Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
FASEB J ; 37(4): e22801, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36880430

RESUMO

Charged multivesicular body protein 4b (CHMP4B) is a core sub-unit of the endosomal sorting complex required for transport III (ESCRT-III) machinery that serves myriad remodeling and scission processes of biological membranes. Mutation of the human CHMP4B gene underlies rare forms of early-onset lens opacities or cataracts, and CHMP4B is required for lens growth and differentiation in mice. Here, we determine the sub-cellular distribution of CHMP4B in the lens and uncover a novel association with gap junction alpha-3 protein (GJA3) or connexin 46 (Cx46) and GJA8 or Cx50. Immunofluorescence confocal microscopy revealed that CHMP4B localized to cell membranes of elongated fiber cells in the outer cortex of the lens-where large gap junction plaques begin to form-particularly, on the broad faces of these flattened hexagon-like cells in cross-section. Dual immunofluorescence imaging showed that CHMP4B co-localized with gap junction plaques containing Cx46 and/or Cx50. When combined with the in situ proximity ligation assay, immunofluorescence confocal imaging indicated that CHMP4B lay in close physical proximity to Cx46 and Cx50. In Cx46-knockout (Cx46-KO) lenses, CHMP4B-membrane distribution was similar to that of wild-type, whereas, in Cx50-KO lenses, CHMP4B localization to fiber cell membranes was lost. Immunoprecipitation and immunoblotting analyses revealed that CHMP4B formed complexes with Cx46 and Cx50 in vitro. Collectively, our data suggest that CHMP4B forms plasma membrane complexes, either directly and/or indirectly, with gap junction proteins Cx46 and Cx50 that are often associated with "ball-and-socket" double-membrane junctions during lens fiber cell differentiation.


Assuntos
Catarata , Corpos Multivesiculares , Animais , Humanos , Camundongos , Diferenciação Celular , Membrana Celular , Conexinas/genética , Junções Comunicantes , Proteínas de Transporte Vesicular/metabolismo
2.
Proteins ; 90(11): 1987-2000, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35726360

RESUMO

The Ser10 to Arg mutation in mouse γB-crystallin (MGB) has been associated with protein aggregation, dense nuclear opacity, and the degeneration of fiber cells in the lens core. Overexpression of the gap junction protein, connexin 46 (Cx46), was found to suppress the nuclear opacity and restore normal cell-cell contact. However, the molecular basis for the protein aggregation and related downstream effects were not evident from these studies. Here, we provide a comparison of the structures and solution properties of wild type MGB and the S10R mutant in vitro and show that, even though the mutation does not directly involve cysteine residues, some cysteines in the mutant protein are activated, leading to the enhanced formation of intermolecular disulfide-crosslinked protein aggregates relative to the wild-type. This occurs even as the protein structure is essentially unaltered. Thus, the primary event is enhanced protein aggregation due to the disulfide crosslinking of the mutant protein. We suggest that these aggregates eventually get deposited on fiber cell membranes. Since the gap junction protein, Cx46 is involved in the transport of reduced glutathione, we posit that these deposits interfere in Cx46-mediated glutathione transport and facilitate the oxidative stress-mediated downstream changes. Overexpression of Cx46 suppresses such oxidative aggregation. These studies provide a plausible explanation for the protein aggregation and other changes that accompany this mutation. If indeed cysteine oxidation is the primary event for protein aggregation also in vivo, then the S10R mutant mouse, which is currently available, could serve as a viable animal model for human age-onset cataract.


Assuntos
Catarata , Cristalino , gama-Cristalinas/genética , Animais , Catarata/genética , Catarata/metabolismo , Conexinas/genética , Conexinas/metabolismo , Cisteína/metabolismo , Dissulfetos/química , Glutationa/metabolismo , Humanos , Cristalino/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Oxirredução , Agregados Proteicos
3.
J Physiol ; 599(13): 3313-3335, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33876426

RESUMO

KEY POINTS: Gap junctions formed by different connexins are expressed throughout the body and harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies by cryo-electron microscopy have produced high-resolution models of the related but functionally distinct lens connexins (Cx50 and Cx46) captured in a stable open state, opening the door for structure-function comparison. Here, we conducted comparative molecular dynamics simulation and electrophysiology studies to dissect the isoform-specific differences in Cx46 and Cx50 intercellular channel function. We show that key determinants Cx46 and Cx50 gap junction channel open stability and unitary conductance are shaped by structural and dynamic features of their N-terminal domains, in particular the residue at the 9th position and differences in hydrophobic anchoring sites. The results of this study establish the open state Cx46/50 structural models as archetypes for structure-function studies targeted at elucidating the mechanism of gap junction channels and the molecular basis of disease-causing variants. ABSTRACT: Connexins form intercellular communication channels, known as gap junctions (GJs), that facilitate diverse physiological roles, from long-range electrical and chemical coupling to coordinating development and nutrient exchange. GJs formed by different connexin isoforms harbour unique channel properties that have not been fully defined mechanistically. Recent structural studies on Cx46 and Cx50 defined a novel and stable open state and implicated the amino-terminal (NT) domain as a major contributor for isoform-specific functional differences between these closely related lens connexins. To better understand these differences, we constructed models corresponding to wildtype Cx50 and Cx46 GJs, NT domain swapped chimeras, and point variants at the 9th residue for comparative molecular dynamics (MD) simulation and electrophysiology studies. All constructs formed functional GJ channels, except the chimeric Cx46-50NT variant, which correlated with an introduced steric clash and increased dynamical behaviour (instability) of the NT domain observed by MD simulation. Single channel conductance correlated well with free-energy landscapes predicted by MD, but resulted in a surprisingly greater degree of effect. Additionally, we observed significant effects on transjunctional voltage-dependent gating (Vj gating) and/or open state dwell times induced by the designed NT domain variants. Together, these studies indicate intra- and inter-subunit interactions involving both hydrophobic and charged residues within the NT domains of Cx46 and Cx50 play important roles in defining GJ open state stability and single channel conductance, and establish the open state Cx46/50 structural models as archetypes for structure-function studies targeted at elucidating GJ channel mechanisms and the molecular basis of cataract-linked connexin variants.


Assuntos
Conexinas , Junções Comunicantes , Conexinas/genética , Microscopia Crioeletrônica
4.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830485

RESUMO

Connexins (Cxs) are a family of proteins that form two different types of ion channels: hemichannels and gap junction channels. These channels participate in cellular communication, enabling them to share information and act as a synchronized syncytium. This cellular communication has been considered a strong tumor suppressor, but it is now recognized that some type of Cxs can be pro-tumorigenic. For example, Cx46 expression is increased in human breast cancer samples and correlates with cancer stem cell (CSC) characteristics in human glioma. Thus, we explored whether Cx46 and glioma cells, can set up CSC and epithelial-to-mesenchymal transition (EMT) properties in a breast cancer cell line. To this end, we transfected MCF-7 cells with Cx46 attached to a green fluorescent protein (Cx46GFP), and we determined how its expression orchestrates both the gene-expression and functional changes associated with CSC and EMT. We observed that Cx46GFP increased Sox2, Nanog, and OCT4 mRNA levels associated with a high capacity to form monoclonal colonies and tumorspheres. Similarly, Cx46GFP increased the mRNA levels of n-cadherin, Vimentin, Snail and Zeb1 to a higher migratory and invasive capacity. Furthermore, Cx46GFP transfected in MCF-7 cells induced the release of higher amounts of VEGF, which promoted angiogenesis in HUVEC cells. We demonstrated for the first time that Cx46 modulates CSC and EMT properties in breast cancer cells and thus could be relevant in the design of future cancer therapies.


Assuntos
Neoplasias da Mama/genética , Conexinas/genética , Transição Epitelial-Mesenquimal/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
5.
Am J Physiol Cell Physiol ; 314(4): C492-C503, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351411

RESUMO

The lens is an avascular organ whose function and survival depend on an internal circulation system. Cx46fs380 mice model a human autosomal dominant cataract caused by a mutant lens connexin. In these mice, fiber cell connexin levels and gap junction coupling are severely decreased. The present studies were conducted to examine components of the lens circulation system that might be altered and contribute to the pathogenesis of cataracts. Lenses from wild-type mice and Cx46fs380 heterozygotes and homozygotes were studied at 2 months of age. Cx46fs380-expressing lens fiber cells were depolarized. Cx46fs380 lenses had increased intracellular hydrostatic pressure and concentrations of Na+ and Ca2+. The activity of epithelial Na+-K+-ATPase was decreased in Cx46fs380 lenses. All of these changes were more severe in homozygous than in heterozygous Cx46fs380 lenses. Cx46fs380 cataracts were stained by Alizarin red, a dye used to detect insoluble Ca2+. These data suggest that the lens internal circulation was disrupted by expression of Cx46fs380, leading to several consequences including accumulation of Ca2+ to levels so high that precipitates formed. Similar Ca2+-containing precipitates may contribute to cataract formation due to other genetic or acquired etiologies.


Assuntos
Cálcio/metabolismo , Catarata/metabolismo , Conexinas/metabolismo , Cristalino/metabolismo , Animais , Catarata/genética , Catarata/patologia , Conexinas/genética , Cristalização , Modelos Animais de Doenças , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Pressão Hidrostática , Pressão Intraocular , Cristalino/patologia , Potenciais da Membrana , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Fenótipo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
6.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217016

RESUMO

Gap junction channels and hemichannels formed by concatenated connexins were analyzed. Monomeric (hCx26, hCx46), homodimeric (hCx46-hCx46, hCx26-hCx26), and heterodimeric (hCx26-hCx46, hCx46-hCx26) constructs, coupled to GFP, were expressed in HeLa cells. Confocal microscopy showed that the tandems formed gap junction plaques with a reduced plaque area compared to monomeric hCx26 or hCx46. Dye transfer experiments showed that concatenation allows metabolic transfer. Expressed in Xenopus oocytes, the inside-out patch-clamp configuration showed single channels with a conductance of about 46 pS and 39 pS for hemichannels composed of hCx46 and hCx26 monomers, respectively, when chloride was replaced by gluconate on both membrane sides. The conductance was reduced for hCx46-hCx46 and hCx26-hCx26 homodimers, probably due to the concatenation. Heteromerized hemichannels, depending on the connexin-order, were characterized by substates at 26 pS and 16 pS for hCx46-hCx26 and 31 pS and 20 pS for hCx26-hCx46. Because of the linker between the connexins, the properties of the formed hemichannels and gap junction channels (e.g., single channel conductance) may not represent the properties of hetero-oligomerized channels. However, should the removal of the linker be successful, this method could be used to analyze the electrical and metabolic selectivity of such channels and the physiological consequences for a tissue.


Assuntos
Conexina 26/metabolismo , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Animais , Conexina 26/genética , Conexinas/genética , Junções Comunicantes/genética , Células HeLa , Humanos , Técnicas de Patch-Clamp , Xenopus laevis
7.
Graefes Arch Clin Exp Ophthalmol ; 255(1): 119-125, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27817115

RESUMO

PURPOSE: Hereditary congenital cataract varies immensely concerning location and form of the lens opacities. A specific and very rare phenotype is called "ant-egg" cataract first described in 1900. "Ant-eggs" have previously been examined using light microscopy, backscattered electron imaging and X-ray scans and electron microscopy. The purpose of this study was to further characterize "ant-egg" cataract using modern technology and display the history of the "ant-eggs" after cataract extraction. METHODS: "Ant-eggs" were examined using Heidelberg SPECTRALIS Optical Coherence Tomography (OCT)(Heidelberg Engineering, Heidelberg, Germany). Ten "ant-eggs" were extracted; four of these as well as control tissue were analyzed by mass spectrometry (AB Sciex). Proteins were identified and their approximate abundances were determined. Immunohistochemical staining was carried out on the remaining "ant-eggs" for cytokeratin and S100. RESULTS: In anterior OCT-images, the "ant-egg" structures are localized on the iris. Comparative pictures showed that they stayed in the same location for more than 45 years. Mass spectrometry of "ant-eggs" yielded a proteome of 56 different proteins. Eighteen of the 56 "ant-egg" proteins (32 %) were neither present in our controls nor in a known fetal lens proteome. Among these were cytokeratin and Matrix-Gla protein. Immunohistochemical reactions were positive for cytokeratin and S100. CONCLUSIONS: This study demonstrates the previously unknown protein composition of the "ant-egg" structures in "ant-egg" cataract. Eighteen of these proteins are not natively found in the human lens. Moreover, "ant-eggs" do not vary over time, after cataract extraction, regarding size and location.


Assuntos
Extração de Catarata , Catarata/congênito , Proteínas do Olho/análise , Cristalino/metabolismo , Catarata/diagnóstico , Catarata/metabolismo , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade , Tomografia de Coerência Óptica/métodos
8.
J Cell Biochem ; 116(12): 2924-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26018820

RESUMO

Several gap junction connexins have been shown to be essential for appropriate placental development and function. It is known that the expression and distribution of connexins change in response to environmental oxygen levels. The placenta develops under various oxygen levels, beginning at a low oxygen tension of approximately 2% and increasing to a tension of 8% after the onset of the uteroplacental circulation. Moreover, it has been shown that during preeclampsia (PE) placentas are subjected to chronic hypoxia. Therefore, we investigated oxygen sensitivity of placental connexins 43 and 46. Using the trophoblast cell line Jar, we demonstrated that the expression of connexin43 increased during acute hypoxia but decreased during chronic hypoxia. Chronic hypoxia resulted in the translocation of connexin43 from the membrane to the cytoplasm and in a reduction in its communication properties. In contrast, the expression of connexin46 was down-regulated during chronic hypoxia and was translocated from perinuclear areas to the cell membrane. Hypoxia-inducible factor (HIF) knockdown showed that the translocation of connexin43 but not that of connexin46 was HIF-2α dependent and was mediated by phosphoinositide 3-kinase. The up-regulation of connexin43 in combination with the down-regulation of connexin46 was confirmed in placental explants cultivated under low oxygen and in placentas with early-onset PE. Taken together, in Jar cells, placental connexins 43 and 46 are regulated during periods of low oxygen in opposite manners. The oxygen sensing of connexins in the trophoblast may play a role in physiological and pathophysiological oxygen conditions and thus may contribute to PE.


Assuntos
Conexina 43/biossíntese , Conexinas/biossíntese , Oxigênio/metabolismo , Placentação , Pré-Eclâmpsia/metabolismo , Hipóxia Celular/genética , Linhagem Celular , Conexina 43/metabolismo , Conexinas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Pré-Eclâmpsia/patologia , Gravidez , Trofoblastos/metabolismo
9.
Biomolecules ; 13(10)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37892142

RESUMO

Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.


Assuntos
Neoplasias da Mama , Cristalino , Feminino , Humanos , Neoplasias da Mama/metabolismo , Comunicação Celular , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Cristalino/metabolismo
10.
Cells ; 11(18)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36139360

RESUMO

In the lens, cell homeostasis and transparency are supported by intercellular communication facilitated by the channels formed of connexin46 (Cx46) and connexin50 (Cx50). Mutations of these connexins are linked to inherited cataracts. We studied the levels and the variations in electrophoretic mobilities of the immunoreactive Cx46 and Cx50 bands between 1 and 21 days after birth in the lenses of wild-type mice and homozygous animals from two different mouse models of connexin-linked cataracts (Cx46fs380 and Cx50D47A). In Cx50D47A mice, the expression of the mutant Cx50 reduced the normal phosphorylation of the co-expressed wild-type Cx46. In both models, levels of the mutant connexin and the co-expressed wild-type connexin decayed more rapidly than in wild-type mice but with different time courses. In the Cx46fs380 mice, modeling suggested that Cx50 degradation could be explained by the mixing of mutant Cx46 with wild-type Cx50. However, in Cx50D47A mice, similar modeling suggested that mixing alone could not explain the decrease in Cx46 levels. These data highlight the complex influences between two connexin proteins expressed in the same cell, some of which occur through direct mixing, while others occur indirectly, as in Cx50D47A mice, where the expression of the mutant connexin causes endoplasmic reticulum stress and impaired differentiation.


Assuntos
Catarata , Cristalino , Animais , Catarata/genética , Catarata/metabolismo , Conexinas/genética , Conexinas/metabolismo , Células Epiteliais/metabolismo , Junções Comunicantes/metabolismo , Cristalino/metabolismo , Camundongos
11.
Biomolecules ; 10(5)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32353936

RESUMO

Under normal conditions, almost all cell types communicate with their neighboring cells through gap junction channels (GJC), facilitating cellular and tissue homeostasis. A GJC is formed by the interaction of two hemichannels; each one of these hemichannels in turn is formed by six subunits of transmembrane proteins called connexins (Cx). For many years, it was believed that the loss of GJC-mediated intercellular communication was a hallmark in cancer development. However, nowadays this paradigm is changing. The connexin 46 (Cx46), which is almost exclusively expressed in the eye lens, is upregulated in human breast cancer, and is correlated with tumor growth in a Xenograft mouse model. On the other hand, extracellular vesicles (EVs) have an important role in long-distance communication under physiological conditions. In the last decade, EVs also have been recognized as key players in cancer aggressiveness. The aim of this work was to explore the involvement of Cx46 in EV-mediated intercellular communication. Here, we demonstrated for the first time, that Cx46 is contained in EVs released from breast cancer cells overexpressing Cx46 (EVs-Cx46). This EV-Cx46 facilitates the interaction between EVs and the recipient cell resulting in an increase in their migration and invasion properties. Our results suggest that EV-Cx46 could be a marker of cancer malignancy and open the possibility to consider Cx46 as a new therapeutic target in cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Conexinas/metabolismo , Vesículas Extracelulares/metabolismo , Comunicação Celular , Conexinas/genética , Feminino , Células HeLa , Humanos , Células MCF-7
12.
Int J Ophthalmol ; 10(5): 684-690, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28546921

RESUMO

AIM: To investigate the genetic mutations that are associated the hereditary autosomal dominant cataract in a Chinese family. METHODS: A Chinese family consisting of 20 cataract patients (including 9 male and 11 female) and 2 unaffected individuals from 5 generations were diagnosed to be a typical autosomal dominant cataract pedigree. Genomic DNA samples were extracted from the peripheral blood cells of the participants in this pedigree. Exon sequence was used for genetic mutation screening. In silico analysis was used to study the structure characteristics of connexin 46 (CX46) mutant. Immunoblotting was conduceted for testing the expression of CX46. RESULTS: To determine the involved genetic mutations, 11 well-known cataract-associated genes (cryaa, cryab, crybb1, crybb2, crygc, crygd, Gja3, Gja8, Hsf4, Mip and Pitx3) were chosen for genetic mutation test by using exon sequencing. A novel cytosine insertion at position 1195 of CX46 cDNA (c.1194_1195ins C) was found in the samples of 5 tested cataract patients but not in the unaffected 2 individuals nor in normal controls, which resulted in 30 amino acids more extension in CX46C-terminus (cx46fs400) compared with the wild-type CX46. In silico protein structure analysis indicated that the mutant showed distinctive hydrophobicity and protein secondary structure compared with the wild-type CX46. The immunoblot results revealed that CX46 protein, which expressed in the aging cataract lens tissues, was absence in the proband lens. In contrast, CX50, alpha A-crystallin and alphaB-crystallin expressed equally in both proband and aging cataract tissues. Those results revealed that the cx46fs400 mutation could impair CX46 protein expression. CONCLUSION: The insertion of cytosine at position 1195 of CX46 cDNA is a novel mutation site that is associated with the autosomal dominant cataracts in this Chinese family. The C-terminal frameshift mutation is involved in regulating CX46 protein expression.

13.
Front Physiol ; 5: 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24575044

RESUMO

The normal function and survival of cells in the avascular lens is facilitated by intercellular communication through an extensive network of gap junctions formed predominantly by three connexins (Cx43, Cx46, and Cx50). In expression systems, these connexins can all induce hemichannel currents, but other lens proteins (e.g., pannexin1) can also induce similar currents. Hemichannel currents have been detected in isolated lens fiber cells. These hemichannels may make significant contributions to normal lens physiology and pathophysiology. Studies of some connexin mutants linked to congenital cataracts have implicated hemichannels with aberrant voltage-dependent gating or modulation by divalent cations in disease pathogenesis. Hemichannels may also contribute to age- and disease-related cataracts.

14.
Front Pharmacol ; 4: 43, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23596416

RESUMO

The lens is a multicellular, but avascular tissue that must stay transparent to allow normal transmission of light and focusing of it on the retina. Damage to lens cells and/or proteins can cause cataracts, opacities that disrupt these processes. The normal survival of the lens is facilitated by an extensive network of gap junctions formed predominantly of connexin46 and connexin50. Mutations of the genes that encode these connexins (GJA3 and GJA8) have been identified and linked to inheritance of cataracts in human families and mouse lines. In vitro expression studies of several of these mutants have shown that they exhibit abnormalities that may lead to disease. Many of the mutants reduce or modify intercellular communication due to channel alterations (including loss of function or altered gating) or due to impaired cellular trafficking which reduces the number of gap junction channels within the plasma membrane. However, the abnormalities detected in studies of other mutants suggest that they cause cataracts through other mechanisms including gain of hemichannel function (leading to cell injury and death) and formation of cytoplasmic accumulations (that may act as light scattering particles). These observations and the anticipated results of ongoing studies should elucidate the mechanisms of cataract development due to mutations of lens connexins and abnormalities of other lens proteins. They may also contribute to our understanding of the mechanisms of disease due to connexin mutations in other tissues.

15.
Gene ; 529(1): 181-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23954869

RESUMO

PURPOSE: To describe at molecular level a family with pulverulent congenital cataract associated with a CRYGC gene mutation. METHODS: One family with several affected members with pulverulent congenital cataract and 230 healthy controls were examined. Genomic DNA from leukocytes was isolated to analyze the CRYGA-D cluster, CX46, CX50 and MIP genes through high-resolution melting curve and DNA sequencing. RESULTS: DNA sequencing in the affected members revealed the c.143G>A mutation (p.R48H) in exon 2 of the CRYGC gene; 230 healthy controls and ten healthy relatives were also analyzed and none of them showed the c.143G>A mutation. No other polymorphisms or mutations were found to be present. CONCLUSION: In the present study, we described a family with pulverulent congenital cataract that segregated the c.143G>A mutation (p.R48H) in the CRYGC gene. A few mutations have been described in the CRYGC gene in autosomal dominant cataract, none of them with pulverulent cataract making clear the clinical heterogeneity of congenital cataract. This mutation has been associated with the phenotype of congenital cataract but also is considered an SNP in the NCBI data base. Our data and previous report suggest that p.R48H could be a disease-causing mutation and not an SNP.


Assuntos
Catarata/congênito , Catarata/genética , Genes Dominantes , Mutação de Sentido Incorreto , gama-Cristalinas/genética , Adolescente , Arginina/metabolismo , Estudos de Casos e Controles , Éxons , Feminino , Histidina/metabolismo , Humanos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Análise de Sequência de DNA , Adulto Jovem , gama-Cristalinas/metabolismo
16.
Commun Integr Biol ; 5(2): 114-7, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22808311

RESUMO

Gap junctions are multimeric membrane protein channels that connect the cytoplasm of one cell to another. Much information about connexins regards electrophysiology and channel function but relatively little information is known about non-channel functions of connexins. Lens connexins, Cx43, Cx46 and Cx50, have been extensively studied for their role in lens homeostasis. Connexins allow the movement of small metabolically relevant molecules and ions between cells and this action in the lens prevents cataract formation. Interruption of Cx46 channel function leads to cataract formation due to dysregulation of lens homeostasis. The loss of Cx46 upregulates Cx43 in lens cell culture and suppresses tumor growth in breast and retinoblastoma tumor xenografts. Upregulation of Cx46 in hypoxic tissues has been noted and may be due in part to the effects of hypoxia and HIF activators. Here, we report that the Cx46 promoter is regulated by hypoxia and also offer speculation about the role of Cx46 in lens differentiation and solid tumor growth.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa