Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Anaerobe ; 89: 102899, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39142535

RESUMO

OBJECTIVE: Flagellin protein, an integral component of flagella, provides motility to several bacterial species and also acts as a candidate antigen in diagnostics and subunit vaccines. The bulk production of flagellin with retention of all conformational epitopes using recombinant protein technology is of paramount importance in the development of pathogen-specific immuno-assays and vaccines. We describe the production of highly soluble and immuno-reactive rFliA(C) protein of Clostridium chauvoei, a causative agent of blackleg or black quarter (BQ) affecting cattle and small ruminants worldwide. The bacterium is known to possess peritrichous flagella that provide motility and also act as a virulence factor with high protective antigenicity. METHODS: Upon sequence and structural analysis, a partial fliA(C) gene from Clostridium chauvoei was cloned and the recombinant mature protein with N- and C- terminal truncation was over-expressed as a His-tagged fusion protein (∼25 kDa) in Escherichia coli. Subsequently, rFliA(C) protein was purified by single-step affinity chromatography and characterized for its immuno-reactivity in laboratory animals, Western blot, and indirect-ELISA format. RESULTS: rFliA(C) was highly soluble and was purified in high quantity and quality. rFliA(C) elicited antigen-specific conformational polyclonal antibodies in rabbit and guinea pig models, as well as anti-Clostridium chauvoei-specific antibodies being specifically detected in BQ-vaccinated and convalescent sera of bovines in Western blot and in indirect-ELISA format. Further, no cross reactivity was noted with antibodies against major bovine diseases (e.g., foot-and-mouth disease, IBR, LSDV, hemorrhagic septicaemia, brucellosis, and leptospirosis). CONCLUSION: The study indicated the production of conformational recombinant flagellin-rFliA(C)-antigen and its potential utility in development of diagnostics for detection of Clostridium chauvoei-specific antibodies in BQ-recovered and/or vaccinated animals.


Assuntos
Anticorpos Antibacterianos , Clostridium chauvoei , Flagelina , Proteínas Recombinantes , Flagelina/imunologia , Flagelina/genética , Animais , Clostridium chauvoei/imunologia , Clostridium chauvoei/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Coelhos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Cobaias , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Bovinos , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Ensaio de Imunoadsorção Enzimática , Clonagem Molecular
2.
Int J Mol Sci ; 25(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891974

RESUMO

Tetanus disease, caused by C. tetani, starts with wounds or mucous layer contact. Prevented by vaccination, the lack of booster shots throughout life requires prophylactic treatment in case of accidents. The incidence of tetanus is high in underdeveloped countries, requiring the administration of antitetanus antibodies, usually derived from immunized horses or humans. Heterologous sera represent risks such as serum sickness. Human sera can carry unknown viruses. In the search for human monoclonal antibodies (mAbs) against TeNT (Tetanus Neurotoxin), we previously identified a panel of mAbs derived from B-cell sorting, selecting two nonrelated ones that binded to the C-terminal domain of TeNT (HCR/T), inhibiting its interaction with the cellular receptor ganglioside GT1b. Here, we present the results of cellular assays and molecular docking tools. TeNT internalization in neurons is prevented by more than 50% in neonatal rat spinal cord cells, determined by quantitative analysis of immunofluorescence punctate staining of Alexa Fluor 647 conjugated to TeNT. We also confirmed the mediator role of the Synaptic Vesicle Glycoprotein II (SV2) in TeNT endocytosis. The molecular docking assays to predict potential TeNT epitopes showed the binding of both antibodies to the HCR/T domain. A higher incidence was found between N1153 and W1297 when evaluating candidate residues for conformational epitope.


Assuntos
Anticorpos Monoclonais , Endocitose , Simulação de Acoplamento Molecular , Neurônios , Toxina Tetânica , Animais , Ratos , Neurônios/metabolismo , Humanos , Anticorpos Monoclonais/imunologia , Toxina Tetânica/imunologia , Toxina Tetânica/metabolismo , Tétano/prevenção & controle , Tétano/imunologia , Epitopos/imunologia , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Células Cultivadas , Simulação por Computador , Metaloendopeptidases
3.
J Allergy Clin Immunol ; 149(5): 1786-1794.e12, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740603

RESUMO

BACKGROUND: Birch pollen is an important elicitor of respiratory allergy. The major allergen, Bet v 1, binds IgE exclusively via conformational epitopes. OBJECTIVE: We identified Bet v 1-specific epitope repertoires of IgE and IgG from birch pollen-allergic and nonallergic subjects. METHODS: Chimeric proteins were created by grafting individual epitope-sized, contiguous surface patches of Bet v 1 onto a nonallergenic structural homolog and expressed in Escherichia coli. Binding of IgE, IgG1, and IgG4 from sera of 30 birch pollen-allergic and 11 nonallergic subjects to Bet v 1, 13 chimeric proteins, and 4 bacterial Bet v 1 homologs were measured by ELISA. The proportion of epitope-specific in-total Bet v 1-specific IgE and the cross-reactivity of Bet v 1-specific IgE with bacterial homologs were determined by competitive ELISA. RESULTS: Thirteen soluble, correctly folded chimeric proteins were produced. IgE from 27 of 30 birch pollen-allergic patients bound to 1 to 12 chimeric proteins (median, 4.0), with patient-specific patterns evident. Three chimeras binding IgE from the majority of sera were identified, the grafted patches of which overlapped with previously published epitopes. Patterns of IgG1 and IgG4 binding to the chimeric proteins did not correspond to the binding patterns of IgE. Sera of 19 of 30 birch pollen-allergic patients contained low amounts of IgE to bacterial homologs. Bacterial proteins were able to partially inhibit IgE binding to Bet v 1. CONCLUSION: Epitopes recognized by Bet v 1-specific antibodies from birch pollen-allergic patients are specific to each patient and differ between IgE, IgG1, and IgG4.


Assuntos
Antígenos de Plantas , Hipersensibilidade , Alérgenos , Reações Cruzadas , Epitopos , Humanos , Imunoglobulina E , Imunoglobulina G , Proteínas de Plantas , Pólen , Proteínas Recombinantes de Fusão
4.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511444

RESUMO

The major cat allergen Fel d 1 is a tetrameric glycoprotein from the secretoglobin superfamily. Fel d 1's biological role is unknown, but it has been previously shown that it participates in semiochemical binding/transportation. Fel d 1 has linear epitopes, but its conformational epitope sites remain unclear. In this study, we predicted the B-cell epitopes of Fel d 1 and explored semiochemical dynamics with epitopes using bioinformatics tools. The epitope residues were tabulated for chains 1 and 2 and the heterodimers of Fel d 1. The residual interactions of Fel d 1 with IgE were evaluated, and the prominent epitope sites were predicted. The molecular dynamics simulation (MDS) of Fel d 1 was performed with seven reported semiochemicals to evaluate the Fel d 1-ligand complex stability and decipher the semiochemical effect on Fel d 1 conformational epitopes. Fel d 1-lauric acid, Fel d 1-oleic acid, and Fel d 1-progesterone showed more stability and less fluctuation than other compounds. Fel d 1-linoleic acid and Fel d 1-pregnenolone displayed the most unstable complex with fluctuations. The effects of conformational changes on epitopes are discussed. All the ligand complexes drive substantial fluctuation towards the functionally exposed IgE-binding epitopes. Fel d 1 could be examined for its ligand-binding and conformational changes caused by mutations of B-cell epitopes.


Assuntos
Epitopos de Linfócito B , Feromônios , Sequência de Aminoácidos , Ligantes , Imunoglobulina E , Alérgenos/genética
5.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674705

RESUMO

Exposure to the Mus m 1 aeroallergen is a significant risk factor for laboratory animal allergy. This allergen, primarily expressed in mouse urine where it is characterized by a marked and dynamic polymorphism, is also present in epithelium and dander. Considering the relevance of sequence/structure assessment in protein antigenic reactivity, we compared the sequence of the variant Mus m 1.0102 to other members of the Mus m 1 allergen, and used Discotope 2.0 to predict conformational epitopes based on its 3D-structure. Conventional diagnosis of mouse allergy is based on serum IgE testing, using an epithelial extract as the antigen source. Given the heterogeneous and variable composition of extracts, we developed an indirect ELISA assay based on the recombinant component Mus m 1.0102. The assay performed with adequate precision and reasonable diagnostic accuracy (AUC = 0.87) compared to a routine clinical diagnostic test that exploits the native allergen. Recombinant Mus m 1.0102 turned out to be a valuable tool to study the fine epitope mapping of specific IgE reactivity to the major allergen responsible for mouse allergy. We believe that advancing in its functional characterization will lead to the standardization of murine lipocalins and to the development of allergen-specific immunotherapy.


Assuntos
Alérgenos , Hipersensibilidade Alimentar , Animais , Camundongos , Lipocalinas/genética , Ensaio de Imunoadsorção Enzimática , Imunoglobulina E , Proteínas Recombinantes/genética
6.
Biochem Biophys Res Commun ; 606: 55-60, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35339752

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of LDLR, has emerged as an important target for the treatment of hypercholesterolemic cardiovascular disease, and monoclonal antibodies alirocumab and evolocumab against it have been widely used in clinical practice. The vaccine research of PCSK9 is considered a promising option for the long-term treatment and prevention of cardiovascular disease, but progress has been slow. The selection of safe and effective epitopes is one of the key steps in vaccine development. In this study, we designed a phage display library of cascaded peptides for affinity screening with two antibody drugs, and found that the two peptides PC3 and PS6, which are adjacent to each other in protein spatial structure, both have superior binding activity to the screening antibodies. We performed in vitro recombination design on the dominant sequences, and obtained recombinant sequences that can respond to the dominant conformational epitope of PCSK9, which provides a meaningful reference for epitope selection in subsequent PCSK9 vaccine development.


Assuntos
Doenças Cardiovasculares , Epitopos , Pró-Proteína Convertase 9 , LDL-Colesterol , Epitopos/química , Humanos , Pró-Proteína Convertase 9/química
7.
Allergy ; 77(1): 230-242, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453317

RESUMO

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Epitopos , Humanos , Glicoproteína da Espícula de Coronavírus/genética
8.
Virol J ; 18(1): 86, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33902633

RESUMO

BACKGROUND: Newcastle disease is a devastating disease in poultry caused by virulent Newcastle disease virus (NDV), a paramyxovirus endemic in many regions of the world despite intensive vaccination. Phylogenetic analyses reveal ongoing evolution of the predominant circulating genotype 2.VII, and the relevance of potential antigenic drift is under discussion. To investigate variation within neutralization-sensitive epitopes within the protein responsible for receptor binding, i.e. the Hemagglutinin-Neuraminidase (HN) spike protein, we were interested in establishing genotype-specific monoclonal antibodies (MAbs). METHODS: An HN-enriched fraction of a gradient-purified NDV genotype 2.VII was prepared and successfully employed to induce antibodies in BalbC mice that recognize conformationally intact sites reactive by haemagglutination inhibition (HI). For subsequent screening of mouse hybridoma cultures, an NDV-ELISA was established that utilizes Concanavalin A (ConA-ELISA) coupled glycoproteins proven to present conformation-dependent epitopes. RESULTS: Six out of nine selected MAbs were able to block receptor binding as demonstrated by HI activity. One MAb recognized an epitope only present in the homologue virus, while four other MAbs showed weak reactivity to selected other genotypes. On the other hand, one broadly cross-reacting MAb reacted with all genotypes tested and resembled the reactivity profile of genotype-specific polyclonal antibody preparations that point to minor antigenic differences between tested NDV genotpyes. CONCLUSIONS: These results point to the concurrent presence of variable and conserved epitopes within the HN molecule of NDV. The described protocol should help to generate MAbs against a variety of NDV strains and to enable in depth analysis of the antigenic profiles of different genotypes.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Proteína HN/imunologia , Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Deriva e Deslocamento Antigênicos , Galinhas , Egito , Genótipo , Proteína HN/genética , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Filogenia , Proteínas Virais
9.
Med Microbiol Immunol ; 206(4): 301-309, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28434129

RESUMO

Hepatitis E is an emerging zoonotic infection of increasing public health threat for the UK, especially for immunosuppressed individuals. A human recombinant vaccine has been licensed only in China and is not clear whether it protects against hepatitis E virus (HEV) genotype 3, the most prevalent in Europe. The aim of this study was to use phage display technology as a tool to identify peptides that mimic epitopes of HEV capsid (mimotopes). We identified putative linear and conformational mimotopes using sera from Scottish blood donors that have the immunological imprint of past HEV infection. Four mimotopes did not have homology with the primary sequence of HEV ORF2 capsid but competed effectively with a commercial HEV antigen for binding to anti-HEV reference serum. When the reactivity profile of each mimotope was compared with Wantai HEV-IgG ELISA, the most sensitive HEV immunoassay, mimotopes showed 95.2-100% sensitivity while the specificity ranged from 81.5 to 95.8%. PepSurf algorithm was used to map affinity-selected peptides onto the ORF2 crystal structure of HEV genotype 3, which predicted that these four mimototopes are clustered in the P domain of ORF2 capsid, near conformational epitopes of anti-HEV neutralising monoclonal antibodies. These HEV mimotopes may have potential applications in the design of structural vaccines and the development of new diagnostic tests.


Assuntos
Capsídeo/imunologia , Epitopos/imunologia , Vírus da Hepatite E/imunologia , Biblioteca de Peptídeos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Testes Diagnósticos de Rotina/métodos , Descoberta de Drogas , Humanos , Reino Unido , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação
10.
Chembiochem ; 17(22): 2129-2132, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27595488

RESUMO

We have developed peptides that are able to distinguish between subgroups of polyclonal antibodies. These ß-hairpin peptides act as conformational epitopes with specific shape and flexibility; they have been analyzed by NMR and CD spectroscopy, and have been shown to identify known disease markers. As a standalone mini ß-sheet, a hairpin is stabilized by alternating pairs of hydrogen-bonded and non-bonded amino acids on its two opposing peptide strands. A single d mutation disrupts this secondary structure, the correlated double-d mutation of two opposing amino acids compensates for this destabilizing effect. The designed kink was introduced into both hydrogen-bonded and -non-bonded positions of an all-l hairpin that is a known conformational epitope in molecular recognition. Our peptides enabled the discrimination of different human rheumatoid arthritis autoantibodies in an ELISA assay.


Assuntos
Aminoácidos/metabolismo , Anticorpos/imunologia , Antígenos/imunologia , Epitopos/imunologia , Peptídeos/química , Sequência de Aminoácidos , Aminoácidos/química , Antígenos/química , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Autoanticorpos/química , Autoanticorpos/imunologia , Dicroísmo Circular , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos/imunologia , Estrutura Secundária de Proteína
11.
Parasitol Res ; 115(4): 1649-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26782811

RESUMO

The serodiagnosis of canine visceral leishmaniasis (CVL) presents problems related to its sensitivity and/or specificity. In the present study, a new Leishmania-specific hypothetical protein, LiHyD, was produced as a recombinant protein (rLiHyD) and evaluated in ELISA experiments for the CVL serodiagnosis. LiHyD was characterized as antigenic in a recent immunoproteomic search performed with Leishmania infantum proteins and the sera of dogs developing visceral leishmaniasis (VL). Aiming to compare the efficacy between whole proteins and synthetic peptides, two linear and one conformational B cell epitopes of LiHyD were synthesized and also evaluated as diagnostic markers. The four antigens were recognized by the sera of dogs suffering VL. On the contrary, low reactivity was observed when they were assayed with sera from non-infected healthy dogs living in endemic or non-endemic areas of leishmaniasis. In addition, no reactivity was found against them using sera from dogs experimentally infected by Trypanosoma cruzi, Babesia canis, or Ehrlichia canis, or sera from animals vaccinated with the Leish-Tec® vaccine, a prophylactic preparation commercially available for CVL prevention in Brazil. As comparative diagnostic tools, a recombinant version of the amastigote-specific A2 protein and a soluble crude Leishmania extract were studied. Both antigens presented lower sensitivity and/or specificity values than the LiHyD-based products. The rLiHyD presented better results for the CVL serodiagnosis than its linear epitopes, although the peptide recreating the conformational epitope resulted also appropriate as a diagnostic marker of CVL. To the best of our knowledge, this is the first study showing the use of a conformational epitope derived from a Leishmania protein for serodiagnosis of CVL.


Assuntos
Doenças do Cão/parasitologia , Epitopos de Linfócito B , Leishmaniose Visceral/veterinária , Testes Sorológicos/veterinária , Animais , Antígenos de Protozoários/imunologia , Doenças do Cão/diagnóstico , Cães , Leishmania infantum/imunologia , Leishmaniose Visceral/diagnóstico , Leishmaniose Visceral/parasitologia , Testes Sorológicos/métodos
12.
Angew Chem Int Ed Engl ; 54(17): 5157-60, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25727886

RESUMO

Inspired by the knowledge that most antibodies recognize a conformational epitope because of the epitope's specific three-dimensional shape rather than its linear structure, we combined scaffold-based peptide design and surface molecular imprinting to fabricate a novel nanocarrier harboring stable binding sites that captures a membrane protein. In this study, a disulfide-linked α-helix-containing peptide, apamin, was used to mimic the extracellular, structured N-terminal part of the protein p32 and then serve as an imprinting template for generating a sub-40 nm-sized polymeric nanoparticle that potently binds to the target protein, recognizes p32-positive tumor cells, and successfully mediates targeted photodynamic therapy in vivo. This could provide a promising alternative for currently used peptide-modified nanocarriers and may have a broad impact on the development of polymeric nanoparticle-based therapies for a wide range of human diseases.


Assuntos
Epitopos/química , Impressão Molecular , Nanopartículas/química , Oligopeptídeos/química , Sequência de Aminoácidos , Animais , Apamina/química , Apamina/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Epitopos/administração & dosagem , Humanos , Camundongos Nus , Dados de Sequência Molecular , Nanopartículas/administração & dosagem , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Tamanho da Partícula , Fotoquimioterapia , Estrutura Secundária de Proteína , Transplante Heterólogo
13.
Biomolecules ; 14(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39199371

RESUMO

Accurate computational prediction of B-cell epitopes can greatly enhance biomedical research and rapidly advance efforts to develop therapeutics, monoclonal antibodies, vaccines, and immunodiagnostic reagents. Previous research efforts have primarily focused on the development of computational methods to predict linear epitopes rather than conformational epitopes; however, the latter is much more biologically predominant. Several conformational B-cell epitope prediction methods have recently been published, but their predictive performances are weak. Here, we present a review of the latest computational methods and assess their performances on a diverse test set of 29 non-redundant unbound antigen structures. Our results demonstrate that ISPIPab performs better than most methods and compares favorably with other recent antigen-specific methods. Finally, we suggest new strategies and opportunities to improve computational predictions of conformational B-cell epitopes.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Biologia Computacional/métodos , Humanos , Conformação Proteica
14.
Vaccines (Basel) ; 12(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38793702

RESUMO

COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted public health and the economy worldwide. Most of the currently licensed COVID-19 vaccines act by inhibiting the receptor-binding function of the SARS-CoV-2 spike protein. The constant emergence of SARS-CoV-2 variants resulting from mutations in the receptor-binding domain (RBD) leads to vaccine immune evasion and underscores the importance of broadly acting COVID-19 vaccines. Inactivated whole virus vaccines can elicit broader immune responses to multiple epitopes of several antigens and help overcome such immune evasions. We prepared a psoralen-inactivated SARS-CoV-2 vaccine (SARS-CoV-2 PsIV) and evaluated its immunogenicity and efficacy in nonhuman primates (NHPs) when administered with the Advax-CpG adjuvant. We also evaluated the SARS-CoV-2 PsIV as a booster shot in animals vaccinated with a DNA vaccine that can express the full-length spike protein. The Advax-CpG-adjuvanted SARS-CoV-2 PsIV elicited a dose-dependent neutralizing antibody response in the NHPs, as measured using a serum microneutralization assay against the SARS-CoV-2 Washington strain and the Delta variant. The animals vaccinated with the DNA vaccine followed by a boosting dose of the SARS-CoV-2 PsIV exhibited the highest neutralizing antibody responses and were able to quickly clear infection after an intranasal challenge with the SARS-CoV-2 Delta variant. Overall, the data show that the Advax-CpG-adjuvanted SARS-CoV-2 PsIV, either by itself or as a booster shot following nucleic acid (NA) vaccines, has the potential to protect against emerging variants.

15.
Microorganisms ; 12(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39338486

RESUMO

To better understand the molecular genetics of the Shiga toxin type 2 subunit A gene (stx2A gene), we collected many subtypes of stx2A genes and performed detailed molecular evolutionary analyses of the gene. To achieve the aim of the study, we used several bioinformatics technologies, including time-scaled phylogenetic analyses, phylogenetic distance analyses, phylodynamics analyses, selective pressure analyses, and conformational epitope analyses. A time-scaled phylogeny showed that the common ancestor of the stx2A gene dated back to around 18,600 years ago. After that, the gene diverged into two major lineages (Lineage 1 and 2). Lineage 1 comprised the stx2a-2d subtypes, while Lineage 2 comprised the stx2e, 2g, 2h, and 2o subtypes. The evolutionary rates of the genes were relatively fast. Phylogenetic distances showed that the Lineage 2 strains had a wider genetic divergence than Lineage 1. Phylodynamics also indicated that the population size of the stx2A gene increased after the 1930s and spread globally. Moreover, negative selection sites were identified in the Stx2A proteins, and these sites were diffusely distributed throughout the protein. Two negative selection sites were located adjacent to an active site of the common Stx2A protein. Many conformational epitopes were also estimated in these proteins, while no conformational epitope was found adjacent to the active site. The results suggest that the stx2A gene has uniquely evolved and diverged over an extremely long time, resulting in many subtypes. The dominance of the strains belonging to Lineage 1 suggests that differences in virulence may be involved in the prosperity of the offspring. Furthermore, some subtypes of Stx2A proteins may be able to induce effective neutralizing antibodies against the proteins in humans.

16.
Biomolecules ; 13(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37189355

RESUMO

Profilins are ubiquitous allergens with conserved structural elements. Exposure to profilins from different sources leads to IgE-cross-reactivity and the pollen-latex-food syndrome. Monoclonal antibodies (mAbs) that cross-react with plant profilins and block IgE-profilin interactions are relevant for diagnosis, epitope mapping, and specific immunotherapy. We generated IgGs mAbs, 1B4, and 2D10, against latex profilin (anti-rHev b 8) that inhibit the interaction of IgE and IgG4 antibodies from sera of latex- and maize-allergic patients by 90% and 40%, respectively. In this study, we evaluated 1B4 and 2D10 recognition towards different plant profilins, and mAbs recognition of rZea m 12 mutants by ELISAs. Interestingly, 2D10 highly recognized rArt v 4.0101 and rAmb a 8.0101, and to a lesser extent rBet v 2.0101, and rFra e 2.2, while 1B4 showed recognition for rPhl p 12.0101 and rAmb a 8.0101. We demonstrated that residue D130 at the α-helix 3 in profilins, which is part of the Hev b 8 IgE epitope, is essential for the 2D10 recognition. The structural analysis suggests that the profilins containing E130 (rPhl p 12.0101, rFra e 2.2, and rZea m 12.0105) show less binding with 2D10. The distribution of negative charges on the profilins' surfaces at the α-helices 1 and 3 is relevant for the 2D10 recognition, and that may be relevant to explain profilins' IgE cross-reactivity.


Assuntos
Hipersensibilidade , Profilinas , Humanos , Profilinas/química , Profilinas/metabolismo , Látex , Sequência de Aminoácidos , Alérgenos , Imunoglobulina E , Proteínas de Plantas/metabolismo
17.
Vaccines (Basel) ; 9(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063178

RESUMO

Antibodies against the Human Papillomavirus (HPV) L1 protein are associated with past infections and related to the evolution of the disease, whereas antibodies against L1 Virus-Like Particles (VLPs) are used to follow the neutralizing antibody response in vaccinated women. In this study, serum antibodies against conformational (VLPs) and linear epitopes of HPV16/18 L1 protein were assessed to distinguish HPV-vaccinated women from those naturally infected or those with uterine cervical lesions. The VLPs-16/18 were generated in baculovirus, and L1 proteins were obtained from denatured VLPs. Serum antibodies against VLPs and L1 proteins were evaluated by ELISA. The ELISA-VLPs and ELISA-L1 16/18 assays were validated with a vaccinated women group by ROC analysis and the regression analysis to distinguish the different populations of female patients. The anti-VLPs-16/18 and anti-L1-16/18 antibodies effectively detect vaccinated women (AUC = 1.0/0.79, and 0.94/0.84, respectively). The regression analysis showed that anti-VLPs-16/18 and anti-L1-16/18 antibodies were associated with the vaccinated group (OR = 2.11 × 108/16.50 and 536.0/49.2, respectively). However, only the anti-L1-16 antibodies were associated with the high-grade lesions and cervical cancer (CIN3/CC) group (OR = 12.18). In conclusion, our results suggest that anti-VLPs-16/18 antibodies are effective and type-specific to detect HPV-vaccinated women, but anti-L1-16 antibodies better differentiate the CIN3/CC group. However, a larger population study is needed to validate these results.

18.
Front Genet ; 12: 773726, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745235

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic has been attributed to SARS-CoV-2 (SARS2) and, consequently, SARS2 has evolved into multiple SARS2 variants driving subsequent waves of infections. In particular, variants of concern (VOC) were identified to have both increased transmissibility and virulence ascribable to mutational changes occurring within the spike protein resulting to modifications in the protein structural orientation which in-turn may affect viral pathogenesis. However, this was never fully elucidated. Here, we generated spike models of endemic HCoVs (HCoV 229E, HCoV OC43, HCoV NL63, HCoV HKU1, SARS CoV, MERS CoV), original SARS2, and VOC (alpha, beta, gamma, delta). Model quality check, structural superimposition, and structural comparison based on RMSD values, TM scores, and contact mapping were all performed. We found that: 1) structural comparison between the original SARS2 and VOC whole spike protein model have minor structural differences (TM > 0.98); 2) the whole VOC spike models putatively have higher structural similarity (TM > 0.70) to spike models from endemic HCoVs coming from the same phylogenetic cluster; 3) original SARS2 S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM = 1.0) and S1-NTD (TM > 0.96); and 4) endemic HCoV S1-CTD and S1-NTD models are structurally comparable to VOC S1-CTD (TM > 0.70) and S1-NTD (TM > 0.70) models belonging to the same phylogenetic cluster. Overall, we propose that structural similarities (possibly ascribable to similar conformational epitopes) may help determine immune cross-reactivity, whereas, structural differences (possibly associated with varying conformational epitopes) may lead to viral infection (either reinfection or breakthrough infection).

19.
Pathogens ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069575

RESUMO

The development of a safe and effective vaccine to protect against COVID-19 is a global priority due to the current high SARS-CoV-2 infection rate. Currently, there are over 160 SARS-CoV-2 vaccine candidates at the clinical or pre-clinical stages of development. Of these, there are only three whole-virus vaccine candidates produced using ß-propiolactone or formalin inactivation. Here, we prepared a whole-virus SARS-CoV-2 vaccine (SARS-CoV-2 PsIV) using a novel psoralen inactivation method and evaluated its immunogenicity in mice using two different adjuvants, alum and Advax-2. We compared the immunogenicity of SARS-CoV-2 PsIV against SARS-CoV-2 DNA vaccines expressing either full-length or truncated spike proteins. We also compared the psoralen-inactivated vaccine against a DNA prime, psoralen-inactivated vaccine boost regimen. After two doses, the psoralen-inactivated vaccine, when administered with alum or Advax-2 adjuvants, generated a dose-dependent neutralizing antibody responses in mice. Overall, the pattern of cytokine ELISPOT responses to antigen-stimulation observed in this study indicates that SARS-CoV-2 PsIV with the alum adjuvant promotes a Th2-type response, while SARS-CoV-2 PsIV with the Advax-2 adjuvant promotes a Th1-type response.

20.
Vaccine ; 38(17): 3313-3320, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32184032

RESUMO

Dengue fever, caused by dengue viruses (DENV 1-4) is a leading cause of illness and death in the tropics and subtropics. Therefore, an effective vaccine is urgently needed. Currently, the only available licensed dengue vaccine is a chimeric live attenuated vaccine that shows varying efficacy depending on serotype, age and baseline DENV serostatus. Accordingly, a dengue vaccine that is effective in seronegative adults, children of all ages and in immunocompromised individuals is still needed. We are currently researching the use of psoralen to develop an inactivated tetravalent dengue vaccine. Unlike traditional formalin inactivation, psoralen inactivates pathogens at the nucleic acid level, potentially preserving envelope protein epitopes important for protective anti-dengue immune responses. We prepared highly purified monovalent vaccine lots of formalin- and psoralen-inactivated DENV 1-4, using Capto DeVirS and Capto Core 700 resin based column chromatography. Tetravalent psoralen-inactivated vaccines (PsIV) and formalin-inactivated vaccines (FIV) were prepared by combining the four monovalent vaccines. Mice were immunized with either a low or high dose of PsIV or FIV to evaluate the immunogenicity of monovalent as well as tetravalent formulations of each inactivation method. In general, the monovalent and tetravalent PsIVs elicited equivalent or higher titers of neutralizing antibodies to DENV than the FIV dengue vaccines and this response was dose dependent. The immunogenicity of tetravalent dengue PsIVs and FIVs were also evaluated in nonhuman primates (NHPs). Consistent with what was observed in mice, significantly higher neutralizing antibody titers for each dengue serotype were observed in the NHPs vaccinated with the tetravalent dengue PsIV compared to those vaccinated with the tetravalent dengue FIV, indicative of the importance of envelope protein epitope preservation during psoralen inactivation of DENV.


Assuntos
Vacinas contra Dengue/imunologia , Dengue , Ficusina , Formaldeído , Imunogenicidade da Vacina , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Dengue/prevenção & controle , Camundongos , Primatas , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa