RESUMO
Many COVID-19 patients infected by SARS-CoV-2 virus develop pneumonia (called novel coronavirus pneumonia, NCP) and rapidly progress to respiratory failure. However, rapid diagnosis and identification of high-risk patients for early intervention are challenging. Using a large computed tomography (CT) database from 3,777 patients, we developed an AI system that can diagnose NCP and differentiate it from other common pneumonia and normal controls. The AI system can assist radiologists and physicians in performing a quick diagnosis especially when the health system is overloaded. Significantly, our AI system identified important clinical markers that correlated with the NCP lesion properties. Together with the clinical data, our AI system was able to provide accurate clinical prognosis that can aid clinicians to consider appropriate early clinical management and allocate resources appropriately. We have made this AI system available globally to assist the clinicians to combat COVID-19.
Assuntos
Inteligência Artificial , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Tomografia Computadorizada por Raios X , COVID-19 , China , Estudos de Coortes , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , Conjuntos de Dados como Assunto , Humanos , Pulmão/patologia , Modelos Biológicos , Pandemias , Projetos Piloto , Pneumonia Viral/patologia , Pneumonia Viral/terapia , Prognóstico , Radiologistas , Insuficiência Respiratória/diagnósticoRESUMO
Lung cancer is the leading cause of mortality and person-years of life lost from cancer among US men and women. Early detection has been shown to be associated with reduced lung cancer mortality. Our objective was to update the American Cancer Society (ACS) 2013 lung cancer screening (LCS) guideline for adults at high risk for lung cancer. The guideline is intended to provide guidance for screening to health care providers and their patients who are at high risk for lung cancer due to a history of smoking. The ACS Guideline Development Group (GDG) utilized a systematic review of the LCS literature commissioned for the US Preventive Services Task Force 2021 LCS recommendation update; a second systematic review of lung cancer risk associated with years since quitting smoking (YSQ); literature published since 2021; two Cancer Intervention and Surveillance Modeling Network-validated lung cancer models to assess the benefits and harms of screening; an epidemiologic and modeling analysis examining the effect of YSQ and aging on lung cancer risk; and an updated analysis of benefit-to-radiation-risk ratios from LCS and follow-up examinations. The GDG also examined disease burden data from the National Cancer Institute's Surveillance, Epidemiology, and End Results program. Formulation of recommendations was based on the quality of the evidence and judgment (incorporating values and preferences) about the balance of benefits and harms. The GDG judged that the overall evidence was moderate and sufficient to support a strong recommendation for screening individuals who meet the eligibility criteria. LCS in men and women aged 50-80 years is associated with a reduction in lung cancer deaths across a range of study designs, and inferential evidence supports LCS for men and women older than 80 years who are in good health. The ACS recommends annual LCS with low-dose computed tomography for asymptomatic individuals aged 50-80 years who currently smoke or formerly smoked and have a ≥20 pack-year smoking history (strong recommendation, moderate quality of evidence). Before the decision is made to initiate LCS, individuals should engage in a shared decision-making discussion with a qualified health professional. For individuals who formerly smoked, the number of YSQ is not an eligibility criterion to begin or to stop screening. Individuals who currently smoke should receive counseling to quit and be connected to cessation resources. Individuals with comorbid conditions that substantially limit life expectancy should not be screened. These recommendations should be considered by health care providers and adults at high risk for lung cancer in discussions about LCS. If fully implemented, these recommendations have a high likelihood of significantly reducing death and suffering from lung cancer in the United States.
Assuntos
Neoplasias Pulmonares , Fumar , Feminino , Humanos , Masculino , American Cancer Society , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiologia , Programas de Rastreamento/métodos , Medição de Risco , Estados Unidos/epidemiologia , Fumar/efeitos adversos , Fumar/epidemiologia , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Revisões Sistemáticas como AssuntoRESUMO
The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.
Assuntos
Oncologia , Imagem Molecular , Animais , Humanos , Imageamento por Ressonância Magnética , Imagem Molecular/métodos , Tomografia por Emissão de PósitronsRESUMO
The perception of adipose tissue as a metabolically quiescent tissue, primarily responsible for lipid storage and energy balance (with some endocrine, thermogenic, and insulation functions), has changed. It is now accepted that adipose tissue is a crucial regulator of metabolic health, maintaining bidirectional communication with other organs including the cardiovascular system. Additionally, adipose tissue depots are functionally and morphologically heterogeneous, acting not only as sources of bioactive molecules that regulate the physiological functioning of the vasculature and myocardium but also as biosensors of the paracrine and endocrine signals arising from these tissues. In this way, adipose tissue undergoes phenotypic switching in response to vascular and/or myocardial signals (proinflammatory, profibrotic, prolipolytic), a process that novel imaging technologies are able to visualize and quantify with implications for clinical prognosis. Furthermore, a range of therapeutic modalities have emerged targeting adipose tissue metabolism and altering its secretome, potentially benefiting those at risk of cardiovascular disease.
Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/metabolismo , Tecido Adiposo/fisiologia , Miocárdio/metabolismo , Metabolismo EnergéticoRESUMO
Slow multiphase flow in porous media is intriguing because its underlying dynamics is almost deterministic, yet depends on a hierarchy of spatiotemporal processes. There has been great progress in the experimental study of such multiphase flows, but three-dimensional (3D) microscopy methods probing the pore-scale fluid dynamics with millisecond resolution have been lacking. Yet, it is precisely at these length and time scales that the crucial pore-filling events known as Haines jumps take place. Here, we report four-dimensional (4D) (3D + time) observations of multiphase flow in a consolidated porous medium as captured in situ by stroboscopic X-ray micro-tomography. With a total duration of 6.5 s and 2 kHz frame rate, our experiments provide unprecedented access to the multiscale liquid dynamics. Our tomography strategy relies on the fact that Haines jumps, although irregularly spaced in time, are almost deterministic, and therefore repeatable during imbibition-drainage cycling. We studied the time-dependent flow pattern in a porous medium consisting of sintered glass shards. Exploiting the repeatability, we could combine the radiographic projections recorded under different angles during successive cycles into a 3D movie, allowing us to reconstruct pore-scale events, such as Haines jumps, with a spatiotemporal resolution that is two orders of magnitude higher than was hitherto possible. This high resolution allows us to explore the detailed interfacial dynamics during drainage, including fluid-front displacements and velocities. Our experimental approach opens the way to the study of fast, yet deterministic mesoscopic processes also other than flow in porous media.
RESUMO
This research focuses on performing ultrasound propagation measurements and micro-X-ray computed tomography (µXRCT) imaging on prestressed granular packings prepared with biphasic mixtures of monodisperse glass and rubber particles at different compositions/fractions. Ultrasound experiments employing piezoelectric transducers, mounted in an oedometric cell (complementing earlier triaxial cell experiments), are used to excite and detect longitudinal ultrasound waves through randomly prepared mixtures of monodisperse stiff/soft particles. While the fraction of the soft particles is increasing linearly from zero, the effective macroscopic stiffness of the granular packings transits nonlinearly and nonmonotonically toward the soft limit, remarkably via an interesting stiffer regime for small rubber fractions between 0.1 â² ν â² 0.2. The contact network of dense packings, as accessed from µXRCT, plays a key role in understanding this phenomenon, considering the structure of the network, the chain length, the grain contacts, and the particle coordination. While the maximum stiffness is due to surprisingly shortened chains, the sudden drop in elastic stiffness of the mixture packings, at ν ≈ 0.4, is associated with chains of particles that include both glass and rubber particles (soft chains); for ν â² 0.3, the dominant chains include only glass particles (hard chains). At the drop, ν ≈ 0.4, the coordination number of glass and rubber networks is approximately four and three, respectively, i.e., neither of the networks are jammed, and the chains need to include particles from another species to propagate information.
RESUMO
BACKGROUND: We investigated the usefulness of invasive coronary function testing to diagnose the cause of angina in patients with no obstructive coronary arteries. METHODS: Outpatients referred for coronary computed tomography angiography in 3 hospitals in the United Kingdom were prospectively screened. After coronary computed tomography angiography, patients with unobstructed coronary arteries, and who consented, underwent invasive endotyping. The diagnostic assessments included coronary angiography, fractional flow reserve (patient excluded if ≤0.80), and, for those without obstructive coronary artery disease, coronary flow reserve (abnormal <2.0), index of microvascular resistance (abnormal ≥25), and intracoronary infusion of acetylcholine (0.182, 1.82, and 18.2 µg/mL; 2 mL/min for 2 minutes) to assess for microvascular and coronary spasm. Participants were randomly assigned to disclosure of the results of the coronary function tests to the invasive cardiologist (intervention group) or nondisclosure (control group, blinded). In the control group, a diagnosis of vasomotor angina was based on medical history, noninvasive tests, and coronary angiography. The primary outcome was the between-group difference in the reclassification rate of the initial diagnosis on the basis of coronary computed tomography angiography versus the final diagnosis after invasive endotyping. The Seattle Angina Questionnaire summary score and Treatment Satisfaction Questionnaire for Medication were secondary outcomes. RESULTS: Of 322 eligible patients, 250 (77.6%) underwent invasive endotyping; 19 (7.6%) had obstructive coronary disease, 127 (55.0%) had microvascular angina, 27 (11.7%) had vasospastic angina, 17 (7.4%) had both, and 60 (26.0%) had no abnormality. A total of 231 patients (mean age, 55.7 years; 64.5% women) were randomly assigned and followed up (median duration, 19.9 [12.6-26.9] months). The clinician diagnosed vasomotor angina in 51 (44.3%) patients in the intervention group and in 55 (47.4%) patients in the control group. After randomization, patients in the intervention group were 4-fold (odds ratio, 4.05 [95% CI, 2.32-7.24]; P<0.001) more likely to be diagnosed with a coronary vasomotor disorder; the frequency of this diagnosis increased to 76.5%. The frequency of normal coronary function (ie, no vasomotor disorder) was not different between the groups before randomization (51.3% versus 50.9%) but was reduced in the intervention group after randomization (23.5% versus 50.9%, P<0.001). At 6 and 12 months, the Seattle Angina Questionnaire summary score in the intervention versus control groups was 59.2±24.2 (2.3±16.2 change from baseline) versus 60.4±23.9 (4.6±16.4 change) and 63.7±23.5 (4.7±14.7 change) versus 66.0±19.3 (7.9±17.1 change), respectively, and not different between groups (global P=0.36). Compared with the control group, global treatment satisfaction was higher in the intervention group at 12 months (69.9±22.8 versus 61.7±26.9, P=0.013). CONCLUSIONS: For patients with angina and no obstructive coronary arteries, a diagnosis informed by invasive functional assessment had no effect on long-term angina burden, whereas treatment satisfaction improved. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03477890.
Assuntos
Doença da Artéria Coronariana , Reserva Fracionada de Fluxo Miocárdico , Angina Microvascular , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Doença da Artéria Coronariana/diagnóstico por imagem , Angiografia Coronária , Reino UnidoRESUMO
Computed tomography (CT) has been a powerful diagnostic tool since its emergence in the 1970s. Using CT data, 3D structures of human internal organs and tissues, such as blood vessels, can be reconstructed using professional software. This 3D reconstruction is crucial for surgical operations and can serve as a vivid medical teaching example. However, traditional 3D reconstruction heavily relies on manual operations, which are time-consuming, subjective, and require substantial experience. To address this problem, we develop a novel semiparametric Gaussian mixture model tailored for the 3D reconstruction of blood vessels. This model extends the classical Gaussian mixture model by enabling nonparametric variations in the component-wise parameters of interest according to voxel positions. We develop a kernel-based expectation-maximization algorithm for estimating the model parameters, accompanied by a supporting asymptotic theory. Furthermore, we propose a novel regression method for optimal bandwidth selection. Compared to the conventional cross-validation-based (CV) method, the regression method outperforms the CV method in terms of computational and statistical efficiency. In application, this methodology facilitates the fully automated reconstruction of 3D blood vessel structures with remarkable accuracy.
RESUMO
In the United States, colorectal cancer (CRC) is the fourth most common cancer diagnosed among adults and the second leading cause of death from cancer. For this guideline update, the American Cancer Society (ACS) used an existing systematic evidence review of the CRC screening literature and microsimulation modeling analyses, including a new evaluation of the age to begin screening by race and sex and additional modeling that incorporates changes in US CRC incidence. Screening with any one of multiple options is associated with a significant reduction in CRC incidence through the detection and removal of adenomatous polyps and other precancerous lesions and with a reduction in mortality through incidence reduction and early detection of CRC. Results from modeling analyses identified efficient and model-recommendable strategies that started screening at age 45 years. The ACS Guideline Development Group applied the Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria in developing and rating the recommendations. The ACS recommends that adults aged 45 years and older with an average risk of CRC undergo regular screening with either a high-sensitivity stool-based test or a structural (visual) examination, depending on patient preference and test availability. As a part of the screening process, all positive results on noncolonoscopy screening tests should be followed up with timely colonoscopy. The recommendation to begin screening at age 45 years is a qualified recommendation. The recommendation for regular screening in adults aged 50 years and older is a strong recommendation. The ACS recommends (qualified recommendations) that: 1) average-risk adults in good health with a life expectancy of more than 10 years continue CRC screening through the age of 75 years; 2) clinicians individualize CRC screening decisions for individuals aged 76 through 85 years based on patient preferences, life expectancy, health status, and prior screening history; and 3) clinicians discourage individuals older than 85 years from continuing CRC screening. The options for CRC screening are: fecal immunochemical test annually; high-sensitivity, guaiac-based fecal occult blood test annually; multitarget stool DNA test every 3 years; colonoscopy every 10 years; computed tomography colonography every 5 years; and flexible sigmoidoscopy every 5 years. CA Cancer J Clin 2018;68:250-281. © 2018 American Cancer Society.
Assuntos
Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/normas , Programas de Rastreamento/normas , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , American Cancer Society , Detecção Precoce de Câncer/métodos , Humanos , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Risco , Estados UnidosRESUMO
Rationale/Objective: Acute exacerbations (AEs) of chronic obstructive pulmonary disease (COPD) are associated with significant morbidity and mortality. Whether mucus plugs are associated with prospective exacerbations has not been examined extensively. METHODS: Mucus plugs were visually-identified on baseline chest computed tomography (CT) scans from smokers with Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades 2-4 COPD enrolled in two multicenter cohort studies: Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) and COPDGene. Associations between ordinal mucus plug score categories (0/1-2/≥3) and prospectively-ascertained AEs, defined as worsening respiratory symptoms requiring systemic steroids and/or antibiotics (moderate-to-severe) and/or ER/hospitalization (severe), were assessed using multivariable-adjusted zero-inflated Poisson regression; subjects were exacerbation-free at enrollment. RESULTS: Among 3,250 participants in COPDGene (mean±SD age 63.7±8.4 years, FEV1 50.6%±17.8% predicted, 45.1% female) and 1,716 participants in ECLIPSE (age 63.3±7.1 years, FEV1 48.3%±15.8% predicted, 36.2% female), 44.4% and 46.0% had mucus plugs, respectively. The incidence rates of AEs were 61.0 (COPDGene) and 125.7 (ECLIPSE) per 100 person-years. Relative to those without mucus plugs, the presence of 1-2 and ≥3 mucus plugs was associated with increased risk (adjusted rate ratio, aRR [95%CI]=1.07[1.05-1.09] and 1.15[1.1-1.2] in COPDGene; aRR=1.06[1.02-1.09] and 1.12[1.04-1.2] in ECLIPSE, respectively) for prospective moderate-to-severe AEs. The presence of 1-2 and ≥3 mucus plugs was also associated with increased risk for severe AEs during follow-up (aRR=1.05[1.01-1.08] and 1.09[1.02-1.18] in COPDGene; aRR=1.17[1.07-1.27] and 1.37[1.15-1.62] in ECLIPSE, respectively). CONCLUSION: CT-based mucus plugs are associated with an increased risk for future COPD AEs.
RESUMO
Rationale: The incidence of clinically undiagnosed obstructive sleep apnea (OSA) is high among the general population because of limited access to polysomnography. Computed tomography (CT) of craniofacial regions obtained for other purposes can be beneficial in predicting OSA and its severity. Objectives: To predict OSA and its severity based on paranasal CT using a three-dimensional deep learning algorithm. Methods: One internal dataset (N = 798) and two external datasets (N = 135 and N = 85) were used in this study. In the internal dataset, 92 normal participants and 159 with mild, 201 with moderate, and 346 with severe OSA were enrolled to derive the deep learning model. A multimodal deep learning model was elicited from the connection between a three-dimensional convolutional neural network-based part treating unstructured data (CT images) and a multilayer perceptron-based part treating structured data (age, sex, and body mass index) to predict OSA and its severity. Measurements and Main Results: In a four-class classification for predicting the severity of OSA, the AirwayNet-MM-H model (multimodal model with airway-highlighting preprocessing algorithm) showed an average accuracy of 87.6% (95% confidence interval [CI], 86.8-88.6%) in the internal dataset and 84.0% (95% CI, 83.0-85.1%) and 86.3% (95% CI, 85.3-87.3%) in the two external datasets, respectively. In the two-class classification for predicting significant OSA (moderate to severe OSA), the area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, and F1 score were 0.910 (95% CI, 0.899-0.922), 91.0% (95% CI, 90.1-91.9%), 89.9% (95% CI, 88.8-90.9%), 93.5% (95% CI, 92.7-94.3%), and 93.2% (95% CI, 92.5-93.9%), respectively, in the internal dataset. Furthermore, the diagnostic performance of the Airway Net-MM-H model outperformed that of the other six state-of-the-art deep learning models in terms of accuracy for both four- and two-class classifications and area under the receiver operating characteristic curve for two-class classification (P < 0.001). Conclusions: A novel deep learning model, including a multimodal deep learning model and an airway-highlighting preprocessing algorithm from CT images obtained for other purposes, can provide significantly precise outcomes for OSA diagnosis.
Assuntos
Aprendizado Profundo , Apneia Obstrutiva do Sono , Tomografia Computadorizada por Raios X , Humanos , Apneia Obstrutiva do Sono/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Adulto , Valor Preditivo dos Testes , Idoso , Índice de Gravidade de DoençaRESUMO
Rationale: Density thresholds in computed tomography (CT) lung scans quantify air trapping (AT) at the whole-lung level but are not informative for AT in specific bronchopulmonary segments. Objectives: To apply a segment-based measure of AT in asthma to investigate the clinical determinants of AT in asthma. Methods: In each of 19 bronchopulmonary segments in CT lung scans from 199 patients with asthma, AT was categorized as present if lung attenuation was less than -856 Hounsfield units at expiration in ⩾15% of the lung area. The resulting AT segment score (0-19) was related to patient outcomes. Measurements and Main Results: AT varied at the lung segment level and tended to persist at the patient and lung segment levels over 3 years. Patients with widespread AT (⩾10 segments) had more severe asthma (P < 0.05). The mean (±SD) AT segment score in patients with a body mass index ⩾30 kg/m2 was lower than in patients with a body mass index <30 kg/m2 (3.5 ± 4.6 vs. 5.5 ± 6.3; P = 0.008), and the frequency of AT in lower lobe segments in obese patients was less than in upper and middle lobe segments (35% vs. 46%; P = 0.001). The AT segment score in patients with sputum eosinophils ⩾2% was higher than in patients without sputum eosinophilia (7.0 ± 6.1 vs. 3.3 ± 4.9; P < 0.0001). Lung segments with AT more frequently had airway mucus plugging than lung segments without AT (48% vs. 18%; P ⩽ 0.0001). Conclusions: In patients with asthma, air trapping is more severe in those with airway eosinophilia and mucus plugging, whereas those who are obese have less severe trapping because their lower lobe segments are spared.
Assuntos
Asma , Eosinofilia , Obesidade , Tomografia Computadorizada por Raios X , Humanos , Asma/diagnóstico por imagem , Asma/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/fisiopatologia , Adulto , Eosinofilia/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso , Índice de Massa CorporalRESUMO
Rationale: Computed tomography (CT) enables noninvasive diagnosis of usual interstitial pneumonia (UIP), but enhanced image analyses are needed to overcome the limitations of visual assessment. Objectives: Apply multiple instance learning (MIL) to develop an explainable deep learning algorithm for prediction of UIP from CT and validate its performance in independent cohorts. Methods: We trained an MIL algorithm using a pooled dataset (n = 2,143) and tested it in three independent populations: data from a prior publication (n = 127), a single-institution clinical cohort (n = 239), and a national registry of patients with pulmonary fibrosis (n = 979). We tested UIP classification performance using receiver operating characteristic analysis, with histologic UIP as ground truth. Cox proportional hazards and linear mixed-effects models were used to examine associations between MIL predictions and survival or longitudinal FVC. Measurements and Main Results: In two cohorts with biopsy data, MIL improved accuracy for histologic UIP (area under the curve, 0.77 [n = 127] and 0.79 [n = 239]) compared with visual assessment (area under the curve, 0.65 and 0.71). In cohorts with survival data, MIL-UIP classifications were significant for mortality (n = 239, mortality to April 2021: unadjusted hazard ratio, 3.1; 95% confidence interval [CI], 1.96-4.91; P < 0.001; and n = 979, mortality to July 2022: unadjusted hazard ratio, 3.64; 95% CI, 2.66-4.97; P < 0.001). Individuals classified as UIP positive by the algorithm had a significantly greater annual decline in FVC than those classified as UIP negative (-88 ml/yr vs. -45 ml/yr; n = 979; P < 0.01), adjusting for extent of lung fibrosis. Conclusions: Computerized assessment using MIL identifies clinically significant features of UIP on CT. Such a method could improve confidence in radiologic assessment of patients with interstitial lung disease, potentially enabling earlier and more precise diagnosis.
Assuntos
Aprendizado Profundo , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Fibrose Pulmonar Idiopática/classificação , Fibrose Pulmonar Idiopática/mortalidade , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/mortalidade , Estudos de Coortes , Prognóstico , Valor Preditivo dos Testes , AlgoritmosRESUMO
Rationale: Chronic obstructive pulmonary disease (COPD) due to tobacco smoking commonly presents when extensive lung damage has occurred. Objectives: We hypothesized that structural change would be detected early in the natural history of COPD and would relate to loss of lung function with time. Methods: We recruited 431 current smokers (median age, 39 yr; 16 pack-years smoked) and recorded symptoms using the COPD Assessment Test (CAT), spirometry, and quantitative thoracic computed tomography (QCT) scans at study entry. These scan results were compared with those from 67 never-smoking control subjects. Three hundred sixty-eight participants were followed every six months with measurement of postbronchodilator spirometry for a median of 32 months. The rate of FEV1 decline, adjusted for current smoking status, age, and sex, was related to the initial QCT appearances and symptoms, measured using the CAT. Measurements and Main Results: There were no material differences in demography or subjective CT appearances between the young smokers and control subjects, but 55.7% of the former had CAT scores greater than 10, and 24.2% reported chronic bronchitis. QCT assessments of disease probability-defined functional small airway disease, ground-glass opacification, bronchovascular prominence, and ratio of small blood vessel volume to total pulmonary vessel volume were increased compared with control subjects and were all associated with a faster FEV1 decline, as was a higher CAT score. Conclusions: Radiological abnormalities on CT are already established in young smokers with normal lung function and are associated with FEV1 loss independently of the impact of symptoms. Structural abnormalities are present early in the natural history of COPD and are markers of disease progression. Clinical trial registered with www.clinicaltrials.gov (NCT03480347).
Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Espirometria , Tomografia Computadorizada por Raios X , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Progressão da Doença , Volume Expiratório Forçado/fisiologia , Pulmão/fisiopatologia , Pulmão/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Fumantes/estatística & dados numéricos , Fumar/efeitos adversos , Fumar/fisiopatologia , Estudos de Casos e ControlesRESUMO
X-ray computed tomography (CT) is one of the most commonly used three-dimensional medical imaging modalities today. It has been refined over several decades, with the most recent innovations including dual-energy and spectral photon-counting technologies. Nevertheless, it has been discovered that wave-optical contrast mechanisms-beyond the presently used X-ray attenuation-offer the potential of complementary information, particularly on otherwise unresolved tissue microstructure. One such approach is dark-field imaging, which has recently been introduced and already demonstrated significantly improved radiological benefit in small-animal models, especially for lung diseases. Until now, however, dark-field CT could not yet be translated to the human scale and has been restricted to benchtop and small-animal systems, with scan durations of several minutes or more. This is mainly because the adaption and upscaling to the mechanical complexity, speed, and size of a human CT scanner so far remained an unsolved challenge. Here, we now report the successful integration of a Talbot-Lau interferometer into a clinical CT gantry and present dark-field CT results of a human-sized anthropomorphic body phantom, reconstructed from a single rotation scan performed in 1 s. Moreover, we present our key hardware and software solutions to the previously unsolved roadblocks, which so far have kept dark-field CT from being translated from the optical bench into a rapidly rotating CT gantry, with all its associated challenges like vibrations, continuous rotation, and large field of view. This development enables clinical dark-field CT studies with human patients in the near future.
Assuntos
Espalhamento a Baixo Ângulo , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Animais , Humanos , Imageamento Tridimensional , Interferometria/métodos , Imagens de Fantasmas , Radiografia , Tomógrafos Computadorizados , Raios XRESUMO
BACKGROUND AND AIMS: Whether index testing using coronary computed tomography angiography (CTA) improves outcomes in stable chest pain is debated. The risk factor weighted clinical likelihood (RF-CL) model provides likelihood estimation of obstructive coronary artery disease. This study investigated the prognostic effect of coronary CTA vs. usual care by RF-CL estimates. METHODS: Large-scale studies randomized patients (N = 13 748) with stable chest pain to coronary CTA as part of the initial work-up in addition to or instead of usual care including functional testing. Patients were stratified according to RF-CL estimates [RF-CL: very-low (≤5%), low (>5%-15%), and moderate/high (>15%)]. The primary endpoint was myocardial infarction or death at 3 years. RESULTS: The primary endpoint occurred in 313 (2.3%) patients. Event rates were similar in patients allocated to coronary CTA vs. usual care [risk difference (RD) 0.3%, hazard ratio (HR) 0.84 (95% CI 0.67-1.05)]. Overall, 33%, 44%, and 23% patients had very-low, low, and moderate/high RF-CL. Risk was similar in patients with very low and moderate/high RF-CL allocated to coronary CTA vs. usual care [very low: RD 0.3%, HR 1.27 (0.74-2.16); moderate/high: RD 0.5%, HR 0.88 (0.63-1.23)]. Conversely, patients with low RF-CL undergoing coronary CTA had lower event rates [RD 0.7%, HR 0.67 (95% CI 0.47-0.97)]. The number needed to test using coronary CTA to prevent one event within 3 years was 143. CONCLUSIONS: Despite an overall good prognosis, low RF-CL patients have reduced risk of myocardial infarction or death when allocated to coronary CTA vs. usual care. Risk is similar in patients with very-low and moderate/high likelihood.
RESUMO
Clinical risk scores based on traditional risk factors of atherosclerosis correlate imprecisely to an individual's complex pathophysiological predisposition to atherosclerosis and provide limited accuracy for predicting major adverse cardiovascular events (MACE). Over the past two decades, computed tomography scanners and techniques for coronary computed tomography angiography (CCTA) analysis have substantially improved, enabling more precise atherosclerotic plaque quantification and characterization. The accuracy of CCTA for quantifying stenosis and atherosclerosis has been validated in numerous multicentre studies and has shown consistent incremental prognostic value for MACE over the clinical risk spectrum in different populations. Serial CCTA studies have advanced our understanding of vascular biology and atherosclerotic disease progression. The direct disease visualization of CCTA has the potential to be used synergistically with indirect markers of risk to significantly improve prevention of MACE, pending large-scale randomized evaluation.
Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Humanos , Angiografia por Tomografia Computadorizada/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico , Medição de Risco/métodos , Angiografia Coronária/métodos , Placa Aterosclerótica/diagnóstico por imagem , Fatores de Risco de Doenças Cardíacas , Prognóstico , Estenose Coronária/diagnóstico por imagemRESUMO
BACKGROUND AND AIMS: In patients with three-vessel disease and/or left main disease, selecting revascularization strategy based on coronary computed tomography angiography (CCTA) has a high level of virtual agreement with treatment decisions based on invasive coronary angiography (ICA). METHODS: In this study, coronary artery bypass grafting (CABG) procedures were planned based on CCTA without knowledge of ICA. The CABG strategy was recommended by a central core laboratory assessing the anatomy and functionality of the coronary circulation. The primary feasibility endpoint was the percentage of operations performed without access to the ICA. The primary safety endpoint was graft patency on 30-day follow-up CCTA. Secondary endpoints included topographical adequacy of grafting, major adverse cardiac and cerebrovascular (MACCE), and major bleeding events at 30 days. The study was considered positive if the lower boundary of confidence intervals (CI) for feasibility was ≥75% (NCT04142021). RESULTS: The study enrolled 114 patients with a mean (standard deviation) anatomical SYNTAX score and Society of Thoracic Surgery score of 43.6 (15.3) and 0.81 (0.63), respectively. Unblinding ICA was required in one case yielding a feasibility of 99.1% (95% CI 95.2%-100%). The concordance and agreement in revascularization planning between the ICA- and CCTA-Heart Teams was 82.9% with a moderate kappa of 0.58 (95% CI 0.50-0.66) and between the CCTA-Heart Team and actual treatment was 83.7% with a substantial kappa of 0.61 (95% CI 0.53-0.68). The 30-day follow-up CCTA in 102 patients (91.9%) showed an anastomosis patency rate of 92.6%, whilst MACCE was 7.2% and major bleeding 2.7%. CONCLUSIONS: CABG guided by CCTA is feasible and has an acceptable safety profile in a selected population of complex coronary artery disease.
Assuntos
Angiografia por Tomografia Computadorizada , Angiografia Coronária , Ponte de Artéria Coronária , Doença da Artéria Coronariana , Estudos de Viabilidade , Humanos , Ponte de Artéria Coronária/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/cirurgia , Doença da Artéria Coronariana/diagnóstico por imagem , Idoso , Angiografia por Tomografia Computadorizada/métodos , Angiografia Coronária/métodos , Estudos Prospectivos , Grau de Desobstrução Vascular/fisiologiaRESUMO
Because of the challenges posed by anatomical uncertainties and the low resolution of plain computed tomography (CT) scans, implementing adaptive radiotherapy (ART) for small hepatocellular carcinoma (sHCC) using artificial intelligence (AI) faces obstacles in tumor identification-alignment and automatic segmentation. The current study aims to improve sHCC imaging for ART using a gold nanoparticle (Au NP)-based CT contrast agent to enhance AI-driven automated image processing. The synthesized charged Au NPs demonstrated notable in vitro aggregation, low cytotoxicity, and minimal organ toxicity. Over time, an in situ sHCC mouse model was established for in vivo CT imaging at multiple time points. The enhanced CT images processed using 3D U-Net and 3D Trans U-Net AI models demonstrated high geometric and dosimetric accuracy. Therefore, charged Au NPs enable accurate and automatic sHCC segmentation in CT images using classical AI models, potentially addressing the technical challenges related to tumor identification, alignment, and automatic segmentation in CT-guided online ART.