Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Annu Rev Neurosci ; 46: 233-258, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36972611

RESUMO

Flexible behavior requires the creation, updating, and expression of memories to depend on context. While the neural underpinnings of each of these processes have been intensively studied, recent advances in computational modeling revealed a key challenge in context-dependent learning that had been largely ignored previously: Under naturalistic conditions, context is typically uncertain, necessitating contextual inference. We review a theoretical approach to formalizing context-dependent learning in the face of contextual uncertainty and the core computations it requires. We show how this approach begins to organize a large body of disparate experimental observations, from multiple levels of brain organization (including circuits, systems, and behavior) and multiple brain regions (most prominently the prefrontal cortex, the hippocampus, and motor cortices), into a coherent framework. We argue that contextual inference may also be key to understanding continual learning in the brain. This theory-driven perspective places contextual inference as a core component of learning.


Assuntos
Encéfalo , Aprendizagem , Hipocampo , Córtex Pré-Frontal , Simulação por Computador
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388681

RESUMO

MOTIVATION: Cell-type annotation of single-cell RNA-sequencing (scRNA-seq) data is a hallmark of biomedical research and clinical application. Current annotation tools usually assume the simultaneous acquisition of well-annotated data, but without the ability to expand knowledge from new data. Yet, such tools are inconsistent with the continuous emergence of scRNA-seq data, calling for a continuous cell-type annotation model. In addition, by their powerful ability of information integration and model interpretability, transformer-based pre-trained language models have led to breakthroughs in single-cell biology research. Therefore, the systematic combining of continual learning and pre-trained language models for cell-type annotation tasks is inevitable. RESULTS: We herein propose a universal cell-type annotation tool, called CANAL, that continuously fine-tunes a pre-trained language model trained on a large amount of unlabeled scRNA-seq data, as new well-labeled data emerges. CANAL essentially alleviates the dilemma of catastrophic forgetting, both in terms of model inputs and outputs. For model inputs, we introduce an experience replay schema that repeatedly reviews previous vital examples in current training stages. This is achieved through a dynamic example bank with a fixed buffer size. The example bank is class-balanced and proficient in retaining cell-type-specific information, particularly facilitating the consolidation of patterns associated with rare cell types. For model outputs, we utilize representation knowledge distillation to regularize the divergence between previous and current models, resulting in the preservation of knowledge learned from past training stages. Moreover, our universal annotation framework considers the inclusion of new cell types throughout the fine-tuning and testing stages. We can continuously expand the cell-type annotation library by absorbing new cell types from newly arrived, well-annotated training datasets, as well as automatically identify novel cells in unlabeled datasets. Comprehensive experiments with data streams under various biological scenarios demonstrate the versatility and high model interpretability of CANAL. AVAILABILITY: An implementation of CANAL is available from https://github.com/aster-ww/CANAL-torch. CONTACT: dengmh@pku.edu.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Journal Name online.


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Análise da Expressão Gênica de Célula Única , Análise de Célula Única/métodos , Idioma , Análise de Sequência de RNA/métodos
3.
Proc Natl Acad Sci U S A ; 119(44): e2123432119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279437

RESUMO

How do we build up our knowledge of the world over time? Many theories of memory formation and consolidation have posited that the hippocampus stores new information, then "teaches" this information to the neocortex over time, especially during sleep. But it is unclear, mechanistically, how this actually works-How are these systems able to interact during periods with virtually no environmental input to accomplish useful learning and shifts in representation? We provide a framework for thinking about this question, with neural network model simulations serving as demonstrations. The model is composed of hippocampus and neocortical areas, which replay memories and interact with one another completely autonomously during simulated sleep. Oscillations are leveraged to support error-driven learning that leads to useful changes in memory representation and behavior. The model has a non-rapid eye movement (NREM) sleep stage, where dynamics between the hippocampus and neocortex are tightly coupled, with the hippocampus helping neocortex to reinstate high-fidelity versions of new attractors, and a REM sleep stage, where neocortex is able to more freely explore existing attractors. We find that alternating between NREM and REM sleep stages, which alternately focuses the model's replay on recent and remote information, facilitates graceful continual learning. We thus provide an account of how the hippocampus and neocortex can interact without any external input during sleep to drive useful new cortical learning and to protect old knowledge as new information is integrated.


Assuntos
Consolidação da Memória , Neocórtex , Memória , Hipocampo , Sono
4.
Proc Natl Acad Sci U S A ; 119(33): e2115335119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947616

RESUMO

We propose that coding and decoding in the brain are achieved through digital computation using three principles: relative ordinal coding of inputs, random connections between neurons, and belief voting. Due to randomization and despite the coarseness of the relative codes, we show that these principles are sufficient for coding and decoding sequences with error-free reconstruction. In particular, the number of neurons needed grows linearly with the size of the input repertoire growing exponentially. We illustrate our model by reconstructing sequences with repertoires on the order of a billion items. From this, we derive the Shannon equations for the capacity limit to learn and transfer information in the neural population, which is then generalized to any type of neural network. Following the maximum entropy principle of efficient coding, we show that random connections serve to decorrelate redundant information in incoming signals, creating more compact codes for neurons and therefore, conveying a larger amount of information. Henceforth, despite the unreliability of the relative codes, few neurons become necessary to discriminate the original signal without error. Finally, we discuss the significance of this digital computation model regarding neurobiological findings in the brain and more generally with artificial intelligence algorithms, with a view toward a neural information theory and the design of digital neural networks.


Assuntos
Inteligência Artificial , Encéfalo , Modelos Neurológicos , Algoritmos , Encéfalo/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia
5.
BMC Med Inform Decis Mak ; 24(1): 67, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448921

RESUMO

Deep learning has been increasingly utilized in the medical field and achieved many goals. Since the size of data dominates the performance of deep learning, several medical institutions are conducting joint research to obtain as much data as possible. However, sharing data is usually prohibited owing to the risk of privacy invasion. Federated learning is a reasonable idea to train distributed multicenter data without direct access; however, a central server to merge and distribute models is needed, which is expensive and hardly approved due to various legal regulations. This paper proposes a continual learning framework for a multicenter study, which does not require a central server and can prevent catastrophic forgetting of previously trained knowledge. The proposed framework contains the continual learning method selection process, assuming that a single method is not omnipotent for all involved datasets in a real-world setting and that there could be a proper method to be selected for specific data. We utilized the fake data based on a generative adversarial network to evaluate methods prospectively, not ex post facto. We used four independent electrocardiogram datasets for a multicenter study and trained the arrhythmia detection model. Our proposed framework was evaluated against supervised and federated learning methods, as well as finetuning approaches that do not include any regulation to preserve previous knowledge. Even without a central server and access to the past data, our framework achieved stable performance (AUROC 0.897) across all involved datasets, achieving comparable performance to federated learning (AUROC 0.901).


Assuntos
Eletrocardiografia , Estudos Multicêntricos como Assunto , Humanos , Conhecimento , Privacidade
6.
Sensors (Basel) ; 24(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793943

RESUMO

The advancements in deep learning have significantly enhanced the capability of image generation models to produce images aligned with human intentions. However, training and adapting these models to new data and tasks remain challenging because of their complexity and the risk of catastrophic forgetting. This study proposes a method for addressing these challenges involving the application of class-replacement techniques within a continual learning framework. This method utilizes selective amnesia (SA) to efficiently replace existing classes with new ones while retaining crucial information. This approach improves the model's adaptability to evolving data environments while preventing the loss of past information. We conducted a detailed evaluation of class-replacement techniques, examining their impact on the "class incremental learning" performance of models and exploring their applicability in various scenarios. The experimental results demonstrated that our proposed method could enhance the learning efficiency and long-term performance of image generation models. This study broadens the application scope of image generation technology and supports the continual improvement and adaptability of corresponding models.

7.
Sensors (Basel) ; 24(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066133

RESUMO

Cognitive scientists believe that adaptable intelligent agents like humans perform spatial reasoning tasks by learned causal mental simulation. The problem of learning these simulations is called predictive world modeling. We present the first framework for a learning open-vocabulary predictive world model (OV-PWM) from sensor observations. The model is implemented through a hierarchical variational autoencoder (HVAE) capable of predicting diverse and accurate fully observed environments from accumulated partial observations. We show that the OV-PWM can model high-dimensional embedding maps of latent compositional embeddings representing sets of overlapping semantics inferable by sufficient similarity inference. The OV-PWM simplifies the prior two-stage closed-set PWM approach to the single-stage end-to-end learning method. CARLA simulator experiments show that the OV-PWM can learn compact latent representations and generate diverse and accurate worlds with fine details like road markings, achieving 69 mIoU over six query semantics on an urban evaluation sequence. We propose the OV-PWM as a versatile continual learning paradigm for providing spatio-semantic memory and learned internal simulation capabilities to future general-purpose mobile robots.

8.
Entropy (Basel) ; 26(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275501

RESUMO

The ability to learn continuously is crucial for a robot to achieve a high level of intelligence and autonomy. In this paper, we consider continual reinforcement learning (RL) for quadruped robots, which includes the ability to continuously learn sub-sequential tasks (plasticity) and maintain performance on previous tasks (stability). The policy obtained by the proposed method enables robots to learn multiple tasks sequentially, while overcoming both catastrophic forgetting and loss of plasticity. At the same time, it achieves the above goals with as little modification to the original RL learning process as possible. The proposed method uses the Piggyback algorithm to select protected parameters for each task, and reinitializes the unused parameters to increase plasticity. Meanwhile, we encourage the policy network exploring by encouraging the entropy of the soft network of the policy network. Our experiments show that traditional continual learning algorithms cannot perform well on robot locomotion problems, and our algorithm is more stable and less disruptive to the RL training progress. Several robot locomotion experiments validate the effectiveness of our method.

9.
Biol Cybern ; 117(4-5): 345-361, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589728

RESUMO

The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously learned representations. We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.


Assuntos
Algoritmos , Redes Neurais de Computação , Encéfalo , Neurônios/fisiologia , Retroalimentação
10.
Proc Natl Acad Sci U S A ; 117(32): 19092-19100, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32703813

RESUMO

Developing expertise in any field usually requires acquisition of a wide range of skills. Most current studies on perceptual learning have focused on a single task and concluded that learning is quite specific to the trained task, and the ubiquitous individual differences reflect random fluctuations across subjects. Whether there exists a general learning ability that determines individual learning performance across multiple tasks remains largely unknown. In a large-scale perceptual learning study with a wide range of training tasks, we found that initial performance, task, and individual differences all contributed significantly to the learning rates across the tasks. Most importantly, we were able to extract both a task-specific but subject-invariant component of learning, that accounted for 38.6% of the variance, and a subject-specific but task-invariant perceptual learning ability, that accounted for 36.8% of the variance. The existence of a general perceptual learning ability across multiple tasks suggests that individual differences in perceptual learning are not "noise"; rather, they reflect the variability of learning ability across individuals. These results could have important implications for selecting potential trainees in occupations that require perceptual expertise and designing better training protocols to improve the efficiency of clinical rehabilitation.


Assuntos
Aprendizagem , Percepção , Adulto , Feminino , Humanos , Individualidade , Masculino , Análise e Desempenho de Tarefas , Adulto Jovem
11.
Sensors (Basel) ; 23(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631703

RESUMO

The multi-layer structures of Deep Learning facilitate the processing of higher-level abstractions from data, thus leading to improved generalization and widespread applications in diverse domains with various types of data. Each domain and data type presents its own set of challenges. Real-world time series data may have a non-stationary data distribution that may lead to Deep Learning models facing the problem of catastrophic forgetting, with the abrupt loss of previously learned knowledge. Continual learning is a paradigm of machine learning to handle situations when the stationarity of the datasets may no longer be true or required. This paper presents a systematic review of the recent Deep Learning applications of sensor time series, the need for advanced preprocessing techniques for some sensor environments, as well as the summaries of how to deploy Deep Learning in time series modeling while alleviating catastrophic forgetting with continual learning methods. The selected case studies cover a wide collection of various sensor time series applications and can illustrate how to deploy tailor-made Deep Learning, advanced preprocessing techniques, and continual learning algorithms from practical, real-world application aspects.

12.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571676

RESUMO

Numerous deep learning methods for acoustic scene classification (ASC) have been proposed to improve the classification accuracy of sound events. However, only a few studies have focused on continual learning (CL) wherein a model continually learns to solve issues with task changes. Therefore, in this study, we systematically analyzed the performance of ten recent CL methods to provide guidelines regarding their performances. The CL methods included two regularization-based methods and eight replay-based methods. First, we defined realistic and difficult scenarios such as online class-incremental (OCI) and online domain-incremental (ODI) cases for three public sound datasets. Then, we systematically analyzed the performance of each CL method in terms of average accuracy, average forgetting, and training time. In OCI scenarios, iCaRL and SCR showed the best performance for small buffer sizes, and GDumb showed the best performance for large buffer sizes. In ODI scenarios, SCR adopting supervised contrastive learning consistently outperformed the other methods, regardless of the memory buffer size. Most replay-based methods have an almost constant training time, regardless of the memory buffer size, and their performance increases with an increase in the memory buffer size. Based on these results, we must first consider GDumb/SCR for the continual learning methods for ASC.

13.
Entropy (Basel) ; 25(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37372228

RESUMO

Sequential Bayesian inference can be used for continual learning to prevent catastrophic forgetting of past tasks and provide an informative prior when learning new tasks. We revisit sequential Bayesian inference and assess whether using the previous task's posterior as a prior for a new task can prevent catastrophic forgetting in Bayesian neural networks. Our first contribution is to perform sequential Bayesian inference using Hamiltonian Monte Carlo. We propagate the posterior as a prior for new tasks by approximating the posterior via fitting a density estimator on Hamiltonian Monte Carlo samples. We find that this approach fails to prevent catastrophic forgetting, demonstrating the difficulty in performing sequential Bayesian inference in neural networks. From there, we study simple analytical examples of sequential Bayesian inference and CL and highlight the issue of model misspecification, which can lead to sub-optimal continual learning performance despite exact inference. Furthermore, we discuss how task data imbalances can cause forgetting. From these limitations, we argue that we need probabilistic models of the continual learning generative process rather than relying on sequential Bayesian inference over Bayesian neural network weights. Our final contribution is to propose a simple baseline called Prototypical Bayesian Continual Learning, which is competitive with the best performing Bayesian continual learning methods on class incremental continual learning computer vision benchmarks.

14.
BMC Bioinformatics ; 23(1): 549, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536280

RESUMO

Extracting knowledge from heterogeneous data sources is fundamental for the construction of structured biomedical knowledge graphs (BKGs), where entities and relations are represented as nodes and edges in the graphs, respectively. Previous biomedical knowledge extraction methods simply considered limited entity types and relations by using a task-specific training set, which is insufficient for large-scale BKGs development and downstream task applications in different scenarios. To alleviate this issue, we propose a joint continual learning biomedical information extraction (JCBIE) network to extract entities and relations from different biomedical information datasets. By empirically studying different joint learning and continual learning strategies, the proposed JCBIE can learn and expand different types of entities and relations from different datasets. JCBIE uses two separated encoders in joint-feature extraction, hence can effectively avoid the feature confusion problem comparing with using one hard-parameter sharing encoder. Specifically, it allows us to adopt entity augmented inputs to establish the interaction between named entity recognition and relation extraction. Finally, a novel evaluation mechanism is proposed for measuring cross-corpus generalization errors, which was ignored by traditional evaluation methods. Our empirical studies show that JCBIE achieves promising performance when continual learning strategy is adopted with multiple corpora.


Assuntos
Pesquisa Biomédica , Mineração de Dados , Mineração de Dados/métodos , Redes Neurais de Computação , Conhecimento , Estudos Longitudinais
15.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560248

RESUMO

A robust-accurate estimation of fluid flow is the main building block of a distributed virtual flow meter. Unfortunately, a big leap in algorithm development would be required for this objective to come to fruition, mainly due to the inability of current machine learning algorithms to make predictions outside the training data distribution. To improve predictions outside the training distribution, we explore the continual learning (CL) paradigm for accurately estimating the characteristics of fluid flow in pipelines. A significant challenge facing CL is the concept of catastrophic forgetting. In this paper, we provide a novel approach for how to address the forgetting problem via compressing the distributed sensor data to increase the capacity of the CL memory bank using a compressive learning algorithm. Through extensive experiments, we show that our approach provides around 8% accuracy improvement compared to other CL algorithms when applied to a real-world distributed sensor dataset collected from an oilfield. Noticeable accuracy improvement is also achieved when using our proposed approach with the CL benchmark datasets, achieving state-of-the-art accuracies for the CIFAR-10 dataset on blurry10 and blurry30 settings of 80.83% and 88.91%, respectively.

16.
Sensors (Basel) ; 22(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408072

RESUMO

In this paper, we propose a unified and flexible framework for general image fusion tasks, including multi-exposure image fusion, multi-focus image fusion, infrared/visible image fusion, and multi-modality medical image fusion. Unlike other deep learning-based image fusion methods applied to a fixed number of input sources (normally two inputs), the proposed framework can simultaneously handle an arbitrary number of inputs. Specifically, we use the symmetrical function (e.g., Max-pooling) to extract the most significant features from all the input images, which are then fused with the respective features from each input source. This symmetry function enables permutation-invariance of the network, which means the network can successfully extract and fuse the saliency features of each image without needing to remember the input order of the inputs. The property of permutation-invariance also brings convenience for the network during inference with unfixed inputs. To handle multiple image fusion tasks with one unified framework, we adopt continual learning based on Elastic Weight Consolidation (EWC) for different fusion tasks. Subjective and objective experiments on several public datasets demonstrate that the proposed method outperforms state-of-the-art methods on multiple image fusion tasks.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Registros
17.
Sensors (Basel) ; 22(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501999

RESUMO

In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the model accuracy by periodically rebuilding the model based on the accumulated datasets including recent datasets. Its learning time incrementally increases as the datasets increase, but we alleviate the learning overhead by the distributed learning of the model. The latter fine-tunes the model only with a limited number of recent datasets, noting that the data streams are dependent on a recent event. Therefore, it accelerates the learning speed while maintaining a certain level of accuracy. To verify the proposed update strategies, we extensively apply them to not only fully trainable language models based on CNN, RNN, and Bi-LSTM, but also a pre-trained embedding model based on BERT. Through extensive experiments using two real tweet streaming datasets, we show that the entire model update improves the classification accuracy of the pre-trained offline model; the partial model update also improves it, which shows comparable accuracy with the entire model update, while significantly increasing the learning speed. We also validate the scalability of the proposed distributed learning architecture by showing that the model learning and inference time decrease as the number of worker nodes increases.


Assuntos
Idioma , Aprendizagem
18.
Sensors (Basel) ; 22(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35214568

RESUMO

Human beings tend to incrementally learn from the rapidly changing environment without comprising or forgetting the already learned representations. Although deep learning also has the potential to mimic such human behaviors to some extent, it suffers from catastrophic forgetting due to which its performance on already learned tasks drastically decreases while learning about newer knowledge. Many researchers have proposed promising solutions to eliminate such catastrophic forgetting during the knowledge distillation process. However, to our best knowledge, there is no literature available to date that exploits the complex relationships between these solutions and utilizes them for the effective learning that spans over multiple datasets and even multiple domains. In this paper, we propose a continual learning objective that encompasses mutual distillation loss to understand such complex relationships and allows deep learning models to effectively retain the prior knowledge while adapting to the new classes, new datasets, and even new applications. The proposed objective was rigorously tested on nine publicly available, multi-vendor, and multimodal datasets that span over three applications, and it achieved the top-1 accuracy of 0.9863% and an F1-score of 0.9930.


Assuntos
Redes Neurais de Computação , Humanos
19.
Sensors (Basel) ; 22(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36433577

RESUMO

In recent years, the power system transient stability assessment (TSA) based on a data-driven method has been widely studied. However, the topology and modes of operation of power systems may change frequently due to the complex time-varying characteristics of power systems. which makes it difficult for prediction models trained on stationary distributed data to meet the requirements of online applications. When a new working situation scenario causes the prediction model accuracy not to meet the requirements, the model needs to be updated in real-time. With limited storage space, model capacity, and infinite new scenarios to be updated for learning, the model updates must be sustainable and scalable. Therefore, to address this problem, this paper introduces the continual learning Sliced Cramér Preservation (SCP) algorithm to perform update operations on the model. A deep residual shrinkage network (DRSN) is selected as a classifier to construct the TSA model of SCP-DRSN at the same time. With the SCP, the model can be extended and updated just by using the new scenarios data. The updated prediction model not only complements the prediction capability for new scenarios but also retains the prediction ability under old scenarios, which can avoid frequent updates of the model. The test results on a modified New England 10-machine 39-bus system and an IEEE 118-bus system show that the proposed method in this paper can effectively update and extend the prediction model under the condition of using only new scenarios data. The coverage of the updated model for new scenarios is improving.

20.
Sensors (Basel) ; 22(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146230

RESUMO

Continual learning (CL), also known as lifelong learning, is an emerging research topic that has been attracting increasing interest in the field of machine learning. With human activity recognition (HAR) playing a key role in enabling numerous real-world applications, an essential step towards the long-term deployment of such systems is to extend the activity model to dynamically adapt to changes in people's everyday behavior. Current research in CL applied to the HAR domain is still under-explored with researchers exploring existing methods developed for computer vision in HAR. Moreover, analysis has so far focused on task-incremental or class-incremental learning paradigms where task boundaries are known. This impedes the applicability of such methods for real-world systems. To push this field forward, we build on recent advances in the area of continual learning and design a lifelong adaptive learning framework using Prototypical Networks, LAPNet-HAR, that processes sensor-based data streams in a task-free data-incremental fashion and mitigates catastrophic forgetting using experience replay and continual prototype adaptation. Online learning is further facilitated using contrastive loss to enforce inter-class separation. LAPNet-HAR is evaluated on five publicly available activity datasets in terms of its ability to acquire new information while preserving previous knowledge. Our extensive empirical results demonstrate the effectiveness of LAPNet-HAR in task-free CL and uncover useful insights for future challenges.


Assuntos
Atividades Humanas , Aprendizado de Máquina , Educação Continuada , Humanos , Resolução de Problemas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa