RESUMO
The lack of stability of red perovskite nanocrystals (PeNCs) remains the main problem that restricts their patterning application. In this work, the dual-ligand passivation strategy was introduced to stabilize PeNCs and inhibit their halogen ion migration during high-voltage electrohydrodynamic (EHD) inkjet printing. The as-printed red arrays exhibit the highest emisson intensity and least blue shift compared with samples with other passivation strategies under a high electric field during EHD inkjet printing. Combining with blue and green PeNC inks, single-color and tricolor color conversion layer arrays were successfully printed, with minimum pixel size of 5 µm and the highest spatial resolution of 2540 dpi. The color coordinate of CsPbBrI2 NCs arrays are located close to the red point, with a color gumat of 97.28% of Rec. 2020 standard. All of these show great potential in the application of color conversion layers in a near-eye micro-LED display.
RESUMO
Deformable alternating-current electroluminescent (ACEL) devices are of increasing interest because of their potential to drive innovation in soft optoelectronics. Despite the research focus on efficient white ACEL devices, achieving deformable devices with high luminance remains difficult. In this study, this challenge is addressed by fabricating white ACEL devices using color-conversion materials, transparent and durable hydrogel electrodes, and high-k nanoparticles. The incorporation of quantum dots enables the highly efficient generation of red and green light through the color conversion of blue electroluminescence. Although the ionic-hydrogel electrode provides high toughness, excellent light transmittance, and superior conductivity, the luminance of the device is remarkably enhanced by the incorporation of a high-k dielectric, BaTiO3. The fabricated ACEL device uniformly emits very bright white light (489 cd m-2) with a high color-rendering index (91) from both the top and bottom. The soft and tough characteristics of the device allow seamless operation in various deformed states, including bending, twisting, and stretching up to 400%, providing a promising platform for applications in a wide array of soft optoelectronics.
RESUMO
High-efficiency photon color conversion is an approach of great potential for implementing color display. Inspired by the observation of emission enhancement in a nanoscale cavity, a novel technique to fabricate an array of color converter by mixing colloidal quantum dots (QDs) with the electrolyte of an electrochemical etching (ECE) process is demonstrated. In this process, QDs flow with the electrolyte into the etched subsurface nanoscale porous structure (PS) and settle inside. Since the PS formation and hence QD insertion are controlled by the flow path of the applied electric current in the ECE process, this technique can be used for fabricating any graphic pattern. The nanostructure of such a QD-inserted mesa is examined to confirm QD insertion. Although only single-color mesa arrays are demonstrated in this paper, this technique can be used for fabricating a multiple-color mesa array if a QD or a light-emitting nanoparticle of higher thermal stability is available.
RESUMO
Solid-state light-emitting diodes (LEDs) emit nearly monochromatic light, yet seamless tuning of emission color throughout the visible region remains elusive. Color-converting powder phosphors are therefore used for making LEDs with a bespoke emission spectrum, yet broad emission lines and low absorption coefficients compromise the formation of small-footprint monochromatic LEDs. Color conversion by quantum dots (QDs) can address these issues, but high-performance monochromatic LEDs made using QDs free of restricted, hazardous elements remain to be demonstrated. Here, we show green, amber, and red LEDs formed using InP-based QDs as on-chip color convertor for blue LEDs. Implementing QDs with near-unity photoluminescence efficiency yields a color conversion efficiency over 50% with little intensity roll-off and nearly complete blue light rejection. Moreover, as the conversion efficiency is mostly limited by package losses, we conclude that on-chip color conversion using InP-based QDs can provide spectrum-on-demand LEDs, including monochromatic LEDs that bridge the green gap.
RESUMO
We present a dual-resonance nanostructure made of a titanium dioxide (TiO2) subwavelength grating to enhance the color downconversion efficiency of CdxZn1-xSeyS1-y colloidal quantum dots (QDs) emitting at â¼530 nm when excited with a blue light at â¼460 nm. A large mode volume can be created within the QD layer by the hybridization of the grating resonances and waveguide modes, resulting in large absorption and emission enhancements. Particularly, we achieved polarized light emission with a maximum photoluminescence enhancement of â¼140 times at a specific angular direction and a total enhancement of â¼34 times within a 0.55 numerical aperture (NA) of the collecting objective. The enhancement encompasses absorption, Purcell and outcoupling enhancements. We achieved a total absorption of 35% for green QDs with a remarkably thin color conversion layer of â¼400 nm. This work provides a guideline for designing large-volume cavities for absorption/fluorescence enhancement in microLED display, detector, or photovoltaic applications.
RESUMO
Molecular emitters with multi-emissive properties are in high demand in numerous fields, while these properties basically depend on specific molecular conformation and packing. For amorphous systems, special molecular arrangement is unnecessary, but it remains challenging to achieve such luminescent behaviors. Herein, we present a general strategy that takes advantage of molecular rigidity and S1 -T1 energy gap balance for emitter design, which enables fluorescence-phosphorescence dual-emission properties in various solid forms, whether crystalline or amorphous. Subsequently, the amorphism of the emitters based polymethyl methacrylate films endowed an in situ regulation of the dual-emissive characteristics. With the ratiometric regulation of phosphorescence by external stimuli and stable fluorescence as internal reference, highly controllable luminescent color tuning (yellow to blue including white emission) was achieved. There properties together with a persistent luminous behavior is of benefit for an irreplaceable set of optical information combination, featuring an ultrahigh-security anti-counterfeiting ability. Our research introduces a concept of eliminating the crystal-form and molecular-conformational dependence of complex luminescent properties through emitter molecular design. This has profound implications for the development of functional materials.
RESUMO
The colorimetric conversion of wide-color-gamut cameras plays an important role in the field of wide-color-gamut displays. However, it is rather difficult for us to establish the conversion models with desired approximation accuracy in the case of wide color gamut. In this paper, we propose using an optimal method to establish the color conversion models that change the RGB space of cameras to the XYZ space of a CIEXYZ system. The method makes use of the Pearson correlation coefficient to evaluate the linear correlation between the RGB values and the XYZ values in a training group so that a training group with optimal linear correlation can be obtained. By using the training group with optimal linear correlation, the color conversion models can be established, and the desired color conversion accuracy can be obtained in the whole color space. In the experiments, the wide-color-gamut sample groups were designed and then divided into different groups according to their hue angles and chromas in the CIE1976L*a*b* space, with the Pearson correlation coefficient being used to evaluate the linearity between RGB and XYZ space. Particularly, two kinds of color conversion models employing polynomial formulas with different terms and a BP artificial neural network (BP-ANN) were trained and tested with the same sample groups. The experimental results show that the color conversion errors (CIE1976L*a*b* color difference) of the polynomial transforms with the training groups divided by hue angles can be decreased efficiently.
RESUMO
BACKGROUND: Leaf color is an important trait in breeding of leafy vegetables. Y-05, a pakchoi (Brassica rapa ssp. chinensis) cultivar, displays yellow inner (YIN) and green outer leaves (GOU) after cold acclimation. However, the mechanism of this special phenotype remains elusive. RESULTS: We assumed that the yellow leaf phenotype of Y-05 maybe caused by low chlorophyll content. Pigments measurements and transmission electron microscopy (TEM) analysis showed that the yellow phenotype is closely related with decreased chlorophyll content and undeveloped thylakoids in chloroplast. Transcriptomes and metabolomes sequencing were next performed on YIN and GOU. The transcriptomes data showed that 4887 differentially expressed genes (DEGs) between the YIN and GOU leaves were mostly enriched in the chloroplast- and chlorophyll-related categories, indicating that the chlorophyll biosynthesis is mainly affected during cold acclimation. Together with metabolomes data, the inhibition of chlorophyll biosynthesis is contributed by blocked 5-aminolevulinic acid (ALA) synthesis in yellow inner leaves, which is further verified by complementary and inhibitory experiments of ALA. Furthermore, we found that the blocked ALA is closely associated with increased BrFLU expression, which is indirectly altered by cold acclimation. In BrFLU-silenced pakchoi Y-05, cold-acclimated leaves still showed green phenotype and higher chlorophyll content compared with control, meaning silencing of BrFLU can rescue the leaf yellowing induced by cold acclimation. CONCLUSIONS: Our findings suggested that cold acclimation can indirectly promote the expression of BrFLU in inner leaves of Y-05 to block ALA synthesis, resulting in decreased chlorophyll content and leaf yellowing. This study revealed the underlying mechanisms of leaves color change in cold-acclimated Y-05.
Assuntos
Aclimatação , Brassica rapa/fisiologia , Clorofila/biossíntese , Temperatura Baixa , Folhas de Planta/metabolismo , Cor , Microscopia Eletrônica de Transmissão , Pigmentação/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestruturaRESUMO
Metal halide perovskite materials have attracted great attention owing to their fascinating optoelectronic characteristics and low cost fabrication via facile solution processing. One of the potential applications of these materials is to employ them as color-conversion layers (CCLs) for visible blue light to achieve full-color displays. However, obtaining thick perovskite films to realize complete color conversion is a key challenge. Here, the fabrication of micrometer-level thick CsPbBr3 perovskite films is presented through a facile vacuum drying approach. An efficient green photoconversion is realized in a 3.8 µm thick film from blue light @ 463 nm. For a back luminance of 1000 cd m-2 , the brightness of the resulting green emission can reach as high as 200 cd m-2 . Furthermore, only ≈2% of decay in brightness is observed when the films are tested after 18 days of exposure to ambient environment. In addition, a potential design is also proposed for full-color displays with perovskite materials incorporated as CCLs.
RESUMO
Recent years have witnessed significant progress in molecular probes for cancer diagnosis. However, the conventional molecular probes are designed to be "always-on" by attachment of tumor-targeting ligands, which limits their abilities to diagnose tumors universally due to the variations of targeting efficiency and complex environment in different cancers. Here, it is proposed that a color-convertible, activatable probe is responding to a universal tumor microenvironment for tumor-specific diagnosis without targeting ligands. Based on the significant hallmark of up-regulated hydrogen peroxide (H2 O2 ) in various tumors, a novel unimolecular micelle constructed by boronate coupling of a hydrophobic hyperbranched poly(fluorene-co-2,1,3-benzothiadiazole) core and many hydrophilic poly(ethylene glycol) arms is built as an H2 O2 -activatable fluorescent nanoprobe to delineate tumors from normal tissues through an aggregation-enhanced fluorescence resonance energy transfer strategy. This color-convertible, activatable nanoprobe is obviously blue-fluorescent in various normal cells, but becomes highly green-emissive in various cancer cells. After intravenous injection to tumor-bearing mice, green fluorescent signals are only detected in tumor tissue. These observations are further confirmed by direct in vivo and ex vivo tumor imaging and immunofluorescence analysis. Such a facile and simple methodology without targeting ligands for tumor-specific detection and imaging is worthwhile to further development.
Assuntos
Diagnóstico por Imagem/métodos , Corantes Fluorescentes/química , Micelas , Neoplasias/diagnóstico por imagem , Animais , Benzotiazóis/síntese química , Benzotiazóis/química , Benzotiazóis/farmacocinética , Cor , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Camundongos , Especificidade de Órgãos , Polietilenoglicóis/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Distribuição TecidualRESUMO
A special micro LED whose light emitting area is laid out in a U-like shape is fabricated and integrated with colloidal quantum dots (CQDs). An inkjet-type machine directly dispenses the CQD layer to the central courtyard-like area of this U-shape micro LED. The blue photons emitted by the U-shape mesa with InGaN/GaN quantum wells can excite the CQDs at the central courtyard area and be converted into green or red ones. The U-shape micro LEDs are coated with Al2O3 by an atomic layer deposition system and exhibit moderate external quantum efficiency (6.51% max.) and high surface recombination because of their long peripheries. Low-temperature measurement also confirms the recovery of the external quantum efficiency due to lower non-radiative recombination from the exposed surfaces. The color conversion efficiency brought by the CQD layer can be as high as 33.90%. A further continuous CQD aging test, which was evaluated by the strength of the CQD emission, under current densities of 100 A/cm2 and 200 A/cm2 injected into the micro LED, showed a lifetime extension of the unprotected CQD emission up to 1321 min in the U-shape device compared to a 39 min lifetime in the traditional case, where the same CQD layer was placed on the top surface of a squared LED.
RESUMO
Monolithic integration of color-conversion materials onto blue-backlight micro-light-emitting-diodes (micro-LEDs) has emerged as a promising strategy for achieving full-color microdisplay devices. However, this approach still encounters challenges such as the blue-backlight leakage and the poor fabrication yield rate due to unsatisfied quantum dot (QD) material and fabrication process. Here, the monolithic integration of 0.39-inch micro-display screens displaying colorful pictures and videos are demonstrated, which are enabled by creating interfacial chemical bonds for wafer-scale adhesion of sub-5 µm QD-pixels on blue-backlight micro-LED wafer. The ligand molecule with chlorosulfonyl and silane groups is selected as the synthesis ligand and surface treatment material, facilitating the preparation of high-efficiency QD photoresist and the formation of robust chemical bonds for pixel integration. This is a leading record in micro-display devices achieving the highest brightness larger than 400 thousand nits, the ultrahigh resolution of 3300 PPI, the wide color gamut of 130.4% NTSC, and the ultimate performance of service life exceeding 1000 h. These results extend the mature integrated circuit technique into the manufacture of micro-display device, which also lead the road of industrialization process of full-color micro-LEDs.
RESUMO
Water-soluble quantum dots (QDs) are necessary to prepare patterned pixels or films for high-resolution displays with less environmental burden but are very limited by the trade-off between photoluminescence and stability of QDs. In this work, we proposed synthesizing water-soluble QDs with simultaneous excellent luminescence properties and high stability by coating the amphiphilic poly(maleic anhydride-alt-1-octadecene)-ethanol amine (PMAO-EA) polymer on the surface of silane-treated QDs. These coated QDs show a photoluminescence quantum yield (PLQY) as high as 94%, and they have good photoluminescence stability against light irradiation and thermal attacks, owing to the suppression of the nonradiative recombination by the polymer layer and the isolation of oxygen and water by the silica layer. The water-soluble QDs, mixed with ethylene glycol, enable inkjet printing of QD color conversion films (QD-CCFs) with an average diameter of 68 µm for each pixel and a high PLQY of 91%. The QD-CCFs are demonstrated to fabricate red-emitting mini-LEDs by combining with blue mini-LED chips, which have an external quantum efficiency as high as 25.86% and a luminance of 2.44 × 107 cd/m2. We believe that the proposed strategy is applicable to other water-soluble QDs and paves an avenue for inkjet printing environmentally friendly QD-CCFs for mini/micro-LED displays.
RESUMO
The technology of RGBY micro resonant cavity light emitting diodes (micro-RCLEDs) based on quantum dots (QDs) is considered one of the most promising approaches for full-color displays. In this work, we propose a novel structure combining a high color conversion efficiency (CCE) QD photoresist (QDPR) color conversion layer (CCL) with blue light micro RCLEDs, incorporating an ultra-thin yellow color filter. The additional TiO2 particles inside the QDPR CCL can scatter light and disperse QDs, thus reducing the self-aggregation phenomenon and enhancing the eventual illumination uniformity. Considering the blue light leakage, the influences of adding different color filters are investigated by illumination design software. Finally, the introduction of low-temperature atomic layer deposition (ALD) passivation protection technology at the top of the CCL can enhance the device's reliability. The introduction of RGBY four-color subpixels provides a viable path for developing low-energy consumption, high uniformity, and efficient color conversion displays.
RESUMO
This study compares how a modified distributed Bragg reflector (DBR) and yellow color filter (Y-CF) increase the color purity, viewing angle, and brightness of the quantum dot color conversion layer (QDCC) for micro-LED displays. We designed and built a 53-layer high-performance modified DBR with almost total blue leakage filtering (T %: 0.16 %) and very high G/R band transmittance (T %: 96.97 %) for comparison. We also use a Y-CF that filters blue light (T %: 0.84 %) and has good G/R band transmittance (T %: 94.83 %). Due to DBR's angle dependency effect, the modified DBR/QDCC structure offers a remarkable color gamut (117.41 % NTSC) at the forward viewing angle, but this rapidly diminishes beyond 30°. The Y-CF/QDCC structure retains 116 % NTSC color at all viewing angles. Because of its consistent color performance at all viewing angles, sufficient brightness, and outstanding color gamut, the Y-CF/QDCC structure is the best option for contemporary QDCC-based micro-LED displays.
RESUMO
Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.
RESUMO
The inkjet printing method is a promising method to deposit polymer and functional nanoparticles at the microscale. It can be applied in the fabrication of multicolor polymer light emitting diodes (polyLEDs), polymer base electronics, multicolor color conversion layers, and quantum dot light emitting diodes (QLEDs). One of the main challenges is to print high-resolution polymer dots from dilute polymer solution. In addition, the quality of printed multicolor polyLEDs, QLEDs and multicolor color conversion layers is currently limited by non-uniformity of the printed dots. In this paper, polydimethylsiloxane (PDMS) is selected as the functional polymer, due to its high transparency, good reflective index value, inflammable and flexible properties. The optimal ink to form a uniform PDMS dot array is presented in this paper. Both the solvent and PDMS were tuned to form the uniform PDMS dot array. The uniform PDMS dot array was printed with a diameter of around 50 µm, and the array of closely spaced green quantum dots (QDs) mixed with PDMS ink was also printed on the substrate uniformly. While the green QD-PDMS film was printed at a resolution of 1693 dpi, the uniformity was evaluated using the photoluminescence (PL) spectrum and color coordinate value.
RESUMO
Ladder-type polysilsesquioxanes (LPSQs) containing phenyl as a high refractive index unit and cyclic epoxy as a curable unit were found to be excellent candidates for a transparent color conversion layer for displays due to being miscible with organic solvents and amenable to transparent film formation. Therefore, the LPSQs were combined with luminescent lanthanide metals, europium Eu(III), and terbium Tb(III), to fabricate transparent films with various emission colors, including red, orange, yellow, and green. The high luminescence and transmittance properties of the LPSQs-lanthanide composite films after thermal curing were attributed to chelating properties of hydroxyl and polyether side chains of LPSQs to lanthanide ions, as well as a light sensitizing effect of phenyl side chains of the LPSQs. Furthermore, Fourier-transform infrared (FT-IR) and X-ray photoelectron spectroscopy and nanoindentation tests indicated that the addition of the nanoparticles to the LPSQs moderately enhanced the epoxy conversion rate and substantially improved the wear resistance, including hardness, adhesion, and insusceptibility to atmospheric corrosion in a saline environment. Thus, the achieved LPGSG-lanthanide hybrid organic-inorganic material could effectively serve as a color conversion layer for displays.
RESUMO
The implementation of high-efficiency and high-resolution displays has been the focus of considerable research interest. Recently, micro light-emitting diodes (micro-LEDs), which are inorganic light-emitting diodes of size <100 µm2 , have emerged as a promising display technology owing to their superior features and advantages over other displays like liquid crystal displays and organic light-emitting diodes. Although many companies have introduced micro-LED displays since 2012, obstacles to mass production still exist. Three major challenges, i.e., low quantum efficiency, time-consuming transfer, and complex color conversion, have been overcome with technological breakthroughs to realize cost-effective micro-LED displays. In the review, methods for improving the degraded quantum efficiency of GaN-based micro-LEDs induced by the size effect are examined, including wet chemical treatment, passivation layer adoption, LED structure design, and growing LEDs in self-passivated structures. Novel transfer technologies, including pick-up transfer and self-assembly methods, for developing large-area micro-LED displays with high yield and reliability are discussed in depth. Quantum dots as color conversion materials for high color purity, and deposition methods such as electrohydrodynamic jet printing or contact printing on micro-LEDs are also addressed. This review presents current status and critical challenges of micro-LED technology and promising technical breakthroughs for commercialization of high-performance displays.
RESUMO
Quantum dot (QD)-based RGB micro light-emitting diode (µ-LED) technology shows immense potential for achieving full-color displays. In this study, we propose a novel structural design that combines blue and quantum well (QW)-intermixing ultraviolet (UV)-hybrid µ-LEDs to achieve high color-conversion efficiency (CCE). For the first time, the impact of various combinations of QD and TiO2 concentrations, as well as thickness variations on photoluminescence efficiency (PLQY), has been systematically examined through simulation. High-efficiency color-conversion layer (CCL) have been successfully fabricated as a result of these simulations, leading to significant savings in time and material costs. By incorporating scattering particles of TiO2 in the CCL, we successfully scatter light and disperse QDs, effectively reducing self-aggregation and greatly improving illumination uniformity. Additionally, this design significantly enhances light absorption within the QD films. To enhance device reliability, we introduce a passivation protection layer using low-temperature atomic layer deposition (ALD) technology on the CCL surface. Moreover, we achieve impressive CCE values of 96.25% and 92.91% for the red and green CCLs, respectively, by integrating a modified distributed Bragg reflector (DBR) to suppress light leakage. Our hybrid structure design, in combination with an optical simulation system, not only facilitates rapid acquisition of optimal parameters for highly uniform and efficient color conversion in µ-LED displays but also expands the color gamut to achieve 128.2% in the National Television Standards Committee (NTSC) space and 95.8% in the Rec. 2020 standard. In essence, this research outlines a promising avenue towards the development of bespoke, high-performance µ-LED displays.