Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 204(Pt 1): 613-621, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28946001

RESUMO

Phenol-production wastewater is difficult to treat biologically by aerobic processes to meet the effluent standard COD of 120 mg L-1 because it contains several highly refractory aromatic pollutants, particularly dimethyl phenyl carbinol. Pretreatment revealed that dimethyl phenyl carbinol was slowly oxidized by molecular ozone; however, it readily reacted with hydroxyl radicals to yield acetophenone as a primary product. Acetophenone was further oxidized, first through five different pathways to form benzoic acid, phenyl glyoxalic acid, 4-4'-diacetyl biphenyl, and several hydroxylated aromatic compounds, and later to aliphatic carboxylic acids via ring cleavage. Regardless of system configuration (homogeneous vs heterogeneous), operating mode (batch vs continuous), and chemical concentration, the average intrinsic rate constants were 1.05 × 1010 and 9.29 × 109 M-1 s-1 for dimethyl phenyl carbinol and acetophenone, respectively.


Assuntos
Álcoois Benzílicos/química , Ácidos Carboxílicos/química , Radical Hidroxila/química , Ozônio/química , Fenol/química , Águas Residuárias , Poluentes Químicos da Água/química , Oxirredução
2.
Chemosphere ; 365: 143202, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218261

RESUMO

Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (Kobs = 0.0655 min-1), which was 6.75 times more active than the pristine biochar and achieved notable mineralization efficiency (71.98%) at reduced PMS concentration (0.1 mM). Relative contribution evaluations, using steady-state concentrations combined with electrochemical and in situ Raman analyses, reveal that co-doping with boron and nitrogen alters the reaction pathway, transitioning from PMS activation through multiple reactive oxygen species (ROSs) to a predominantly non-radical process facilitated by electron transfer. Moreover, the previously misunderstood concept that singlet oxygen (1O2) plays a central role in the degradation of AO7 has been clarified. Correlation analysis and density functional theory calculations indicate that the distinct BCN configuration, featuring the BC2O group and pyridinic-N, is fundamental to the active site. This research substantially advances the sustainability of phytoremediation by offering a viable methodology to synthesize highly catalytic functional biochar utilizing hyperaccumulator residues.

3.
Chemosphere ; 261: 127658, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32731017

RESUMO

Competitive kinetics and scavenging assay are commonly used for radical quantification. However, the accuracy of the two methods has been challenged in electrochemical advanced oxidation processes (EAOPs) since the strong reactivity of electrode against organic indicators may disrupt the quantitative relationship between indicator consumption and radical concentration. The present study focused on screening suitable indicators and developing suitable methods for determining the steady-state concentrations of SO4•- and HO• ([SO4•-]ss and [HO•]ss) in several EAOPs for water treatment based on competitive kinetics and scavenging assay. The applicability of the modified methods and available indicators were investigated through experimental and kinetic analysis. In anode alone process, the competitive kinetics was more appropriate than scavenging assay and benzoic acid (BA) met the basic requirement of being a competitor to determine the [HO•]ss. In cathode alone process, BA was more resistant to interfering factors than other competitors (ibuprofen, atrazine and nitrobenzene) and its reaction rate involved only the radical oxidation even when the reaction conditions varied over a wide range. Therefore, the [HO•]ss could be obtained by the competitive kinetic equation of BA when HO• existed alone. When HO• coexisted with SO4•-, a two-step method combining scavenging assay and competitive kinetics was proposed to measure [SO4•-]ss and [HO•]ss, in which tert-butyl alcohol and BA were added as scavenger and competitor, respectively. Furthermore, the reliability of each approach was verified by the experimental results and kinetic analysis.


Assuntos
Radical Hidroxila/química , Poluentes Químicos da Água/química , Atrazina/análise , Ácido Benzoico , Eletrodos , Cinética , Oxirredução , Reprodutibilidade dos Testes , Poluentes Químicos da Água/análise , Purificação da Água
4.
Food Chem ; 239: 964-974, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28873659

RESUMO

The inhibition properties of a number of antioxidants against peroxidation, started by a 2,2'-azobis[2-(2-imidazolin-2-yl)propane] radical initiator, of linoleic acid in sodium dodecyl sulfate micelles, have been determined in terms of oxygen consumption by a Clark electrode in an oxygen-tight cell. For the 31 antioxidants investigated at variable concentrations, the experimental results well fit the kinetic equation for competitive reactions. The ratio between the initial rates, monitored in the absence and in the presence of antioxidants, depends linearly on their concentration. From the slopes of these straight lines, an absolute scale of inhibition properties of the lipid peroxidation can be devised. Furthermore, the little difference of the time of complete oxygen consumption on concentration of different antioxidants has been found, indicating a restricted difference towards chemical structure and stoichiometric ratio. Some considerations regarding the mechanisms of inhibition of the lipid peroxidation in micelles, in view of bibliographic data, have been made.


Assuntos
Peroxidação de Lipídeos , Antioxidantes , Radicais Livres , Cinética , Micelas , Oxirredução
5.
Springerplus ; 5(1): 1105, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478722

RESUMO

Steroids are classified as endocrine disrupting chemicals; they are persistent with low biodegradability and are hardly degraded by conventional methods. Ozonation process has been effective for steroids degradation and the determination of the kinetics is a fundamental aspect for the design and operation of the reactor. This study assessed two methods: competitive kinetics and stopped flow, for determining the degradation kinetics of two steroids, estradiol (E2) and ethinylestradiol (EE2) in spiked water. Experiments were performed at pH 6, 21 °C, and using tertbutyl alcohol as scavenger of hydroxyl radicals; competitive kinetics method used sodium phenolate as reference compound. For the stopped flow, the experiments were performed in a BioLogic SFM-3000/S equipment. For both methods, the second order rate constants were in the order of 10(6) and 10(5) M(-1) s(-1) for E2 and EE2 respectively. The competitive kinetics can be applied with assurance and reliability but needing an additional analysis method to measure the residual concentrations. Stopped flow method allows the evaluation of the degradation kinetics in milliseconds and avoids the use of additional analytical methodologies; this method allows determining the reaction times on line. The methods are applicable for degradation of other emerging contaminants or other steroids and could be applied in water treatment at industrial level. Finally, it is important to consider the resources available to implement the most appropriate method, either competitive kinetics or the stopped-flow method.

6.
Food Chem ; 199: 36-41, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26775941

RESUMO

Competitive kinetics were applied as a tool to determine apparent rate constants for the reduction of hypervalent haem pigment ferrylmyoglobin (MbFe(IV)O) by proteins and phenols in aqueous solution of pH 7.4 and I=1.0 at 25°C. Reduction of MbFe(IV)O by a myofibrillar protein isolate (MPI) from pork resulted in kMPI=2.2 ± 0.1 × 10(4)M(-1)s(-1). Blocking of the protein thiol groups on the MPI by N-ethylmaleimide (NEM) markedly reduced this rate constant to kMPI-NEM=1.3 ± 0.4 × 10(3)M(-1)s(-1) consistent with a key role for the Cys residues on MPI as targets for haem protein-mediated oxidation. This approach allows determination of apparent rate constants for the oxidation of proteins by haem proteins of relevance to food oxidation and should be applicable to other systems. A similar approach has provided approximate apparent rate constants for the reduction of MbFe(IV)O by catechin and green tea extracts, though possible confounding reactions need to be considered. These kinetic data suggest that small molar excesses of some plant extracts relative to the MPI thiol concentration should afford significant protection against MbFe(IV)O-mediated oxidation.


Assuntos
Metamioglobina/química , Extratos Vegetais/farmacologia , Catequina/farmacologia , Cisteína/química , Etilmaleimida/farmacologia , Cinética , Carne , Oxirredução , Chá
7.
Front Chem ; 1: 4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24790933

RESUMO

This study explored the potential use of a sulfate radical (SO(·-) 4)-based photochemical oxidation process to treat the commercial nonionic surfactant octylphenol polyethoxylate (OPPE) Triton™ X-45. For this purpose, the effect of initial S2O(2-) 8 (0-5.0 mM) and OPPE (10-100 mg/L) concentrations on OPPE and its organic carbon content (TOC) removal were investigated at an initial reaction pH of 6.5. Results indicated that very fast OPPE degradation (100%) accompanied with high TOC abatement rates (90%) could be achieved for 10 and 20 mg/L aqueous OPPE at elevated S2O(2-) 8 concentrations (≥2.5 mM). S2O(2-) 8/UV-C treatment was still capable of complete OPPE removal up to an initial concentration of 40 mg/L in the presence of 2.5 mM S2O(2-) 8. On the other hand, TOC removal efficiencies dropped down to only 40% under the same reaction conditions. S2O(2-) 8/UV-C oxidation of OPPE was also compared with the relatively well-known and established H2O2/UV-C oxidation process. Treatment results showed that the performance of S2O(2-) 8/UV-C was comparable to that of H2O2/UV-C oxidation for the degradation and mineralization of OPPE. In order to elucidate the relative reactivity and selectivity of SO(·-) 4 and HO(·), bimolecular reaction rate coefficients of OPPE with SO(·-) 4 and HO(·) were determined by employing competition kinetics with aqueous phenol (47 µM) selected as the reference compound. The pseudo-first-order abatement rate coefficient obtained for OPPE during S2O(2-) 8/UV-C oxidation (0.044 min(-1)) was found to be significantly lower than that calculated for phenol (0.397 min(-1)). In the case of H2O2/UV-C oxidation however, similar pseudo-first-order abatement rate coefficients were obtained for both OPPE (0.087 min(-1)) and phenol (0.140 min(-1)). From the kinetic study, second-order reaction rate coefficients for OPPE with SO(·-) 4 and HO(·) were determined as 9.8 × 10(8) M(-1) s(-1) and 4.1 × 10(9) M(-1) s(-1), respectively. The kinetic study also revealed that the selectivity of SO(·-) 4 was found to be significantly higher than that of HO(·).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa