Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337
Filtrar
1.
Small ; 20(30): e2310644, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386306

RESUMO

Mixed matrix composite membranes (MMCMs) have shown advantages in reducing VOCs and CO2 emissions. Suitable composite layer, substrate, and good compatibility between the filler and the matrix in the composite layer are critical issues in designing MMCMs. This work develops a high-performance UiO-66-NA@PDMS/MCE for VOCs adsorption and CO2 permea-selectivity, based on a simple and facile fabrication of composite layer using amidation-reaction approach on the substrate. The composite layer shows a continuous morphological appearance without interface voids. This outstanding compatibility interaction between UiO-66-NH2 and PDMS is confirmed by molecular simulations. The Si─O functional group and UiO-66-NH2 in the layer leads to improved VOCs adsorption via active sites, skeleton interaction, electrostatic interaction, and van der Waals force. The layer and ─CONH─ also facilitate CO2 transport. The MMCMs show strong four VOCs adsorption and high CO2 permeance of 276.5 GPU with a selectivity of 36.2. The existence of VOCs in UiO-66-NA@PDMS/MCE increases the polarity and fine-tunes the pore size of UiO-66-NH2, improving the affinity towards CO2 and thus promoting the permea-selectivity for CO2, which is further verified by GCMC and EMD methods. This work is expected to offer a facile composite layer manufacturing method for MMCMs with high VOC adsorption and CO2 permea-selectivity.

2.
Environ Sci Technol ; 58(2): 1359-1368, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38079615

RESUMO

Lithium holds immense significance in propelling sustainable energy and environmental systems forward. However, existing sensors used for lithium monitoring encounter issues concerning their selectivity and long-term durability. Addressing these challenges is crucial to ensure accurate and reliable lithium measurements during the lithium recovery processes. In response to these concerns, this study proposes a novel approach involving the use of an MXene composite membrane with incorporated poly(sodium 4-styrenesulfonate) (PSS) as an antibiofouling layer on the Li+ ion selective electrode (ISE) sensors. The resulting MXene-PSS Li+ ISE sensor demonstrates exceptional electrochemical performance, showcasing a superior slope (59.42 mV/dec), lower detection limit (10-7.2 M), quicker response time (∼10 s), higher selectivity to Na+ (-2.37) and K+ (-2.54), and reduced impedance (106.9 kΩ) when compared to conventional Li+ ISE sensors. These improvements are attributed to the unique electronic conductivity and layered structure of the MXene-PSS nanosheet coating layer. In addition, the study exhibits the long-term accuracy and durability of the MXene-PSS Li+ ISE sensor by subjecting it to real wastewater testing for 14 days, resulting in sensor reading errors of less than 10% when compared to laboratory validation results. This research highlights the great potential of MXene nanosheet coatings in advancing sensor technology, particularly in challenging applications, such as detecting emerging contaminants and developing implantable biosensors. The findings offer promising prospects for future advancements in sensor technology, particularly in the context of sustainable energy and environmental monitoring.


Assuntos
Eletrodos Seletivos de Íons , Lítio , Nitritos , Elementos de Transição , Impedância Elétrica , Eletrônica
3.
Environ Sci Technol ; 58(33): 14929-14939, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39126388

RESUMO

Membrane distillation (MD) has great potential in the management of hypersaline water for zero liquid discharge (ZLD) due to its high salinity tolerance. However, the membrane wetting issue significantly restricts its practical application. In this study, a composite membrane tailored for extreme concentrations and even crystallization of hypersaline water is synthesized by coating a commercial hydrophobic porous membrane with a composite film containing a dense polyamide layer, a cation exchange layer (CEL), and an anion exchange layer (AEL). When used in direct contact MD for treating a 100 g L-1 NaCl hypersaline solution, the membrane achieves supersaturation of feed solution and a salt crystal yield of 38.0%, with the permeate concentration at <5 mg L-1. The composite membrane also demonstrates ultrahigh antiwetting stability in 360 h of long-term operation. Moreover, ion diffusion analysis reveals that the ultrahigh wetting resistance of the composite membrane is attributed to the bipolar AEL and CEL that eliminate ion crossover. The literature review elucidates that the composite membrane is superior to state-of-the-art membranes. This study demonstrates the great potential of the composite membrane for direct crystallization of hypersaline water, offering a promising approach to filling the gap between reverse osmosis and conventional thermal desalination processes for ZLD application.


Assuntos
Cristalização , Destilação , Membranas Artificiais , Salinidade , Água/química , Purificação da Água/métodos
4.
Environ Sci Technol ; 58(2): 1131-1141, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38169368

RESUMO

Hydrogen gas evolution using an impure or saline water feed is a promising strategy to reduce overall energy consumption and investment costs for on-site, large-scale production using renewable energy sources. The chlorine evolution reaction is one of the biggest concerns in hydrogen evolution with impure water feeds. The "alkaline design criterion" in impure water electrolysis was examined here because water oxidation catalysts can exhibit a larger kinetic overpotential without interfering chlorine chemistry under alkaline conditions. Here, we demonstrated that relatively inexpensive thin-film composite (TFC) membranes, currently used for high-pressure reverse osmosis (RO) desalination applications, can have much higher rejection of Cl- (total crossover of 2.9 ± 0.9 mmol) than an anion-exchange membrane (AEM) (51.8 ± 2.3 mmol) with electrolytes of 0.5 M KOH for the anolyte and 0.5 M NaCl for the catholyte with a constant current (100 mA/cm2 for 20 h). The membrane resistances, which were similar for the TFC membrane and the AEM based on electrochemical impedance spectroscopy (EIS) and Ohm's law methods, could be further reduced by increasing the electrolyte concentration or removal of the structural polyester supporting layer (TFC-no PET). TFC membranes could enable pressurized gas production, as this membrane was demonstrated to be mechanically stable with no change in permeate flux at 35 bar. These results show that TFC membranes provide a novel pathway for producing green hydrogen with a saline water feed at elevated pressures compared to systems using AEMs or porous diaphragms.


Assuntos
Cloro , Hidrogênio , Metacrilatos , Osmose , Membranas Artificiais , Águas Salinas , Cloretos
5.
Environ Sci Technol ; 58(1): 391-399, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147515

RESUMO

Low-cost polyamide thin-film composite membranes are being explored as alternatives to expensive cation exchange membranes for seawater electrolysis. However, transport of chloride from seawater to the anode chamber must be reduced to minimize the production of chlorine gas. A double-polyamide composite structure was created that reduced the level of chloride transport. Adding five polyamide layers on the back of a conventional polyamide composite membrane reduced the chloride ion transport by 53% and did not increase the applied voltage. Decreased chloride permeation was attributed to enhanced electrostatic and steric repulsion created by the new polyamide layers. Charge was balanced through increased sodium ion transport (52%) from the anolyte to the catholyte rather than through a change in the transport of protons and hydroxides. As a result, the Nernstian loss arising from the pH difference between the anolyte and catholyte remained relatively constant during electrolysis despite membrane modifications. This lack of a change in pH showed that transport of protons and hydroxides during electrolysis was independent of salt ion transport. Therefore, only sodium ion transport could compensate for the reduction of chloride flux to maintain the set current. Overall, these results prove the feasibility of using a double-polyamide structure to control chloride permeation during seawater electrolysis without sacrificing energy consumption.


Assuntos
Cloretos , Nylons , Nylons/química , Prótons , Eletrólise , Água do Mar/química , Hidróxidos , Sódio , Membranas Artificiais
6.
Chirality ; 36(5): e23674, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699859

RESUMO

The separation of chiral drugs continues to pose a significant challenge. However, in recent years, the emergence of membrane-based chiral separation has shown promising effectiveness due to its environmentally friendly, energy-efficient, and cost-effective characteristics. In this study, we prepared chiral composite membrane via interfacial polymerization (IP), utilizing ß-cyclodextrin (ß-CD) and piperazine (PIP) as mixed monomers in the aqueous phase. The chiral separation process was facilitated by ß-CD, serving as a chiral selective agent. The resulting membrane were characterized using SEM, FT-IR, and XPS. Subsequently, the chiral separation performance of the membrane for DL-tryptophan (Trp) was investigated. Lastly, the water flux, dye rejection, and stability of the membrane were also examined. The results showed that the optimized chiral PIP0.5ß-CD0.5 membrane achieved an enantiomeric excess percentage (ee%) of 43.0% for D-Trp, with a solute flux of 66.18 nmol·cm-2·h-1, and maintained a good chiral separation stability. Additionally, the membrane demonstrated positive performance in the selective separation of mixed dyes, allowing for steady operation over a long period of time. This study offers fresh insights into membrane-based chiral separations.

7.
J Environ Sci (China) ; 141: 235-248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408824

RESUMO

In this study, the cobalt-nickel layered double hydroxides (CoNi LDH) were synthesized with a variety of Co/Ni mass ratio, as CoxNiy LDHs. In comparison, Co1Ni3 LDH presented the best peroxymonosulfate (PMS) activation efficiency for 2,4-dichlorophenol removal. Meanwhile, CoNi LDH@Nickel foam (CoNi LDH@NF) composite membrane was constructed for enhancing the stability of catalytic performance. Herein, CoNi LDH@NF-PMS system exerted high degradation efficiency of 99.22% within 90 min for 2,4-DCP when [PMS]0 = 0.4 g/L, Co1Ni3 LDH@NF = 2 cm × 2 cm (0.2 g/L), reaction temperature = 298 K. For the surface morphology and structure of the catalyst, it was demonstrated that the CoNi LDH@NF composite membrane possessed abundant cavity structure, good specific surface area and sufficient active sites. Importantly, ·OH, SO4·- and 1O2 played the primary role in the CoNi LDH@NF-PMS system for 2,4-DCP decomposition, which revealed the PMS activation mechanism in CoNi LDH@NF-PMS system. Hence, this study eliminated the stability and adaptability of CoNi LDH@NF composite membrane, proposing a new theoretical basis of PMS heterogeneous catalysts selection.


Assuntos
Clorofenóis , Hidróxidos , Níquel , Cobalto , Peróxidos , Fenóis
8.
Angew Chem Int Ed Engl ; 63(8): e202317864, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38189768

RESUMO

Nanoparticles can suppress asymmetric precursor support collapse during pyrolysis to create carbon molecular sieve (CMS) membranes. This advance allows elimination of standard sol-gel support stabilization steps. Here we report a simple but surprisingly important thermal soaking step at 400 °C in the pyrolysis process to obtain high performance CMS membranes. The composite CMS membranes show CO2 /CH4 (50 : 50) mixed gas feed with an attractive CO2 /CH4 selectivity of 134.2 and CO2 permeance of 71 GPU at 35 °C. Furthermore, a H2 /CH4 selectivity of 663 with H2 permeance of 240 GPU was achieved for promising green energy resource-H2 separation processes.

9.
Environ Sci Technol ; 57(39): 14569-14578, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37722004

RESUMO

Low-cost polyamide thin-film composite (TFC) membranes are being explored as alternatives to cation exchange membranes for seawater electrolysis. An optimal membrane should have a low electrical resistance to minimize applied potentials needed for water electrolysis and be able to block chloride ions present in a seawater catholyte from reaching the anode. The largest energy loss associated with a TFC membrane was the Nernstian overpotential of 0.74 V (equivalent to 37 Ω cm2 at 20 mA cm-2), derived from the pH difference between the anolyte and catholyte and not the membrane ohmic overpotential. Based on analysis using electrochemical impedance spectroscopy, the pristine TFC membrane contributed only 5.00 Ω cm2 to the ohmic resistance. Removing the polyester support layer reduced the resistance by 79% to only 1.04 Ω cm2, without altering the salt ion transport between the electrolytes. Enlarging the pore size (∼5 times) in the polyamide active layer minimally impacted counterion transport across the membrane during electrolysis, but it increased the total concentration of chloride transported by 60%. Overall, this study suggests that TFC membranes with thinner but mechanically strong supporting layers and size-selective active layers should reduce energy consumption and the potential for chlorine generation for seawater electrolyzers.

10.
J Environ Manage ; 347: 119083, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757684

RESUMO

A pH-sensitive polyethersulfone (PES) membrane was prepared with the aid of newly synthesized Ag(I) coordination polymer (Ag(I)-CP) particles. Indicating obvious adsorptive property toward dyes, the Ag(I)-based metalorganic framework (MOF) was selected to be used as an additive to improve the dye selectivity of PES membranes for both cationic and anionic dyes. The performance examination and characterization of prepared membranes indicated the influence of Ag(I)-CP in PES membrane improvement. The effect of feed pH approved the membrane response to pH changes in dye removal results. By adjusting feed pH based on pHpzc of Ag(I)-CP, it is possible to remove both anionic and cationic dyes (97% of acid orange 7 (AO) & and 100% of methylene blue (MB)) from the effluent along with an enhanced permeated flux. The results offered a synergism in embedding Ag(I)-CP in PES membrane in dye removal efficiency. The additive particles can be applied with their natural size (200-300 nm) without severe influence on the uniformity of the membrane morphology if the optimum Ag(I)-CP content is considered.


Assuntos
Corantes , Polímeros , Corantes/química , Sulfonas , Cátions , Concentração de Íons de Hidrogênio
11.
Molecules ; 28(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067550

RESUMO

The double-layer PVDF-PVC (D-PP/PP) super-hydrophobic composite membrane was prepared by the coating immersion phase separation method to enhance the mechanical properties of the composite membrane. The D-PP/PP super-hydrophobic membrane was prepared using the casting solution concentration of 12 wt% PVDF-PVC composite membrane as basement and 4% casting of PVDF-PVC coating. The contact angle of the D-PP/PP membrane was 150.4 ± 0.3°, and the scanning electron microscope showed that the surface of the D-PP/PP membrane was covered by a cross-linked micro-nano microsphere. The mechanical properties showed that the maximum tensile force of the D-PP/PP composite membrane was 2.34 N, which was 19.4% higher than that of PVDF-PVC (1.96 N). Nano-graphite was added to the coating layer in the experiment. The prepared double-layer PVDF-PVC-nano-graphite/PVDF-PVC (D-PPG/PP) composite membrane reached 153.7 ± 0.5°, the contact angle increasing by 3.3°. The SEM comparison showed that the D-PPG/PP composite membrane had a more obvious micro-nano level microsphere layer. The mechanical properties are also superior. By preparing the D-PP/PP membrane, the mechanical properties of the membrane were improved, and the super-hydrophobic property of the coating was also obtained. At the same time, it was found that adding nano-graphite to the coating layer can better improve the hydrophobic, mechanical, and self-cleaning properties of the D-PP/PP composite membrane.

12.
Angew Chem Int Ed Engl ; 62(27): e202303915, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37162173

RESUMO

Carbon molecular sieve (CMS) membranes are attractive candidates to meet requirements for challenging gas separations. The added ability to maintain such intrinsic properties in an asymmetric morphology with a structure that we term a "Pseudo Wheel+Hub & Spoke" asymmetric form offers new opportunities. For CMS membrane, specifically, the structure provides both selective layer support and low flow resistance even for high feed pressures and fluxes in CO2 removal from natural gas. This capability is unavailable to even rigid glassy polymers due to the much higher modulus of CMS materials. Combining precursor asymmetric hollow fiber formation and optimized pyrolysis creates a defect free CMS proof-of-concept membrane for this application. Facile formation of the sheath-core spun precursor with a 6FDA-DAM sheath and Matrimid® core also avoids the need to seal defects before or after the carbonization of the precursors. The composite CMS membrane shows CO2 /CH4 (50 : 50) mixed gas feed with an attractive CO2 /CH4 selectivity of 64.3 and CO2 permeance of 232 GPU at 35 °C. A key additional benefit of the approach is reduction in use of the more costly high performance 6FDA-DAM in a composite sheath-core CMS membrane with the "Pseudo Wheel+Hub & Spoke" structure.

13.
Environ Sci Technol ; 56(8): 5179-5188, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35349264

RESUMO

The water channel feature of the aquaporin (AQP) is considered to be the key in improving the permselectivity of AQP-based thin-film composite (TFC) polyamide (PA) membranes, yet much less attention has been paid to the physicochemical property changes of the PA layer induced by AQP-reconstituted proteoliposomes. This study systematically investigated the roles of proteoliposome constituents (liposome/detergent/AQP) in affecting the physicochemical properties and performance of the membranes. For the first time, we demonstrated that the constituents in the proteoliposome could facilitate the formation of a PA layer with enlarged protuberances and thinner crumples, resulting in a 79% increase in effective surface area and lowering of hydraulic resistance for filtration. These PA structural changes of the AQP-based membrane were found to contribute over 70% to the water permeability increase via comparing the separation performance of the membranes prepared with liposome, detergent, and proteoliposome, respectively, and one proteoliposome-ruptured membrane. The contribution from the AQP water channel feature was about 27% of water permeability increase in the current study, attributed to only ∼20% vesicle coverage in the PA matrix, and this contribution may be easily lost as a result of vesicle rupture during the real seawater reverse osmosis process. This study reveals that the changed morphology dominates the performance improvement of the AQP-based PA membrane and well explains why the actual AQP-based PA membranes cannot acquire the theoretical water/salt selectivity of a biomimetic AQP membrane, deepening our understanding of the AQP-based membranes.


Assuntos
Aquaporinas , Nylons , Aquaporinas/química , Detergentes , Lipossomos/química , Membranas Artificiais , Nylons/química , Osmose , Proteolipídeos , Água do Mar/química , Água/química
14.
J Memb Sci ; 649: 120359, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36570331

RESUMO

Extracorporeal membrane oxygenation is a technique that provides short-term supports to the heart and lungs. It removes CO2 from the blood and provides enough oxygen, which is a huge help in the fight against COVID-19. As the key component, the artificial lung membranes have evolved in three generations including silicon, polypropylene and poly (4-methyl-1-pentene). Herein, we for the first time design and fabricate a novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) membrane with the anticoagulant coating composed of poly (sodium 4-styrenesulfonate) and cross-linked poly (vinyl alcohol). Poly (sodium 4-styrenesulfonate) provides sulfonic acid groups to inhibit the coagulant factors (FVIII and FXII), and cross-linked poly (vinyl alcohol) increase the stability of the anticoagulant coating and further improve the hydrophilicity via abundant hydroxyl groups to depress the protein adsorption. Long-term anticoagulant property was demonstrated by whole human blood for 28 days. Blood compatibility was evaluated by hemolysis rate, anticoagulation activity (APTT, TT and PT), complement activation, platelet activation and contact activation. Pure CO2, O2 and N2 permeation rates were determined to evaluate the mass transfer properties of PMP/PP TFC membranes. Gas permeation results revealed that gas permeation flux increased in the TFC membranes because of the decrease of crystallinity. Overall, the so prepared PMP/PP membrane shows good CO2/O2 selectivity and blood compatibility as novel TFC artificial lung membrane.

15.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430726

RESUMO

To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.


Assuntos
Polímeros , Prótons , Polímeros/química , Eletrólitos , Dióxido de Silício , Condutividade Elétrica
16.
J Environ Manage ; 302(Pt B): 114103, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798586

RESUMO

In this study, (3-mercaptopropyl) triethoxysilane (MPTMS)-modified ordered mesoporous silica (OMS) materials were prepared using a post-grifting method, with MPTMS as the organic functionalized reagent. The OMS materials were analyzed by FT-IR spectra, N2 sorption, and small angle X-ray scattering to evaluate their potential for scavenging Cd2+ from water. Moreover, a (3-mercaptopropyl) triethoxysilane-functionalized ordered mesoporous silica modified polyvinylidene fluoride (MPTMS-OMS/PVDF) membrane was synthesized using the solvent phase inversion method to remediate wastewater containing heavy metal ions. The MPTMS-OMS was characterized by a maximum specific surface area of 422 m2/g, high surface hydrophilicity, and high pure water flux. The MPTMS-OMS/PVDF exhibited a dynamic adsorption capacity for Cd2+ in water. At an MPTMS-OMS content of 5 wt%, the Cd2+ removal efficiency was 90%, whereas the pure PVDF showed no Cd2+ adsorption capacity. These results highlight the potential of the MPTMS-OMS/PVDF membrane to eliminate Cd2+ during the decontamination of aqueous streams containing low-concentrations of contaminants.


Assuntos
Metais Pesados , Dióxido de Silício , Adsorção , Cádmio , Polímeros de Fluorcarboneto , Polivinil , Espectroscopia de Infravermelho com Transformada de Fourier , Água
17.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500670

RESUMO

The treatment of organic pollutants in wastewater is becoming a great challenge for social development. Herein, a novel contact-piezoelectric bi-catalysis of a ZnO@ PVDF composite membrane was prepared by electrospinning technology. The obtained ZnO@PVDF composite membranes is superior to the pure PVDF membrane in decomposing methyl orange (MO) under ultrasonication at room temperature, which is mainly attributed to the synergy effect of the contact-electro-catalysis of dielectric PVDF, as well as the piezoelectric catalysis of tetrapodal ZnO and the ß-phase of PVDF. The heterostructure of the piezoelectric-ZnO@dielectric-PVDF composite is beneficial in reducing the electron/hole pair recombination. As compared to the pure PVDF membrane, the catalytic degradation efficiency of the ZnO@PVDF composite membrane was improved by 444.23% under ultrasonication. Moreover, the reusability and stability of the composite membrane are comparable to those of the traditional powdered catalyst. This work offers a promising strategy for improving the pollutant degradation by combining contact-electro-catalysis with piezoelectric catalysis.


Assuntos
Óxido de Zinco , Óxido de Zinco/química , Catálise , Águas Residuárias
18.
Nanotechnology ; 32(24)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33657545

RESUMO

Three-dimensional (3D) composite polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN) electrospun nanofibrous membranes combining both thick and thin nanofibers have been fabricated by the method of multi-jet electrospinning with sheath gas to realize high-efficiency air filtration under a low pressure drop. The thin PAN nanofibers form a dense membrane, with a strong capturing ability on the ultra-fine particles, while the thick PVDF nanofibers play a 3D supporting effect on the thin PAN nanofibers. In this case, the combination results in a fluffy membrane with higher porosity, which could achieve the airflow passing through the membrane without the air pressure drop. The effects of the composite manner of thick nanofibers and thin nanofibers are investigated, in order to optimize the air filtration performance of the 3D composite nanofibrous membrane. As a result, the maximum quality factor for air filtration could reach up to 0.398 Pa-1. The particle-fiber interaction model was used to simulate the air filtration process as well, and the simulation results were fairly consistent with the experimental results, providing a guidance method for the optimization of composite nanofibrous membrane for high-efficiency air filtration. More interestingly, a cationic poly[2-(N,N-dimethyl amino) ethyl methacrylate] (PDMAEMA) was added in the PVDF solution to obtain a composite air filtration membrane with excellent antibiosis performance, which achieved the highest inhibition rate of approximately 90%. In short, this work provides an effective way to promote antibiosis air filtration performance by using an electrospun nanofibrous membrane, and might also effectively accelerate the biological protection application of current air filtration membranes.

19.
Mikrochim Acta ; 188(7): 235, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34164747

RESUMO

A heteropore covalent organic framework (COF)-based composite membrane material was prepared and proved to have a satisfactory effect on the pretreatment of vegetable samples. The composite membrane was fabricated by in situ growth of a dual-pore COF on the surface of polydopamine (PDA)-aminated non-woven (NW) fabric. Due to the difference in the strength of the interaction between the phytochromes/COF and the pesticides/COF, the removal of phytochromes and the recovery of pesticides can be achieved by adjusting the composition of the solution. Through a simple immersion or filtration operation, NW@PDA@COF composite membrane can quickly and almost completely remove interfering phytochromes in the samples. The recovery of pesticides was determined by HPLC-MS/MS, and the recovery efficiencies were 72.3~101.7% and 67.3~106.7% for immersion and filtration modes of five different vegetable samples, respectively; the RSD is between 1.1 and 19% (n = 3). The limits of detection and quantification for the 13 pesticides investigated were 0.08 µg·L-1 and 0.23 µg·L-1, respectively. A wide linear range of 1~1000 µg·L-1 was observed with R2 values from 0.9774 to 0.9998. The membrane can be repeatedly used for at least 10 times by using a facile elution treatment. Compared to other commonly used sample pretreatment materials, heteropore COF-based composite membrane is superior in terms of sorbent amount, treatment time, operation simplicity, and material reusability.

20.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206052

RESUMO

Clean water supply is an essential element for the entire sustainable human society, and the economic and technology development. Membrane filtration for water and wastewater treatments is the premier choice due to its high energy efficiency and effectiveness, where the separation is performed by passing water molecules through purposely tuned pores of membranes selectively without phase change and additional chemicals. Ceramics and polymers are two main candidate materials for membranes, where the majority has been made of polymeric materials, due to the low cost, easy processing, and tunability in pore configurations. In contrast, ceramic membranes have much better performance, extra-long service life, mechanical robustness, and high thermal and chemical stabilities, and they have also been applied in gas, petrochemical, food-beverage, and pharmaceutical industries, where most of polymeric membranes cannot perform properly. However, one of the main drawbacks of ceramic membranes is the high manufacturing cost, which is about three to five times higher than that of common polymeric types. To fill the large gap between the competing ceramic and polymeric membranes, one apparent solution is to develop a ceramic-polymer composite type. Indeed, the properly engineered ceramic-polymer composite membranes are able to integrate the advantages of both ceramic and polymeric materials together, providing improvement in membrane performance for efficient separation, raised life span and additional functionalities. In this overview, we first thoroughly examine three types of ceramic-polymer composite membranes, (i) ceramics in polymer membranes (nanocomposite membranes), (ii) thin film nanocomposite (TFN) membranes, and (iii) ceramic-supported polymer membranes. In the past decade, great progress has been made in improving the compatibility between ceramics and polymers, while the synergy between them has been among the main pursuits, especially in the development of the high performing nanocomposite membranes for water and wastewater treatment at lowered manufacturing cost. By looking into strategies to improve the compatibility among ceramic and polymeric components, we will conclude with briefing on the perspectives and challenges for the future development of the composite membranes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa