RESUMO
Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.
Assuntos
Diterpenos , Fabaceae , Extratos Vegetais , Toxoplasma , Células HeLa , Humanos , Diterpenos/farmacologia , Diterpenos/isolamento & purificação , Diterpenos/química , Toxoplasma/efeitos dos fármacos , Toxoplasma/crescimento & desenvolvimento , Fabaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento MolecularRESUMO
Due to the lack of efficient antiparasitic therapy and vaccines, as well as emerging resistance strains, congenital toxoplasmosis is still a public health issue worldwide. The present study aimed to assess the effects of an oleoresin obtained from the species Copaifera trapezifolia Hayne (CTO), and an isolated molecule found in the CTO, ent-polyalthic acid (ent-15,16-epoxy-8(17),13(16),14-labdatrien-19-oic acid) (named as PA), against T. gondii infection. We used human villous explants as an experimental model of human maternal-fetal interface. Uninfected and infected villous explants were exposed to the treatments; the parasite intracellular proliferation and the cytokine levels were measured. Also, T. gondii tachyzoites were pre-treated and the parasite proliferation was determined. Our findings showed that CTO and PA reduced efficiently the parasite growth with an irreversible action, but without causing toxicity to the villi. Also, treatments reduced the levels of IL-6, IL-8, MIF and TNF by villi, what configures a valuable treatment option for the maintenance of a pregnancy in an infectious context. In addition to a possible direct effect on parasites, our data suggest an alternative mechanism by which CTO and PA alter the villous explants environment and then impair parasite growth, since the pre-treatment of villi resulted in lower parasitic infection. Here, we highlighted PA as an interesting tool for the design of new anti-T. gondii compounds.
Assuntos
Fabaceae , Toxoplasma , Humanos , Gravidez , Feminino , Extratos Vegetais/farmacologiaRESUMO
The skin is essential to the integrity of the organism. The disruption of this organ promotes a wound, and the organism starts the healing to reconstruct the skin. Copaifera langsdorffii is a tree used in folk medicine to treat skin affections, with antioxidant and anti-inflammatory properties. In our study, the oleoresin of the plant was associated with nanostructured lipid carriers, aiming to evaluate the healing potential of this formulation and compare the treatment with reference drugs used in wound healing. Male Wistar rats were used to perform the excision wound model, with the macroscopic analysis of wound retraction. Skin samples were used in histological, immunohistochemical, and biochemical analyses. The results showed the wound retraction in the oleoresin-treated group, mediated by α-smooth muscle actin (α-SMA). Biochemical assays revealed the anti-inflammatory mechanism of the oleoresin-treated group, increasing interleukin-10 (IL-10) concentration and decreasing pro-inflammatory cytokines. Histopathological and immunohistochemical results showed the improvement of re-epithelialization and tissue remodeling in the Copaifera langsdorffii group, with an increase in laminin-γ2, a decrease in desmoglein-3 and an increase in collagen remodeling. These findings indicate the wound healing potential of nanostructured lipid carriers associated with Copaifera langsdorffii oleoresin in skin wounds, which can be helpful as a future alternative treatment for skin wounds.
Assuntos
Fabaceae , Reepitelização , Ratos , Animais , Ratos Wistar , Pele/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fabaceae/química , LipídeosRESUMO
Several studies have investigated the effects of natural products in the treatment of diseases. Traditional Amazonian populations commonly use copaiba due to its well-known anti-inflammatory, antibacterial, and healing properties. In this study, we aimed to investigate the effects of systemic administration of copaiba oleoresin (Copaifera reticulata Ducke) on ligature-induced periodontitis in rats. To do so, 21 adult rats were divided into three groups (n = 7 each): a control group, ligature-induced periodontitis group, and ligature-induced periodontitis group treated with copaiba oleoresin (200 mg/kg/day). The ligature remained from day 0 to 14, and the copaiba oleoresin was administered via oral gavage during the last seven days. On day 14, the animals were euthanized, and mandibles were collected for histopathological evaluation and microcomputed tomography analysis. Our data showed that the administration of copaiba considerably reduced the inflammatory profile. Moreover, copaiba oleoresin limited alveolar bone loss, increased trabecular thickness and bone-to-tissue volume ratio, and decreased the number of trabeculae compared with those of the untreated experimental periodontitis group. Our findings provide pioneering evidence that supports the potential of copaiba oleoresin in reducing periodontitis-induced alveolar bone damage in rats.
Assuntos
Perda do Osso Alveolar , Fabaceae , Periodontite , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/etiologia , Animais , Antibacterianos , Anti-Inflamatórios , Periodontite/tratamento farmacológico , Periodontite/patologia , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Resinas Vegetais , Microtomografia por Raio-XRESUMO
Copaifera langsdorffii Desf. is a plant found in South America, especially in Brazil. Oleoresin and the leaves of this plant is used as a popular medicinal agent. However, few studies on the chemical composition of aerial parts and related biological activities are known. This study aimed to examine the cytotoxic, genotoxic, and antigenotoxic potential of C. langsdorffii aerial parts hydroalcoholic extract (CLE) and two of its major compounds afzelin and quercitrin. The cytotoxic and antigenotoxic potential of CLE was determined as follows: 1) against genotoxicity induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in V79 cells; 2) by direct and indirect-acting mutagens in Salmonella typhimurium strains; and 3) by MMS in male Swiss mice. The protective effects of afzelin and quercitrin against DXR or MMS were also evaluated in V79 and HepG2 cells. CLE was cytotoxic as evidenced by clonogenic efficiency assay. Further, CLE did not induce a significant change in frequencies of chromosomal aberrations and micronuclei; as well as number of revertants in the Ames test demonstrating absence of genotoxicity. In contrast, CLE was found to be antigenotoxic in mammalian cells. The results also showed that CLE exerted inhibitory effect against indirect-acting mutagens in the Ames test. Afzelin and quercitrin did not reduce genotoxicity induced by DXR or MMS in V79 cells. However, treatments using afzelin and quercitrin decreased MMS-induced genotoxicity in HepG2 cells. The antigenotoxic effect of CLE observed in this study may be partially attributed to the antioxidant activity of the combination of major components afzelin and quercitrin.
Assuntos
Dano ao DNA/efeitos dos fármacos , Fabaceae/química , Manosídeos/farmacologia , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Animais , Doxorrubicina/toxicidade , Células Hep G2 , Humanos , Masculino , Metanossulfonato de Metila/toxicidade , Camundongos , Mutagênicos/farmacologia , Mutagênicos/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Quercetina/farmacologia , Salmonella typhimurium/efeitos dos fármacosRESUMO
The use of copaiba oil has been reported since the 16th century in Amazon traditional medicine, especially as an anti-inflammatory ingredient and for wound healing. The use of copaiba oil continues today, and it is sold in various parts of the world, including the United States. Copaiba oil contains mainly sesquiterpenes, bioactive compounds that are popular for their positive effect on human health. As part of our ongoing research endeavors to identify the chemical constituents of broadly consumed herbal supplements or their adulterants, copaiba oil was investigated. In this regard, copaiba oil was subjected to repeated silica gel column chromatography to purify the compounds. As a result, one new and seven known sesquiterpenes/sesquiterpenoids were isolated and identified from the copaiba oil. The new compound was elucidated as (E)-2,6,10-trimethyldodec-8-en-2-ol. Structure elucidation was achieved by 1D- and 2D NMR and GC/Q-ToF mass spectral data analyses. The isolated chemical constituents in this study could be used as chemical markers to evaluate the safety or quality of copaiba oil.
Assuntos
Anti-Inflamatórios/química , Fabaceae/química , Óleos Voláteis/química , Óleos de Plantas/química , Sesquiterpenos/análise , Humanos , Medicina TradicionalRESUMO
Two analytical methods were developed in this study for direct and fast chemical investigation of authentic Copaifera oleoresins (COR) and commercial products. Polydimethylsiloxane microfiber coupled to gas chromatography-mass spectrometry (HS-SPME-GC/MS) showed the best results for oleoresin qualitative analysis, setting the following extraction conditions: equilibrium time of 15â min, extraction time of 30â min, extraction temperature at 60 °C and constant stirring of 400â rpm. Sesquiterpenes α-copaene, ß-elemene, ß-caryophyllene and trans-α-bergamotene were found in all investigated samples. Quantitative analysis by gas chromatography coupled with flame ionization detector (GC-FID) measured the content of the four sesquiterpenes in all samples. Qualitative and quantitative results showed important differences between COR of distinct species and commercial products. Data regarding the volatile composition of C. oblongifolia and C. trapezifolia oleoresins were first presented in this study and two new analytical methods were reported for direct and fast qualitative and quantitative analysis of COR.
Assuntos
Fabaceae/química , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase SólidaRESUMO
Copaifera is a tree that produces an oleoresin that has great historical and economic importance. These oleoresins display several pharmacological properties, such as anti-inflammatory and antimicrobial, among others. The commercialization of Copaifera oleoresin occurs, in many cases, without any quality control, which facilitates its adulteration. Validated analytical methods can provide a safe quality control. In this work, the 800 Automatic Spinning Band Distillation equipment was used to perform the fractionation of the volatile oils obtained by hydrodistillation of Copaifera multijuga, C. paupera, C. Publifora and C. langsdorffii, aiming to isolate and purify the major compounds present in these oils. For purification, classical column chromatography was used, furnishing six isolated sesquiterpenes. The sesquiterpenes were used as standards in the development and validation of the method by GC-FID. The evaluated parameters were selectivity, linearity, precision, accuracy and robustness and they are all in accordance with ANVISA and International Conference on Harmonization guidelines. The developed method is reliable for the quantification of sesquiterpenes in Copaifera oleoresins. Both volatile oils and isolated sesquiterpenes had their minimum inhibitory concentration determined against strains of Gram-negative and Gram-positive bacteria and yeasts. Copaifera langsdorffi oleoresin was the only one active against all of the evaluated microorganisms, displaying good antimicrobial potential.
Assuntos
Anti-Infecciosos/isolamento & purificação , Cromatografia Gasosa/métodos , Destilação/métodos , Fabaceae/química , Óleos Voláteis/isolamento & purificação , Anti-Infecciosos/análise , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Limite de Detecção , Modelos Lineares , Óleos Voláteis/análise , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química , Reprodutibilidade dos TestesRESUMO
INTRODUCTION: Galloylquinic acid derivatives and flavonoids are the main phenolic metabolites found in Copaifera langsdorffii leaves (Leguminosae, Detarioideae), a medicinal plant with potential therapeutic application in the treatment of kidney stones. The factors that affect metabolite production in this plant species are not well understood but may include environmental and genetic factors. OBJECTIVE: To quantify the variation in metabolite production over a 12-month period for 10 groups of C. langsdorffii cultivated under the same environmental conditions. METHODS: Copaifera langsdorffii seeds were collected from 10 different regions in southeast, Brazil and grown in the same field. HPLC-UV was used to quantify nine galloylquinic acid derivatives and two flavonoids in leaf samples from mature trees. Climate data for humidity, radiation, precipitation and temperature were provided by the National Institute of Meteorology, Brazil. Multivariate analyses were performed to correlate chemical and environmental variables. RESULTS: The overall effect of environmental factors on the production of phenolic metabolites was uniform among C. langsdorffii groups. Chemical variation between groups was present, but small, and probably due to differences in their genetics and physiology. Seasonal changes influenced the production of the major phenolic metabolites, with increases in temperature and radiation levels favouring metabolite production. CONCLUSION: When C. langsdorffii trees are cultivated in the same environment, the production of the major secondary metabolites found in their leaves is very similar quantitatively, varying based on geographic location of original population and seasonal changes. This favours the standardisation of plant raw material for the production of a phytomedicine.
Assuntos
Fabaceae/metabolismo , Fenóis/análise , Folhas de Planta/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Geografia , Fenóis/metabolismo , Fenóis/normas , Padrões de Referência , Estações do Ano , Espectrofotometria Ultravioleta/métodosRESUMO
Current methods for the authentication of essential oils focus on analyzing their chemical composition. This study describes the use of nanofluidic protein post-translational modification (PTM) profiling to differentiate essential oils by analyzing their biochemical effects. Protein PTM profiling was used to measure the effects of four essential oils, copaiba, mandarin, Melissa, and turmeric, on the phosphorylation of MEK1, MEK2, and ERK1/2 in the MAPK signaling pathway; Akt and 4EBP1 in the pI3K/Akt/mTOR signaling pathway; and STAT3 in the JAK/STAT signaling pathway in cultured HepG2 cells. The gain or loss of the phosphorylation of these proteins served as direct read-outs for the positive or negative regulatory effects of essential oils on their respective signaling pathways. Furthermore, protein PTM profiling and GC-MS were employed side-by-side to assess the quality of the essential oils. In general, protein PTM profiling data concurred with GC-MS data on the identification of adulterated mandarin, Melissa, and turmeric essential oils. Most interestingly, protein PTM profiling data identified the differences in biochemical effects between copaiba essential oils, which were indistinguishable with GC-MS data on their chemical composition. Taken together, nanofluidic protein PTM profiling represents a robust method for the assessment of the quality and therapeutic potential of essential oils.
Assuntos
Citrus/química , Curcuma/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melissa/química , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Técnicas Analíticas Microfluídicas , Óleos Voláteis/química , Fosforilação/efeitos dos fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacosRESUMO
In view of the biological activities and growing therapeutic interest in oleoresin obtained from Copaifera multijuga, this study aimed to determine the genotoxic and antigenotoxic potential of this oleoresin (CMO) and its chemical marker, diterpene (-)-copalic acid (CA). The micronucleus (MN) assay in V79 cell cultures and the Ames test were used for in vitro analyses, as well as MN and comet assays in Swiss mice for in vivo analyses. The in vitro genotoxicity/mutagenicity results showed that either CMO (30, 60, or 120 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) or CA (2.42; 4.84, or 9.7 µg/ml-MN assay; 0.39-3.12 mg/plate-Ames test) did not induce a significant effect on the frequency of MN and number of revertants, demonstrating an absence of genotoxic and mutagenic activities, respectively, in vitro. In contrast, these natural products significantly reduced the frequency of MN induced by methyl methanesulfonate (MMS), and exerted a marked inhibitory effect against indirect-acting mutagens in the Ames test. In the in vivo test system, animals treated with CMO (6.25 mg/kg b.w.) exhibited a significant decrease in rate of MN occurrence compared to those treated only with MMS. An antigenotoxic effect of CA was noted in the MN test (1 and 2 mg/kg b.w.) and the comet assay (0.5 mg/kg b.w.). Data suggest that the chemical marker of the genus Copaifera, CA, may partially be responsible for the observed chemopreventive effect attributed to CMO exposure. ABBREVIATIONS: 2-AA, 2-anthramine; 2-AF, 2-aminofluorene; AFB1, aflatoxin B1; B[a]P, benzo[a]pyrene; BOD, biological oxygen demand; BPDE, benzo[a]pyrene-7,8-diol-9,10-epoxide; CA, (-)-copalic acid; CMO, oleoresin of Copaifera multijuga, DMEM, Dulbecco`s Modified Eagles`s Medium; DMSO, dimethylsulfoxide; EMBRAPA, Brazilian agricultural research corporation; GC-MS, gas chromatography-mass spectrometry; HAM-F10, nutrient mixture F-10 Ham; HPLC, high performance liquid chromatography; LC-MS, liquid chromatography-mass spectrometry; MI, mutagenic index; MMC, mitomycin C; MMS, methyl methanesulfonate; MN, micronucleus; MNPCE, micronucleated polychromatic erythrocyte; NCE, normochromatic erythrocyte; NDI, nuclear division index; NMR, nuclear magnetic resonance; NPD, 4-nitro-o-phenylenediamine; PBS, phosphate-buffered saline; PCE, polychromatic erythrocyte; SA, sodium azide; V79, Chinese hamster lung fibroblast.
Assuntos
Antimutagênicos/farmacologia , Diterpenos/farmacologia , Fabaceae/química , Extratos Vegetais/farmacologia , Animais , Ensaio Cometa , Cricetulus , Fibroblastos/efeitos dos fármacos , Pulmão , Masculino , Camundongos , Testes para Micronúcleos , Testes de MutagenicidadeRESUMO
Foodborne diseases (FBDs) are a serious public health concern worldwide. In this scenario, preservatives based on natural products, especially plants, have attracted researchers' attention because they offer potential antimicrobial action as well as reduced health impact. The genus Copaifera spp., which is native of tropical South America and West Africa, contains several species for which pharmacological activities, including antibacterial effects, have been described. On the basis of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antibiofilm activity (inhibition and eradication), preservative capacity, and Ames test, we evaluated the antibacterial, preservative, and mutagenic potential of Copaifera spp. oleoresins against the causative agents of FBDs. The Copaifera duckei, Copaifera reticulata, Copaifera paupera, and Copaifera pubiflora oleoresins displayed promising MIC/MBC values-from 12.5 to 100 µg/mL-against Staphylococcus aureus (American Type Culture Collection [ATCC] 29213), Listeria monocytogenes (ATCC 15313), and Bacillus cereus (ATCC 14579). C. duckei, C. reticulata, C. paupera, and C. pubiflora oleoresin concentrations ranging from 25 to 200 µg/mL and from 100 to 400 µg/mL inhibited biofilm formation and eradicated biofilms, respectively. The oleoresins did not exert mutagenic effects and had superior food preservative action to sodium benzoate (positive control). In conclusion, Copaifera oleoresins exhibit potential antibacterial activity and are not mutagenic, which makes them a promising source to develop novel natural food preservatives to inhibit foodborne pathogens.
RESUMO
Copaiba oleoresin (CPO), obtained from Copaifera landgroffii, is described as active to a large number of diseases and more recently in the endometriosis treatment. In this work, poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing CPO were obtained using the design of experiments (DOE) as a tool to optimize the production process. The nanoparticles optimized by means of DOE presented an activity in relation to the cellular viability of endometrial cells. The DOE showed that higher amounts of CPO combined with higher surfactant concentrations resulted in better encapsulation efficiency and size distribution along with good stability after freeze drying. The encapsulation efficiency was over 80% for all produced nanoparticles, which also presented sizes below 300 nm and spherical shape. A decrease in viability of endometrial stromal cells from ectopic endometrium of patients with endometriosis and from eutopic endometriotic lesions was demonstrated after 48 h of incubation with the CPO nanoparticles. The nanoparticles without CPO were not able to alter the cell viability of the same cells, indicating that this material was not cytotoxic to the tested cells and suggesting that the effect was specific to CPO. The results indicate that the use of CPO nanoparticles may represent a promising alternative for the treatment of endometriosis.
Assuntos
Portadores de Fármacos/química , Ácido Láctico/química , Nanopartículas/química , Preparações de Plantas/administração & dosagem , Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Endometriose/tratamento farmacológico , Fabaceae/química , Feminino , Liofilização , Humanos , Tamanho da Partícula , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Copolímero de Ácido Poliláctico e Ácido PoliglicólicoRESUMO
Copaiba oil is used as a popular medicine in the Amazonian forest region, especially due to its anti-inflammatory properties. In this paper, we describe the formulation of hydrogel containing copaiba oil nanoemulsions (with positive and negative charges), its skin permeation, and its anti-inflammatory activity in two in vivo models: mouse ear edema and rat paw edema. Three hydrogels were tested (Carbopol®, hydroxyethylcellulose and chitosan), but only Carbopol® and hydroxyethylcellulose hydrogels presented good stability and did not interfere with the nanoemulsions droplet size and polydispersity index. In skin permeation assay, both formulations, positively charged nanoemulsion (PCN) and negatively charged nanoemulsion (NCN), presented a high retention in epidermis (9.76 ± 2.65 µg/g and 7.91 ± 2.46 µg/cm2, respectively) followed by a smaller retention in the dermis (2.43 ± 0.91 and 1.95 ± 0.56 µg/cm2, respectively). They also presented permeation to the receptor fluid (0.67 ± 0.22 and 1.80 ± 0.85 µg/cm2, respectively). In addition, anti-inflammatory effect was observed to NCN and PCN with edema inhibitions of 69 and 67% in mouse ear edema and 32 and 72% in rat paw edema, respectively. Histological cuts showed the decrease of inflammatory factors, such as dermis and epidermis hyperplasia and inflammatory cells infiltration, confirming the anti-inflammatory effect from both copaiba oil nanoemulsions incorporated in hydrogel.
Assuntos
Anti-Inflamatórios/administração & dosagem , Fabaceae/química , Óleos de Plantas/administração & dosagem , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Edema/tratamento farmacológico , Emulsões , Hidrogéis , Masculino , Camundongos , Nanopartículas , Óleos de Plantas/farmacocinética , Óleos de Plantas/uso terapêutico , Ratos , Pele/metabolismoRESUMO
The present study investigated the action of copaiba oil (Copaifera reticulata) on the systemic inflammation, oxidative status, and liver cell metabolism of rats with adjuvant-induced arthritis. The later is an experimental autoimmune pathology that shares many features with the human rheumatoid arthritis. Holtzman rats were distributed into the following groups: control (healthy) rats; control rats treated with copaiba oil at the doses of 0.58 and 1.15 g · kg-1 , arthritic rats, and arthritic rats treated with copaiba oil (0.58 and 1.15 g · kg-1 ). The oil was administrated orally once a day during 18 days after arthritis induction. Both doses of copaiba oil improved the paw edema and the dose of 0.58 mg · kg-1 improved the swollen adrenals and lymph nodes besides decreasing the plasmatic myeloperoxidase activity (-30%) of arthritic rats. Copaiba oil (1.15 g · kg-1 ) abolished the increases of protein carbonyl groups and reactive oxygen species in the liver and both doses increased the liver GSH content and the catalase activity in arthritic rats. Copaiba oil (1.15 g · kg-1 ) decreased glycolysis (-65%), glycogenolysis (-58%), and gluconeogenesis (-30%) in the liver of arthritic animals. However, gluconeogenesis was also diminished by the treatment of control rats, which presented lower body weight gain (-45%) and diminished number of hepatocytes per liver area (-20%) associated to higher liver weight (+29%) and increased hepatocyte area (+13%). The results reveal that copaiba oil presented systemic anti-inflammatory and antioxidant actions in arthritic rats. These beneficial effects, however, were counterbalanced by harmful modifications in the liver cell metabolism and morphology of healthy control rats. J. Cell. Biochem. 118: 3409-3423, 2017. © 2017 Wiley Periodicals, Inc.
Assuntos
Anti-Inflamatórios , Antioxidantes , Artrite Experimental/tratamento farmacológico , Fabaceae/química , Fígado/metabolismo , Óleos de Plantas , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Fígado/patologia , Masculino , Óleos de Plantas/química , Óleos de Plantas/farmacocinética , Óleos de Plantas/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: The regeneration of integrity and tissue homeostasis after injury is a fundamental property and involves complex biological processes fully dynamic and interconnected. Although there are medications prescribed to accelerate the process of wound healing by reducing the exaggerated inflammatory response, comes the need to search for different compounds of Amazonian biodiversity that can contribute to the acceleration of the healing process. Among these products, the copaiba oil-resin is one of the most prominent feature in this scenario, as they have been reported its medicinal properties. METHODS: Aiming to evaluate the anti-inflammatory and healing effect of copaiba oil-resin (Copaifera reticulata Ducke) in transfixing injury of rats' tongues first proceeded up the copaiba oil-resin oral toxicity test in 5 male mice to stipulate the therapeutic dose which was established at 200 mg/kg/day. Then it was induced transfixing injury in a total of 15 Wistar rats. The animals were randomly divided into three groups based on the treatment: control group, dexamethasone group and copaiba oil-resin group. After 7 days of treatment, histological slides stained with hematoxylin and eosin was prepared. Immunohistochemistry for CD68 (macrophage marker) was performed and analyzed by the cell counter Image J. RESULTS: The acute toxicity test showed that the oil-resin copal has low toxicity. Furthermore, copaiba oil-resin therapy modulates the inflammatory response by decreasing the chronic inflammatory infiltrate, edema and specifically the number of macrophages. CONCLUSIONS: The results indicate the potential of the Amazon region and showed up relevant because therapy with this extract modulates the inflammatory process.
Assuntos
Anti-Inflamatórios/administração & dosagem , Fabaceae/química , Extratos Vegetais/administração & dosagem , Óleos de Plantas/administração & dosagem , Resinas Vegetais/administração & dosagem , Doenças da Língua/tratamento farmacológico , Animais , Humanos , Masculino , Ratos , Ratos Wistar , Doenças da Língua/imunologia , Doenças da Língua/fisiopatologia , CicatrizaçãoRESUMO
The effects of topical copaiba oil extract and topical corticosteroid were assessed on oral wound healing in an in vivo model using 96 male Wistar rats. Traumatic ulcers were caused in the dorsum of the tongue using a 3-mm punch tool. The animals were divided into: Control; Corticosteroid; Placebo and Copaiba oil Group. The animals received two daily applications of the products. The control group received only daily handling. Six rats in each group were euthanized at days 3, 5, 10 and 14. The animals were monitored daily to determine wound status. The weigh was assessed at day 0 and euthanasia day. The percentage of repair was calculated, and histopathological aspects were analyzed. The Kruskal-Wallis test was used to compare the results between groups and times of evaluation. Closing time was assessed through the log-rank test. The corticosteroid group lost more weight at days 10 and 14 than the control group (p < 0.05). Moreover, the healing time of corticosteroid group was longer than the control group (p = 0.007). No differences were observed between the copaiba oil group and the control group. We concluded that topical copaiba oil, in spite of being safe, did not accelerate the process of oral wound healing. Copyright © 2017 John Wiley & Sons, Ltd.
Assuntos
Fabaceae/química , Úlceras Orais/tratamento farmacológico , Óleos de Plantas/farmacologia , Cicatrização/efeitos dos fármacos , Administração Tópica , Corticosteroides/farmacologia , Animais , Masculino , Distribuição Aleatória , Ratos , Ratos WistarRESUMO
Complexation with cyclodextrins (CDs) is a technique that has been extensively used to increase the aqueous solubility of oils and improve their stability. In addition, this technique has been used to convert oils into solid materials. This work aims to develop inclusion complexes of Copaifera multijuga oleoresin (CMO), which presents anti-inflammatory activity, with ß-cyclodextrin (ß-CD) and hydroxypropyl-ß-cyclodextrin (HP-ß-CD) by kneading (KND) and slurry (SL) methods. Physicochemical characterization was performed to verify the occurrence of interactions between CMO and the cyclodextrins. Carrageenan-induced hind paw edema in mice was carried out to evaluate the anti-inflammatory activity of CMO alone as well as complexed with CDs. Physicochemical characterization confirmed the formation of inclusion complex of CMO with both ß-CD and HP-ß-CD by KND and SL methods. Carrageenan-induced paw edema test showed that the anti-inflammatory activity of CMO was maintained after complexation with ß-CD and HP-ß-CD, where they were able to decrease the levels of nitrite and myeloperoxidase. In conclusion, this study showed that it is possible to produce inclusion complexes of CMO with CDs by KND and SL methods without any change in CMO's anti-inflammatory activity.
Assuntos
Anti-Inflamatórios/administração & dosagem , Ciclodextrinas/química , Fabaceae/química , Inflamação/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Carragenina/efeitos adversos , Cristalografia por Raios X , Composição de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Camundongos , Nitritos/metabolismo , Peroxidase/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , SolubilidadeRESUMO
In this article, the in vitro schistosomicidal effects of three Brazilian Copaifera oleoresins (C. duckei, C. langsdorffii, and C. reticulata) are reported. From these botanical sources, the oleoresin of C. duckei (OCd) demonstrated to be the most promising, displaying LC50 values of 75.8, 50.6, and 47.2 µg/ml at 24, 48, and 72 h of incubation, respectively, against adult worms of Schistosoma mansoni, with a selectivity index of 10.26. Therefore, the major compounds from OCd were isolated, and the diterpene, (-)-polyalthic acid (PA), showed to be active (LC50 values of 41.7, 36.2, and 33.4 µg/ml, respectively, at 24, 48, and 72 h of incubation). Moreover, OCd and PA affected the production and development of eggs, and OCd modified the functionality of the tegument of S. mansoni. Possible synergistic and/or additive effects of this balsam were also verified when a mixture of the two of its main compounds (PA and ent-labd-8(17)-en-15,18-dioic acid) in the specific proportion of 3:1 (w/w) was tested. The obtained results indicate that PA should be considered for further investigations against S. mansoni, such as, synergistic (combination with praziquantel (PZQ)) and in vivo studies. It also shows that diterpenes are an important class of natural compounds for the investigation of agents capable of fighting the parasite responsible for human schistosomiasis.
Assuntos
Diterpenos/farmacologia , Fabaceae/química , Schistosoma mansoni/efeitos dos fármacos , Esquistossomicidas/farmacologia , Animais , Brasil , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Esquistossomicidas/química , Esquistossomicidas/isolamento & purificaçãoRESUMO
Oral infections such as periodontitis and tooth decay are the most common diseases of humankind. Oleoresins from different copaifera species display antimicrobial and anti-inflammatory activities. Copaifera reticulata is the commonest tree of this genus and grows abundantly in several Brazilian states, such as Pará, Amazonas, and Ceará. The present study has evaluated the chemical composition and antimicrobial potential of the Copaifera reticulata oleoresin (CRO) against the causative agents of tooth decay and periodontitis and has assessed the CRO cytotoxic potential. Cutting edge analytical techniques (GC-MS and LC-MS) aided the chemical characterization of CRO. Antimicrobial assays included determination of the Minimum Inhibitory Concentration (MIC), determination of the Minimum Bactericidal Concentration (MBC), determination of the Minimum Inhibitory Concentration of Biofilm (MICB50), Time Kill Assay, and Checkerboard Dilution. Conduction of XTT assays on human lung fibroblasts (GM07492-A cells) helped to examine the CRO cytotoxic potential. Chromatographic analyses revealed that the major constituents of CRO were ß-bisabolene, trans-α-bergamotene, ß-selinene, α-selinene, and the terpene acids ent-agathic-15-methyl ester, ent-copalic acid, and ent-polyalthic acid. MIC and MBC results ranged from 6.25 to 200 µg/mL against the tested bacteria. The time-kill assay conducted with CRO at concentrations between 50 and 100 µg/mL showed bactericidal activity against Fusobacterium nucleatum (ATCC 25586) and Streptococcus mitis (ATCC 49456) after 4 h, Prevotella nigrescens (ATCC 33563) after 6 h, Porphyromonas gingivalis (ATCC 33277) and Lactobacillus casei (clinical isolate) after 12 h, and Streptococcus salivarius (ATCC 25975) and Streptococcus mutans (ATCC 25175) after 18 h. The fractional inhibitory concentration indexes (FICIs) revealed antagonistic interaction for Lactobacillus casei (clinical isolate), indifferent effect for Porphyromonas gingivalis (ATCC 33277), Fusobacterium nucleatum (ATCC 25586), Prevotella nigrescens (ATCC 33563), and Streptococcus salivarius (ATCC 25975), and additive effect for Streptococcus mutans (ATCC 25175) and Streptococcus mitis (ATCC 49456). Treatment of GM07492-A cells with CRO demonstrated that concentrations up to 39 µg/mL significantly reduced cell viability as compared to the negative control, being IC50 equal to 51.85 ± 5.4 µg/mL. These results indicated that CRO plays an important part in the search for novel sources of agents that can act against oral pathogens.