento & desenvolvimento
5.
Food Microbiol ; 82: 277-286, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027784

RESUMO

Repetitive-PCR (rep-PCR) is a well-established genetic method for bacterial strain fingerprinting that is used mostly with REP, ERIC, (GTG)5, BOXA1R and occasionally BOXA2R repetitive primers. In this study, it was demonstrated that BOXA2R-PCR could effectively discriminate between Lactococcus lactis, Leuconostoc mesenteroides and Streptococcus thermophilus; differentiate Lactococcus lactis strains and subspeciate them into lactis and cremoris in a single reaction; generate unique strain fingerprints of various lactic acid bacteria (LAB species) commonly isolated from fermented dairy products, including occasional spoilage bacteria and yeasts. Furthermore, using direct colony PCR a reproducible and rapid method was developed for the differentiation and identification of lactic acid cocci. The simplicity and speed of this microbial identification method has potential practical value for dairy microbiologists, which was demonstrated through a microbiota investigation of select Australian retail dairy products.


Assuntos
Produtos Fermentados do Leite/microbiologia , Microbiologia de Alimentos/métodos , Lactobacillales/genética , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico/genética , Impressões Digitais de DNA , DNA Ribossômico/genética , Enterococcus/genética , Genótipo , Lactococcus lactis/genética , Leuconostoc/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Streptococcus thermophilus/genética , Leveduras/genética
6.
Int J Med Microbiol ; 308(7): 812-818, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30025998

RESUMO

The emerging multidrug-resistant pathogenic yeast Candida auris causes life-threatening invasive infections and shows a capacity for hospital transmission that is uncommon in other Candida species. Rapid and accurate diagnosis of C. auris infections is crucial; however, the fungus is frequently misidentified. Here, we present a rapid and easily applicable PCR assay for reliable identification of C. auris by designing primers from unique GPI protein-encoding genes. Specificity of the used primers for C. auris was verified with a panel of 19 different Candida species including the clinically most relevant and phylogenetically closely related species. Efficacy of the PCR approach was validated by correctly identifying 112 C. auris isolates from an outbreak in a Spanish hospital, 20% of which were not reliably identified by MALDI-TOF MS, and 27 genotypically diverse C. auris isolates originating from hospitals in various countries, in a test that included (blind) negative controls. By employing two GPI protein primer pairs in a single PCR, a double screening can be performed, which enhances the robustness of the PCR assay and avoids potential false negatives due to recent evolutionary events, as was observed for two isolates. Our PCR method, which is based on the uniqueness of selected GPI protein-encoding genes, is useful for easy, low-cost, and accurate identification of C. auris infections in a clinical setting.


Assuntos
Candida/genética , Candidíase/diagnóstico , Glucose-6-Fosfato Isomerase/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sequência de Bases , Candida/classificação , Candida/isolamento & purificação , Candidíase/epidemiologia , Candidíase/microbiologia , Surtos de Doenças , Farmacorresistência Fúngica Múltipla/genética , Humanos , Reação em Cadeia da Polimerase , Espanha/epidemiologia
7.
Curr Microbiol ; 74(6): 702-709, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28332162

RESUMO

Taxol or paclitaxel, an approved drug by the Food and Drug Administration, is being used for the treatment of human cancers. This study aimed to isolate and determine different species of native endophytic fungi from Iranian Taxus baccata (yew) plants located in the northern forests of Iran. To do so, a novel molecular screening approach was performed for 50 isolated endophytic fungi through amplification of exon No. 1 of taxadine synthase as a key gene in taxol production pathway. We used effective colony-polymerase chain reaction technique for rapid screening of potent taxol-producing fungi instead of genomic DNA extraction. Production of taxol was performed in batch culture by selected fungi individually and produced taxol was assayed quantitatively by high-performance liquid chromatography using standard taxanes. We found that only six fungi could produce taxol and baccatin III. Interestingly, after 7 days of incubation, the highest level of taxol was found to be 129 and that of baccatin 139.2 mg/kg dw for two native isolated Cladosporium sp. named F1 and F3. The fungal taxols could decrease cell viability in MTT assay same as commercial taxol. The fungal taxols semi-quantitatively showed antimitotic effects on MCF-7 cells as human breast cancer cell line. The expression of bcl-2 anti-apoptotic gene, in contrast to bax pro-apoptotic gene, significantly decreased after treatment by standard and fungal taxols. As fungal taxol was produced simpler than other methods and could significantly affect viability and specific genes expression profile, it is recommended that using of taxol-producing fungi from Iranian yew could be a safe and confident procedure to overcome challenges of using other methods.


Assuntos
Alcaloides/biossíntese , Cladosporium/metabolismo , Paclitaxel/biossíntese , Taxus/microbiologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Cladosporium/genética , Cladosporium/isolamento & purificação , Endófitos/isolamento & purificação , Endófitos/metabolismo , Feminino , Humanos , Irã (Geográfico) , Células MCF-7 , Folhas de Planta/microbiologia , Caules de Planta/microbiologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Taxoides , Proteína X Associada a bcl-2/biossíntese
8.
Indian J Microbiol ; 57(3): 365-369, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28904423

RESUMO

Current colony PCR methods are not suitable for screening genes encoded in genomic DNA and are limited to E. coli host strains. Here, we describe an ultra-high efficient colony PCR method for high throughput screening of bacterial genes embedded in the genomic DNA of any bacterial species. This new technique expands colony PCR method to several hosts as well as offers a rapid, less expensive and reliable bacterial genomic DNA extraction.

9.
Mol Cell Probes ; 29(6): 454-460, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26162861

RESUMO

A colony PCR-based assay was developed to rapidly determine if a cyanobacterium of interest contains the requisite genetic material, the PHA synthase PhaC subunit, to produce polyhydroxyalkanoates (PHAs). The test is both high throughput and robust, owing to an extensive sequence analysis of cyanobacteria PHA synthases. The assay uses a single detection primer set and a single reaction condition across multiple cyanobacteria strains to produce an easily detectable positive result - amplification via PCR as evidenced by a band in electrophoresis. In order to demonstrate the potential of the presence of phaC as an indicator of a cyanobacteria's PHA accumulation capabilities, the ability to produce PHA was assessed for five cyanobacteria with a traditional in vivo PHA granule staining using an oxazine dye. The confirmed in vivo staining results were then compared to the PCR-based assay results and found to be in agreement. The colony PCR assay was capable of successfully detecting the phaC gene in all six of the diverse cyanobacteria tested which possessed the gene, while exhibiting no undesired product formation across the nine total cyanobacteria strains tested. The colony PCR quick prep provides sufficient usable DNA template such that this assay could be readily expanded to assess multiple genes of interest simultaneously.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Cianobactérias/crescimento & desenvolvimento , Reação em Cadeia da Polimerase/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Cianobactérias/genética , Primers do DNA/genética , Poli-Hidroxialcanoatos/biossíntese , Análise de Sequência de DNA/métodos
10.
J Appl Microbiol ; 119(1): 149-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25892524

RESUMO

AIMS: The present work proposes a two-step molecular strategy to select inter- and intra-species Saccharomyces hybrids obtained by spore-to-spore mating, one of the most used methods for generating improved hybrids from homothallic wine yeasts. METHODS AND RESULTS: As low spore viability and haplo-selfing are the main causes of failed mating, at first, we used colony screening PCR (csPCR) of discriminative gene markers to select hybrids directly on dissection plate and discard homozygous diploid colonies arisen from one auto-diploidized progenitor. Then, pre-selected candidates were submitted to recursive streaking and conventional PCR in order to discriminate between the hybrids with stable genomic background and the false-positive admixtures of progenitor cells both undergone haplo-selfing. csPCRs of internal transcribed spacer (ITS) 1 or 2, and the subsequent digestion with diagnostic endonucleases HaeIII and RsaI, respectively, were efficient to select six new Saccharomyces cerevisiae × Saccharomyces uvarum hybrids from 64 crosses. Intragenic minisatellite regions in PIR3, HSP150, and DAN4 genes showed high inter-strain size variation detectable by cost-effective agarose gel electrophoresis and were successful to validate six new intra-species S. cerevisiae hybrids from 34 crosses. CONCLUSIONS: Both protocols reduce significantly the number of massive DNA extractions, prevent misinterpretations caused by one or both progenitors undergone haplo-selfing, and can be easily implemented in yeast labs without any specific instrumentation. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides a method for the marker-assisted selection of several inter- and intra-species yeast hybrids in a cost-effective, rapid and reproducible manner.


Assuntos
Hibridização Genética , Saccharomyces cerevisiae/genética , Fermentação , Marcadores Genéticos , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Vinho/microbiologia
11.
FEMS Yeast Res ; 14(3): 517-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24215185

RESUMO

The genus Saccharomyces comprises seven single-genome species (S. arboricola, S. cerevisiae, S. eubayanus, S. kudriavzevii, S. mikatae, S. paradoxus and S. uvarum) and two hybrid species - S. pastorianus (S. cerevisiae plus S. eubayanus) and S. bayanus (mostly S. uvarum plus S. eubayanus). Species-specific primers have already been developed for the identification of each of the single-genome species, and these primers can usually detect both genomes in hybrids. It would be advantageous if a single reaction could detect any member of the clade. We have investigated three potentially generic approaches to design genus-specific primers. Two methods that both use sequence alignment differences for primer design were only partly successful. A third method used synteny data to identify 136 target genes that are potentially present only in all species of the Saccharomyces clade. HSP30 (YCR021C) was fully successful; different primer pairs were developed with high G+C content for use at 63 °C. In < 3 h, using a robust colony-PCR followed by gel electrophoresis, the method can reliably detect any member of the genus. This novel approach still uses conventional sequence alignment mismatches but relies principally on the presence of the target gene only within the genus Saccharomyces.


Assuntos
Primers do DNA/genética , DNA Fúngico/genética , Micologia/métodos , Reação em Cadeia da Polimerase/métodos , Saccharomyces/classificação , Saccharomyces/genética , Sintenia , Composição de Bases , DNA Fúngico/química , Eletroforese , Proteínas Fúngicas/genética , Proteínas de Choque Térmico HSP30/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Temperatura , Fatores de Tempo
12.
Life (Basel) ; 14(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255730

RESUMO

Microalgae are recognized for their versatility in providing renewable energy, biopharmaceuticals, and nutraceuticals, attributed to their sustainable, renewable, and cost-effective nature. Genetic engineering has proven highly effective in enhancing microalgae production. PCR-based genotyping is the primary method for screening genetically transformed microalgae cells. Recently, we developed a novel PCR method, namely Squash-PCR, and employed it for the molecular analysis of industrially important fungi and yeasts. In this study, we successfully implemented the Squash-PCR technique in 12 industrially significant algae species. This approach offers a quick and reliable means of obtaining DNA templates directly from squashed algal cells, eliminating the need for time-consuming and labor-intensive cultivation and genomic DNA extraction steps. Our results demonstrate the effectiveness of Squash-PCR in detecting and characterizing target genes of interest in 12 different algae species. Overall, this study establishes the Squash-PCR method as a valuable tool for molecular studies in algae, enabling researchers to rapidly screen and manipulate genetic traits in diverse algal species.

13.
ACS Synth Biol ; 13(2): 457-465, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38295293

RESUMO

Modern biological science, especially synthetic biology, relies heavily on the construction of DNA elements, often in the form of plasmids. Plasmids are used for a variety of applications, including the expression of proteins for subsequent purification, the expression of heterologous pathways for the production of valuable compounds, and the study of biological functions and mechanisms. For all applications, a critical step after the construction of a plasmid is its sequence validation. The traditional method for sequence determination is Sanger sequencing, which is limited to approximately 1000 bp per reaction. Here, we present a highly scalable in-house method for rapid validation of amplified DNA sequences using long-read Nanopore sequencing. We developed two-step amplicon and transposase strategies to provide maximum flexibility for dual barcode sequencing. We also provide an automated analysis pipeline to quickly and reliably analyze sequencing results and provide easy-to-interpret results for each sample. The user-friendly DuBA.flow start-to-finish pipeline is widely applicable. Furthermore, we show that construct validation using DuBA.flow can be performed by barcoded colony PCR amplicon sequencing, thus accelerating research.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Fluxo de Trabalho , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Plasmídeos/genética , DNA/genética
14.
Insects ; 14(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37504616

RESUMO

Insects have been proposed as a rich alternative source of protein for the partial or total replacement of fishmeal in aquaculture. For maximum safety and effectiveness of insect meals, control of the quality composition of these products is considered mandatory. The aim of this study was the genetic analysis of the composition of commercially available insect meals at the species level. Commercially available Hermetia illucens, Tenebrio molitor and Musca domestica individuals, as well as nine insect meals produced from these species, were analyzed. The genetic identification of insects at the species level was based on a COI fragment, and analysis of the insect meals' composition was performed with the processes of cloning and colony PCR. Genetic analysis indicated that the commercially available larvae morphologically identified as Musca domestica belonged to the species Muscina stabulans. In the commercially available insect meals, no other animal species was identified beyond the expected one. However, in the insect meal produced for research purposes, fungal growth was detected. The used methodology, herein, allows for the qualitative genetic identification of insect meals and could be included in the methods of traceability of products containing insects and other animal species.

15.
Fungal Biol Biotechnol ; 10(1): 15, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422681

RESUMO

BACKGROUND: Fungi have been utilized for centuries in medical, agricultural, and industrial applications. Development of systems biology techniques has enabled the design and metabolic engineering of these fungi to produce novel fuels, chemicals, and enzymes from renewable feedstocks. Many genetic tools have been developed for manipulating the genome and creating mutants rapidly. However, screening and confirmation of transformants remain an inefficient step within the design, build, test, and learn cycle in many industrial fungi because extracting fungal genomic DNA is laborious, time-consuming, and involves toxic chemicals. RESULTS: In this study we developed a rapid and robust technique called "Squash-PCR" to break open the spores and release fungal genomic DNA as a template for PCR. The efficacy of Squash-PCR was investigated in eleven different filamentous fungal strains. Clean PCR products with high yields were achieved in all tested fungi. Spore age and type of DNA polymerase did not affect the efficiency of Squash-PCR. However, spore concentration was found to be the crucial factor for Squash-PCR in Aspergillus niger, with the dilution of starting material often resulting in higher PCR product yield. We then further evaluated the applicability of the squashing procedure for nine different yeast strains. We found that Squash-PCR can be used to improve the quality and yield of colony PCR in comparison to direct colony PCR in the tested yeast strains. CONCLUSION: The developed technique will enhance the efficiency of screening transformants and accelerate genetic engineering in filamentous fungi and yeast.

16.
J Microbiol Methods ; 208: 106709, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015313

RESUMO

The poultry industry in developing countries is still combating mortality and economic loss due to Salmonella contamination. Salmonella Gallinarum is a common pathogen of poultry birds, being the etiologic agent of fowl typhoid, which specifically infects adult birds via the oral-fecal route. Timely detection of S. Gallinarum in poultry flocks can allow early treatment intervention leading to a decrease in economic losses. Detection of S. Gallinarum is challenging, while its PCR-based detection is a promising strategy, however, due to its high genomic similarity with other commonly existing Salmonella spp., identification of S. Gallinarum from poultry samples with high specificity is still a challenge. The current study was conducted to isolate S. Gallinarum from different districts of Pakistan, assess their antibiotic susceptibility profile, and develop a method for its early detection. A total of 20 strains were isolated using buffer peptone water, selenite cysteine broth, and Xylose Lysine Tergitol-4 (XLT-4) agar supplemented with tergitol and characterized by biochemical procedures. The antibiotic sensitivity profile highlighted the highest resistance of isolates towards novobiocin and nalidixic acid, commonly used antibiotics in Pakistan Poultry production. The primers designed to amplify a unique genomic region of S. Gallinarum, showed successful detection of twenty S. Gallinarum strains, while no amplification with genomic DNA from other common Salmonella spp. The reported method can be utilized to detect S. Gallinarum from tissue samples of infected birds in a short time leading to early diagnosis and timely treatment intervention.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Animais , Aves Domésticas , Paquistão , Poloxaleno , Doenças das Aves Domésticas/diagnóstico , Salmonella/genética , Aves , Reação em Cadeia da Polimerase/veterinária , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Diagnóstico Precoce , Salmonelose Animal/diagnóstico , Galinhas
17.
Pharmaceutics ; 15(3)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36986850

RESUMO

We demonstrate that Blautia coccoides JCM1395T has the potential to be used for tumor-targeted live bacterial therapeutics. Prior to studying its in vivo biodistribution, a sample preparation method for reliable quantitative analysis of bacteria in biological tissues was required. Gram-positive bacteria have a thick outer layer of peptidoglycans, which hindered the extraction of 16S rRNA genes for colony PCR. We developed the following method to solve the issue; the method we developed is as follows. The homogenates of the isolated tissue were seeded on agar medium, and bacteria were isolated as colonies. Each colony was heat-treated, crushed with glass beads, and further treated with restriction enzymes to cleave DNAs for colony PCR. With this method, Blautia coccoides JCM1395T and Bacteroides vulgatus JCM5826T were individually detected from tumors in mice intravenously receiving their mixture. Since this method is very simple and reproducible, and does not involve any genetic modification, it can be applied to exploring a wide range of bacterial species. We especially demonstrate that Blautia coccoides JCM1395T efficiently proliferate in tumors when intravenously injected into tumor-bearing mice. Furthermore, these bacteria showed minimal innate immunological responses, i.e., elevated serum tumor necrosis factor α and interleukin-6, similar to Bifidobacterium sp., which was previously studied as a therapeutic agent with a small immunostimulating effect.

18.
Methods Mol Biol ; 2633: 87-95, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36853459

RESUMO

Site-Directed Mutagenesis (SDM) allows for changes in the DNA sequence of plasmids using polymerase chain reaction (PCR). It is a reliable, accessible, and rapid method which is the common initial step of many biochemial or genetic experiments. Here we describe the various different forms of SDM before giving a detailed method for the introduction of substitutions, insertions, or deletions using a fast, ligation-free protocol, followed by colony PCR to screen for mutated sequences.


Assuntos
Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase
19.
Microbiol Spectr ; 10(2): e0063422, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35343775

RESUMO

Candida auris, the multidrug-resistant human fungal pathogen, emerged as four major distinct geographical clades (clade 1-clade 4) in the past decade. Though isolates of the same species, C. auris clinical strains exhibit clade-specific properties associated with virulence and drug resistance. In this study, we report the identification of unique DNA sequence junctions by mapping clade-specific regions through comparative analysis of whole-genome sequences of strains belonging to different clades. These unique DNA sequence stretches are used to identify C. auris isolates at the clade level in subsequent in silico and experimental analyses. We develop a colony PCR-based clade-identification system (ClaID), which is rapid and specific. In summary, we demonstrate a proof-of-concept for using unique DNA sequence junctions conserved in a clade-specific manner for the rapid identification of each of the four major clades of C. auris. IMPORTANCE C. auris was first isolated in Japan in 2009 as an antifungal drug-susceptible pathogen causing localized infections. Within a decade, it simultaneously evolved in different parts of the world as distinct clades exhibiting resistance to antifungal drugs at varying levels. Recent studies hinted the mixing of isolates belonging to different geographical clades in a single location, suggesting that the area of isolation alone may not indicate the clade status of an isolate. In this study, we compared the genomes of representative strains of the four major clades to identify clade-specific sequences, which were then used to design clade-specific primers. We propose the utilization of whole genome sequence data to extract clade-specific sequences for clade-typing. The colony PCR-based method employed can rapidly distinguish between the four major clades of C. auris, with scope for expanding the panel by adding more primer pairs.


Assuntos
Antifúngicos , Candida , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/genética , Candida auris , Humanos , Japão , Testes de Sensibilidade Microbiana , Virulência
20.
Mar Biotechnol (NY) ; 23(4): 576-589, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34275003

RESUMO

Coral microbial flora has been attracting attention because of their potential to protect corals from environmental stresses or pathogens. Although coral-associated bacteria are considered to be acquired from seawater, little is known about the relationships between microbial composition in corals and its surrounding seawater. Here, we tested several methods to identify coral-associated bacteria in coral and its surrounding seawater to detect specific types of Ruegeria species, some of which exhibit growth inhibition activities against the coral pathogen Vibrio coralliilyticus. We first isolated coral-associated bacteria from the reef-building coral Galaxea fascicularis collected at Sesoko Island, Okinawa, Japan, via random colony picking, which showed the existence of varieties of bacteria including Ruegeria species. Using newly constructed primers for colony PCR, several Ruegeria species were successfully isolated from G. fascicularis and seawater. We further investigated the seawater microbiome in association with the distance from coral reefs. By seasonal sampling, it was suggested that the seawater microbiome is more affected by seasonality than the distance from coral reefs. These methods and results may contribute to investigating and understanding the relationships between the presence of corals and microbial diversity in seawater, in addition to the efficient isolation of specific bacterial species from coral or its surrounding seawater.


Assuntos
Antozoários/microbiologia , Rhodobacteraceae/isolamento & purificação , Água do Mar/microbiologia , Animais , Recifes de Corais , DNA Ambiental/análise , Genoma Bacteriano , Japão , Microbiota , Reação em Cadeia da Polimerase , Probióticos , Rhodobacteraceae/genética , Estações do Ano , Vibrio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa