Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.229
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38771245

RESUMO

Arterial spin-labeled perfusion and blood oxygenation level-dependent functional MRI are indispensable tools for noninvasive human brain imaging in clinical and cognitive neuroscience, yet concerns persist regarding the reliability and reproducibility of functional MRI findings. The circadian rhythm is known to play a significant role in physiological and psychological responses, leading to variability in brain function at different times of the day. Despite this, test-retest reliability of brain function across different times of the day remains poorly understood. This study examined the test-retest reliability of six repeated cerebral blood flow measurements using arterial spin-labeled perfusion imaging both at resting-state and during the psychomotor vigilance test, as well as task-induced cerebral blood flow changes in a cohort of 38 healthy participants over a full day. The results demonstrated excellent test-retest reliability for absolute cerebral blood flow measurements at rest and during the psychomotor vigilance test throughout the day. However, task-induced cerebral blood flow changes exhibited poor reliability across various brain regions and networks. Furthermore, reliability declined over longer time intervals within the day, particularly during nighttime scans compared to daytime scans. These findings highlight the superior reliability of absolute cerebral blood flow compared to task-induced cerebral blood flow changes and emphasize the importance of controlling time-of-day effects to enhance the reliability and reproducibility of future brain imaging studies.


Assuntos
Encéfalo , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Descanso , Humanos , Masculino , Feminino , Adulto , Circulação Cerebrovascular/fisiologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/irrigação sanguínea , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Desempenho Psicomotor/fisiologia , Ritmo Circadiano/fisiologia , Nível de Alerta/fisiologia
2.
Biostatistics ; 24(4): 833-849, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35861621

RESUMO

Cluster randomized trials often exhibit a three-level structure with participants nested in subclusters such as health care providers, and subclusters nested in clusters such as clinics. While the average treatment effect has been the primary focus in planning three-level randomized trials, interest is growing in understanding whether the treatment effect varies among prespecified patient subpopulations, such as those defined by demographics or baseline clinical characteristics. In this article, we derive novel analytical design formulas based on the asymptotic covariance matrix for powering confirmatory analyses of treatment effect heterogeneity in three-level trials, that are broadly applicable to the evaluation of cluster-level, subcluster-level, and participant-level effect modifiers and to designs where randomization can be carried out at any level. We characterize a nested exchangeable correlation structure for both the effect modifier and the outcome conditional on the effect modifier, and generate new insights from a study design perspective for conducting analyses of treatment effect heterogeneity based on a linear mixed analysis of covariance model. A simulation study is conducted to validate our new methods and two real-world trial examples are used for illustrations.


Assuntos
Projetos de Pesquisa , Humanos , Tamanho da Amostra , Análise por Conglomerados , Ensaios Clínicos Controlados Aleatórios como Assunto , Simulação por Computador
3.
J Magn Reson Imaging ; 59(1): 325-336, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141174

RESUMO

BACKGROUND: There exist several fMRI quality assurance measures to assess scanner stability. Because they have practical and/or theoretical limitations, a different and more practical measure for instability would be desirable. PURPOSE: To develop and test a sensitive, reliable and widely applicable temporal instability measure (TIM) for fMRI quality assurance. STUDY TYPE: Technical development. PHANTOM: Spherical gel phantom. POPULATION: A total of 120 datasets from a local Philips scanner with two different receive-only head coils (32ch and 8ch, 60 datasets per coil) were collected as well as 29 additional datasets with three different receive-only head coils (20ch, 32ch, and 64ch) from two additional sites with GE (seven runs with 32ch) and Siemens scanners (seven runs with 32ch and Multiband imaging, five runs with 20ch, 32ch, and 64ch) were borrowed. FIELD STRENGTH/SEQUENCE: 2D Echo-planar-imaging (EPI). ASSESSMENT: A new TIM was proposed that is based on the eigenratio of the correlation coefficient matrix, where each entry of the matrix is a correlation coefficient between two time-points of the time-series. STATISTICAL TESTS: Nonparametric bootstrap resampling was used twice to estimate confidence intervals (CI) of the TIM values and to assess the improved sensitivity of this measure. Differences in coil performance were assessed via a nonparametric bootstrap two-sample t-test. P-values <0.05 were considered significant. RESULTS: The TIM values ranged between 60 parts-per-million and 10,780 parts-per-million across all 149 experiments. The mean CI was 2.96% and 2.16% for the 120 and 29 fMRI datasets, respectively (the repeated bootstrap analysis gave 2.9% and 2.19%, respectively). The 32ch coils of the local Philips data provided more stable measurements than the 8ch coil (observed two-sample t-values = 26.36, -0.2 and -6.2 for TIM, tSNR, and RDC, respectively. PtSNR = 0.58). DATA CONCLUSION: The proposed TIM is particularly useful for multichannel coils with spatially nonuniform receive sensitivity and overcomes several limitations of other measures. As such, it provides a reliable test for ascertaining scanner stability for fMRI experiments. EVIDENCE LEVEL: 5. TECHNICAL EFFICACY: Stage 1.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes
4.
J Microsc ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349020

RESUMO

Colocalisation microscopy analysis provides an intuitive and straightforward way of determining if two biomolecules occupy the same diffraction-limited volume. A popular colocalisation coefficient, the Pearson's correlation coefficient (PCC), can be calculated using different pixel selection criteria: PCCALL includes all image pixels, PCCOR only pixels exceeding the intensity thresholds for either one of the detection channels, and PCCAND only pixels exceeding the intensity thresholds for both detection channels. Our results show that PCCALL depends on the foreground to background ratio, producing values influenced by factors unrelated to biomolecular association. PCCAND focuses on areas with the highest intensities in both channels, which allows it to detect low levels of colocalisation, but makes it inappropriate for evaluating spatial cooccurrence between the signals. PCCOR produces values influenced both by signal proportionality and spatial cooccurrence but can sometimes overemphasise the lack of the latter. Overall, PCCAND excels at detecting low levels of colocalisation, PCCOR provides a balanced quantification of signal proportionality and spatial coincidence, and PCCALL risks misinterpretation yet avoids segmentation challenges. Awareness of their distinct properties should inform their appropriate application with the aim of accurately representing the underlying biology.

5.
J Sleep Res ; : e14149, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284151

RESUMO

For the first time, we determined whether actigraphic-assessed sleep measures show inter-individual differences and intra-individual stability during baseline (BL) and recovery (REC) phases surrounding repeated total sleep deprivation (TSD). We conducted a 5-day experiment at Months 2 and 4 in two separate studies (N = 11). During each experiment, sleep measures were collected via wrist actigraphy during two BL 8 h time-in-bed (TIB) nights (B1, B2) and during two REC 8-10 h TIB nights (R1, R2). Intraclass correlation coefficients (ICCs) assessed actigraphic measure long-term stability between 2 and 4 months for (1) the pre-experimental phase before BL; and (2) the BL (B1 + B2), REC (R1 + R2), and BL and REC average (BL + REC) phases; and short-term stability at Month 2 and at Month 4; and (3) between B1 versus B2 and R1 versus R2 in each 5-day experiment. Nearly all ICCs during the pre-experimental, BL, REC, and BL + REC phases were moderate to almost perfect (0.446-0.970) between Months 2 and 4. B1 versus B2 ICCs were more stable (0.440-0.899) than almost all R1 versus R2 ICCs (-0.696 to 0.588) at Month 2 and 4. Actigraphic sleep measures show phenotypic long-term stability during BL and REC surrounding repeated TSD between 2 and 4 months. Furthermore, within each 5-day experiment at Month 2 and 4, the two BL nights before TSD were more stable than the two REC nights following TSD, likely due to increased R1 homeostatic pressure. Given the consistency of actigraphic measures across the short-term and long-term, they can serve as biomarkers to predict physiological and neurobehavioral responses to sleep loss.

6.
Stat Med ; 43(5): 890-911, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38115805

RESUMO

Stepped wedge design is a popular research design that enables a rigorous evaluation of candidate interventions by using a staggered cluster randomization strategy. While analytical methods were developed for designing stepped wedge trials, the prior focus has been solely on testing for the average treatment effect. With a growing interest on formal evaluation of the heterogeneity of treatment effects across patient subpopulations, trial planning efforts need appropriate methods to accurately identify sample sizes or design configurations that can generate evidence for both the average treatment effect and variations in subgroup treatment effects. To fill in that important gap, this article derives novel variance formulas for confirmatory analyses of treatment effect heterogeneity, that are applicable to both cross-sectional and closed-cohort stepped wedge designs. We additionally point out that the same framework can be used for more efficient average treatment effect analyses via covariate adjustment, and allows the use of familiar power formulas for average treatment effect analyses to proceed. Our results further sheds light on optimal design allocations of clusters to maximize the weighted precision for assessing both the average and heterogeneous treatment effects. We apply the new methods to the Lumbar Imaging with Reporting of Epidemiology Trial, and carry out a simulation study to validate our new methods.


Assuntos
Projetos de Pesquisa , Heterogeneidade da Eficácia do Tratamento , Humanos , Estudos Transversais , Ensaios Clínicos Controlados Aleatórios como Assunto , Simulação por Computador , Tamanho da Amostra , Análise por Conglomerados
7.
Stat Med ; 43(7): 1458-1474, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38488532

RESUMO

Generalized estimating equations (GEEs) provide a useful framework for estimating marginal regression parameters based on data from cluster randomized trials (CRTs), but they can result in inaccurate parameter estimates when some outcomes are informatively missing. Existing techniques to handle missing outcomes in CRTs rely on correct specification of a propensity score model, a covariate-conditional mean outcome model, or require at least one of these two models to be correct, which can be challenging in practice. In this article, we develop new weighted GEEs to simultaneously estimate the marginal mean, scale, and correlation parameters in CRTs with missing outcomes, allowing for multiple propensity score models and multiple covariate-conditional mean models to be specified. The resulting estimators are consistent provided that any one of these models is correct. An iterative algorithm is provided for implementing this more robust estimator and practical considerations for specifying multiple models are discussed. We evaluate the performance of the proposed method through Monte Carlo simulations and apply the proposed multiply robust estimator to analyze the Botswana Combination Prevention Project, a large HIV prevention CRT designed to evaluate whether a combination of HIV-prevention measures can reduce HIV incidence.


Assuntos
Infecções por HIV , Modelos Estatísticos , Humanos , Simulação por Computador , Interpretação Estatística de Dados , Ensaios Clínicos Controlados Aleatórios como Assunto , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Análise por Conglomerados
8.
BMC Med Res Methodol ; 24(1): 179, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123109

RESUMO

BACKGROUND: Randomised, cluster-based study designs in schools are commonly used to evaluate children's physical activity interventions. Sample size estimation relies on accurate estimation of the intra-cluster correlation coefficient (ICC), but published estimates, especially using accelerometry-measured physical activity, are few and vary depending on physical activity outcome and participant age. Less commonly-used cluster-based designs, such as stepped wedge designs, also need to account for correlations over time, e.g. cluster autocorrelation (CAC) and individual autocorrelation (IAC), but no estimates are currently available. This paper estimates the school-level ICC, CAC and IAC for England children's accelerometer-measured physical activity outcomes by age group and gender, to inform the design of future school-based cluster trials. METHODS: Data were pooled from seven large English datasets of accelerometer-measured physical activity data between 2002-18 (> 13,500 pupils, 540 primary and secondary schools). Linear mixed effect models estimated ICCs for weekday and whole week for minutes spent in moderate-to-vigorous physical activity (MVPA) and being sedentary for different age groups, stratified by gender. The CAC (1,252 schools) and IAC (34,923 pupils) were estimated by length of follow-up from pooled longitudinal data. RESULTS: School-level ICCs for weekday MVPA were higher in primary schools (from 0.07 (95% CI: 0.05, 0.10) to 0.08 (95% CI: 0.06, 0.11)) compared to secondary (from 0.04 (95% CI: 0.03, 0.07) to (95% CI: 0.04, 0.10)). Girls' ICCs were similar for primary and secondary schools, but boys' were lower in secondary. For all ages, combined the CAC was 0.60 (95% CI: 0.44-0.72), and the IAC was 0.46 (95% CI: 0.42-0.49), irrespective of follow-up time. Estimates were higher for MVPA vs sedentary time, and for weekdays vs the whole week. CONCLUSIONS: Adequately powered studies are important to evidence effective physical activity strategies. Our estimates of the ICC, CAC and IAC may be used to plan future school-based physical activity evaluations and were fairly consistent across a range of ages and settings, suggesting that results may be applied to other high income countries with similar school physical activity provision. It is important to use estimates appropriate to the study design, and that match the intended study population as closely as possible.


Assuntos
Acelerometria , Exercício Físico , Instituições Acadêmicas , Humanos , Criança , Inglaterra , Acelerometria/métodos , Acelerometria/estatística & dados numéricos , Feminino , Masculino , Exercício Físico/fisiologia , Instituições Acadêmicas/estatística & dados numéricos , Análise por Conglomerados , Adolescente , Fatores Sexuais , Fatores Etários
9.
Hepatol Res ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349813

RESUMO

AIM: This study aimed to establish the shear wave measurement (SWM) cut-off value for each fibrosis stage using magnetic resonance (MR) elastography values as a reference standard. METHODS: We prospectively analyzed 594 patients with chronic liver disease who underwent SWM and MR elastography. Correlation coefficients (were analyzed, and the diagnostic value was evaluated by the area under the receiver operating characteristic curve. Liver stiffness was categorized by MR elastography as F0 (<2.61 kPa), F1 (≥2.61 kPa, <2.97 kPa, any fibrosis), F2 (≥2.97 kPa, <3.62 kPa, significant fibrosis), F3 (≥3.62 kPa, <4.62 kPa, advanced fibrosis), or F4 (≥4.62 kPa, cirrhosis). RESULTS: The median SWM values increased significantly with increasing fibrosis stage (p < 0.001). The correlation coefficient between SWM and MR elastography values was 0.793 (95% confidence interval 0.761-0.821). The correlation coefficients between SWM and MR elastography values significantly decreased with increasing body mass index and skin-capsular distance; skin-capsular distance values were associated with significant differences in sensitivity, specificity, accuracy, or positive predictive value, whereas body mass index values were not. The best cut-off values for any fibrosis, significant fibrosis, advanced fibrosis, and cirrhosis were 6.18, 7.09, 8.05, and 10.89 kPa, respectively. CONCLUSIONS: This multicenter study in a large number of patients established SWM cut-off values for different degrees of fibrosis in chronic liver diseases using MR elastography as a reference standard. It is expected that these cut-off values will be applied to liver diseases in the future.

10.
Hepatol Res ; 54(7): 638-654, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38294946

RESUMO

AIM: This study aimed to evaluate the diagnostic performance of attenuation measurement (ATT; dual-frequency method) and improved algorithm of ATT (iATT; reference method) for the assessment of hepatic steatosis using magnetic resonance imaging (MRI)-derived proton density fat fraction (PDFF) as the reference standard. METHODS: We prospectively analyzed 427 patients with chronic liver disease who underwent ATT, iATT, or MRI-derived PDFF. Correlation coefficients were analyzed, and diagnostic values were evaluated by area under the receiver operating characteristic curve (AUROC). The steatosis grade was categorized as S0 (<5.2%), S1 (≥5.2%, <11.3%), S2 (≥11.3%, <17.1%), and S3 (≥17.1%) according to MRI-derived PDFF values. RESULTS: The median ATT and iATT values were 0.61 dB/cm/MHz (interquartile range 0.55-0.67 dB/cm/MHz) and 0.66 dB/cm/MHz (interquartile range 0.57-0.77 dB/cm/MHz). ATT and iATT values increased significantly as the steatosis grade increased in the order S0, S1, S2, and S3 (p < 0.001). The correlation coefficients between ATT or iATT values and MRI-derived PDFF values were 0.533 (95% confidence interval [CI] 0.477-0.610) and 0.803 (95% CI 0.766-0.834), with a significant difference between them (p < 0.001). For the detection of hepatic steatosis of ≥S1, ≥S2, and ≥S3, iATT yielded AUROCs of 0.926 (95% CI 0.901-0.951), 0.913 (95% CI 0.885-0.941), and 0.902 (95% CI 0.869-0.935), with significantly higher AUROC values than for ATT (p < 0.001, p < 0.001, p = 0.001). CONCLUSION: iATT showed excellent diagnostic performance for hepatic steatosis, and was strongly correlated with MRI-derived PDFF, with AUROCs of ≥0.900.

11.
Clin Trials ; : 17407745241244790, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650332

RESUMO

BACKGROUND/AIMS: When designing a cluster randomized trial, advantages and disadvantages of tentative designs must be weighed. The stepped wedge design is popular for multiple reasons, including its potential to increase power via improved efficiency relative to a parallel-group design. In many realistic settings, it will take time for clusters to fully implement the intervention. When designing the HEALing (Helping to End Addiction Long-termSM) Communities Study, implementation time was a major consideration, and we examined the efficiency and practicality of three designs. Specifically, a three-sequence stepped wedge design with implementation periods, a corresponding two-sequence modified design that is created by removing the middle sequence, and a parallel-group design with baseline and implementation periods. In this article, we study the relative efficiencies of these specific designs. More generally, we study the relative efficiencies of modified designs when the stepped wedge design with implementation periods has three or more sequences. We also consider different correlation structures. METHODS: We compare efficiencies of stepped wedge designs with implementation periods consisting of three to nine sequences with a variety of corresponding designs. The three-sequence design is compared to the two-sequence modified design and to the parallel-group design with baseline and implementation periods analysed via analysis of covariance. Stepped wedge designs with implementation periods consisting of four or more sequences are compared to modified designs that remove all or a subset of 'middle' sequences. Efficiencies are based on the use of linear mixed effects models. RESULTS: In the studied settings, the modified design is more efficient than the three-sequence stepped wedge design with implementation periods. The parallel-group design with baseline and implementation periods with analysis of covariance-based analysis is often more efficient than the three-sequence design. With respect to stepped wedge designs with implementation periods that are comprised of more sequences, there are often corresponding modified designs that improve efficiency. However, use of only the first and last sequences has the potential to be either relatively efficient or inefficient. Relative efficiency is impacted by the strength of the statistical correlation among outcomes from the same cluster; for example, the relative efficiencies of modified designs tend to be greater for smaller cluster auto-correlation values. CONCLUSION: If a three-sequence stepped wedge design with implementation periods is being considered for a future cluster randomized trial, then a corresponding modified design using only the first and last sequences should be considered if sole focus is on efficiency. However, a parallel-group design with baseline and implementation periods and analysis of covariance-based analysis can be a practical, efficient alternative. For stepped wedge designs with implementation periods and a larger number of sequences, modified versions that remove 'middle' sequences should be considered. Due to the potential sensitivity of design efficiencies, statistical correlation should be carefully considered.

12.
Plant Cell Rep ; 43(7): 165, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861173

RESUMO

KEY MESSAGE: SmSAUR4, SmSAUR18, SmSAUR28, SmSAUR37, and SmSAUR38 were probably involved in the auxin-mediated root development in Salvia miltiorrhiza. Salvia miltiorrhiza is a widely utilized medicinal plant in China. Its roots and rhizomes are the main medicinal portions and are closely related to the quality of this herb. Previous studies have revealed that auxin plays pivotal roles in S. miltiorrhiza root development. Whether small auxin-up RNA genes (SAURs), which are crucial early auxin response genes, are involved in auxin-mediated root development in S. miltiorrhiza is worthy of investigation. In this study, 55 SmSAUR genes in S. miltiorrhiza were identified, and their physical and chemical properties, gene structure, cis-acting elements, and evolutionary relationships were analyzed. The expression levels of SmSAUR genes in different organs of S. miltiorrhiza were detected using RNA-seq combined with qRT‒PCR. The root development of S. miltiorrhiza seedlings was altered by the application of indole-3-acetic acid (IAA), and Pearson correlation coefficient analysis was conducted to screen SmSAURs that potentially participate in this physiological process. The diameter of primary lateral roots was positively correlated with SmSAUR4. The secondary lateral root number was positively correlated with SmSAUR18 and negatively correlated with SmSAUR4. The root length showed a positive correlation with SmSAUR28 and SmSAUR37 and a negative correlation with SmSAUR38. The fresh root biomass exhibited a positive correlation with SmSAUR38 and a negative correlation with SmSAUR28. The aforementioned SmSAURs were likely involved in auxin-mediated root development in S. miltiorrhiza. Our study provides a comprehensive overview of SmSAURs and provides the groundwork for elucidating the molecular mechanism underlying root morphogenesis in this species.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Raízes de Plantas , Salvia miltiorrhiza , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Filogenia , Genes de Plantas , Genoma de Planta , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
13.
Am J Otolaryngol ; 45(4): 104323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677144

RESUMO

BACKGROUND: Subglottic stenosis (SGS) is a condition leading to narrowing of the upper airway which can lead to dyspnea and life-threatening airway obstruction. Although other proposed grading systems exist, the Cotton Myer (CM) and percent stenosis systems are the most widespread in clinical practice. Despite this, the CM system has not yet been validated for visual assessment of SGS. OBJECTIVE: To determine the interrater and intrarater reliability of the CM grading system among a cohort of physicians who manage patients with SGS. METHODS: An online survey created with videos of tracheoscopies from 20 adult patients with subglotticstenosis (SGS) was sent individually to 9 expert physicians from various medical specialties, all of whom managed patients with SGS. Physicians were asked to view the 20 tracheoscopy videos and assess both the percent stenosis and Cotton Myer (CM) grade of each patient. After a period of 4 weeks, the physicians were sent the same survey of the 20 tracheoscopy videos. The interrater and intrarater reliability was calculated using the intraclass correlation coefficient (ICC), a measurement used to evaluate the reliability (the extent to which a measurement can be replicated) of two or more raters measuring the same subject. RESULTS: Overall, CM and percent stenosis systems were found to have an ICC of 0.94 and 0.90 within the domain of interrater reliability, respectively, and ICC of 0.71 and 0.81 within the domain of intrarater reliability, respectively. CONCLUSION: Our findings suggest that the CM and percent stenosis grading systems remain a valid clinical tool to measure and communicate the severity of airway obstruction in SGS.


Assuntos
Laringoestenose , Índice de Gravidade de Doença , Humanos , Laringoestenose/diagnóstico , Reprodutibilidade dos Testes , Variações Dependentes do Observador , Adulto , Gravação em Vídeo , Inquéritos e Questionários , Masculino , Feminino
14.
J Appl Clin Med Phys ; 25(8): e14442, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922790

RESUMO

PURPOSE: To propose radiomics features as a superior measure for evaluating the segmentation ability of physicians and auto-segmentation tools and to compare its performance with the most commonly used metrics: Dice similarity coefficient (DSC), surface Dice similarity coefficient (sDSC), and Hausdorff distance (HD). MATERIALS/METHODS: The data of 10 lung cancer patients' CT images with nine tumor segmentations per tumor were downloaded from the RIDER (Reference Database to Evaluate Response) database. Radiomics features of 90 segmented tumors were extracted using the PyRadiomics program. The intraclass correlation coefficient (ICC) of radiomics features were used to evaluate the segmentation similarity and compare their performance with DSC, sDSC, and HD. We calculated one ICC per radiomics feature and per tumor for nine segmentations and 36 ICCs per radiomics feature for 36 pairs of nine segmentations. Meanwhile, there were 360 DSC, sDSC, and HD values calculated for 36 pairs for 10 tumors. RESULTS: The ICC of radiomics features exhibited greater sensitivity to segmentation changes than DSC and sDSC. The ICCs of the wavelet-LLL first order Maximum, wavelet-LLL glcm MCC, wavelet-LLL glcm Cluster Shade features ranged from 0.130 to 0.997, 0.033 to 0.978, and 0.160 to 0.998, respectively. On the other hand, all DSC and sDSC were larger than 0.778 and 0.700, respectively, while HD varied from 0 to 1.9 mm. The results indicated that the radiomics features could capture subtle variations in tumor segmentation characteristics, which could not be easily detected by DSC and sDSC. CONCLUSIONS: This study demonstrates the superiority of radiomics features with ICC as a measure for evaluating a physician's tumor segmentation ability and the performance of auto-segmentation tools. Radiomics features offer a more sensitive and comprehensive evaluation, providing valuable insights into tumor characteristics. Therefore, the new metrics can be used to evaluate new auto-segmentation methods and enhance trainees' segmentation skills in medical training and education.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares , Radiômica , Tomografia Computadorizada por Raios X , Humanos , Algoritmos , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos
15.
Sensors (Basel) ; 24(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38474905

RESUMO

To address the limitations of LiDAR dynamic target detection methods, which often require heuristic thresholding, indirect computational assistance, supplementary sensor data, or postdetection, we propose an innovative method based on multidimensional features. Using the differences between the positions and geometric structures of point cloud clusters scanned by the same target in adjacent frame point clouds, the motion states of the point cloud clusters are comprehensively evaluated. To enable the automatic precision pairing of point cloud clusters from adjacent frames of the same target, a double registration algorithm is proposed for point cloud cluster centroids. The iterative closest point (ICP) algorithm is employed for approximate interframe pose estimation during coarse registration. The random sample consensus (RANSAC) and four-parameter transformation algorithms are employed to obtain precise interframe pose relations during fine registration. These processes standardize the coordinate systems of adjacent point clouds and facilitate the association of point cloud clusters from the same target. Based on the paired point cloud cluster, a classification feature system is used to construct the XGBoost decision tree. To enhance the XGBoost training efficiency, a Spearman's rank correlation coefficient-bidirectional search for a dimensionality reduction algorithm is proposed to expedite the optimal classification feature subset construction. After preliminary outcomes are generated by XGBoost, a double Boyer-Moore voting-sliding window algorithm is proposed to refine the final LiDAR dynamic target detection accuracy. To validate the efficacy and efficiency of our method in LiDAR dynamic target detection, an experimental platform is established. Real-world data are collected and pertinent experiments are designed. The experimental results illustrate the soundness of our method. The LiDAR dynamic target correct detection rate is 92.41%, the static target error detection rate is 1.43%, and the detection efficiency is 0.0299 s. Our method exhibits notable advantages over open-source comparative methods, achieving highly efficient and precise LiDAR dynamic target detection.

16.
Sensors (Basel) ; 24(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474979

RESUMO

Coastal levees play a role in protecting coastal areas from storm surges and high waves, and they provide important input information for inundation damage simulations. However, coastal levee data with uniformity and sufficient accuracy for inundation simulations are not always well developed. Against this background, this study proposed a method to extract coastal levees by inputting high spatial resolution optical satellite image products (RGB images, digital surface models (DSMs), and slope images that can be generated from DSM images), which have high data availability at the locations and times required for simulation, into a deep learning model. The model is based on U-Net, and post-processing for noise removal was introduced to further improve its accuracy. We also proposed a method to calculate levee height using a local maximum filter by giving DSM values to the extracted levee pixels. The validation was conducted in the coastal area of Ibaraki Prefecture in Japan as a test area. The levee mask images for training were manually created by combining these data with satellite images and Google Street View, because the levee GIS data created by the Ibaraki Prefectural Government were incomplete in some parts. First, the deep learning models were compared and evaluated, and it was shown that U-Net was more accurate than Pix2Pix and BBS-Net in identifying levees. Next, three cases of input images were evaluated: (Case 1) RGB image only, (Case 2) RGB and DSM images, and (Case 3) RGB, DSM, and slope images. Case 3 was found to be the most accurate, with an average Matthews correlation coefficient of 0.674. The effectiveness of noise removal post-processing was also demonstrated. In addition, an example of the calculation of levee heights was presented and evaluated for validity. In conclusion, this method was shown to be effective in extracting coastal levees. The evaluation of generalizability and use in actual inundation simulations are future tasks.

17.
Biom J ; 66(1): e2200307, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37768850

RESUMO

In an individually randomized group treatment (IRGT) trial, participant outcomes can be positively correlated due to, for example, shared therapists in treatment delivery. Oftentimes, because of limited treatment resources or participants at one location, an IRGT trial can be carried out across multiple centers. This design can be subject to potential correlations in the participant outcomes between arms within the same center. While the design of a single-center IRGT trial has been studied, little is known about the planning of a multicenter IRGT trial. To address this gap, this paper provides analytical sample size formulas for designing multicenter IRGT trials with a continuous endpoint under the linear mixed model framework. We found that accounting for the additional center-level correlation at the design stage can lead to sample size reduction, and the magnitude of reduction depends on the amount of between-therapist correlation. However, if the variance components of therapist-level random effects are considered as input parameters in the design stage, accounting for the additional center-level variance component has no impact on the sample size estimation. We presented our findings through numeric illustrations and performed simulation studies to validate our sample size procedures under different scenarios. Optimal design configurations under the multicenter IRGT trials have also been discussed, and two real-world trial examples are drawn to illustrate the use of our method.


Assuntos
Projetos de Pesquisa , Humanos , Análise por Conglomerados , Simulação por Computador , Modelos Lineares , Tamanho da Amostra
18.
J Xray Sci Technol ; 32(2): 253-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189732

RESUMO

BACKGROUND: The coronavirus disease 2019 is a serious and highly contagious disease caused by infection with a newly discovered virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). OBJECTIVE: A Computer Aided Diagnosis (CAD) system to assist physicians to diagnose Covid-19 from chest Computed Tomography (CT) slices is modelled and experimented. METHODS: The lung tissues are segmented using Otsu's thresholding method. The Covid-19 lesions have been annotated as the Regions of Interest (ROIs), which is followed by texture and shape extraction. The obtained features are stored as feature vectors and split into 80:20 train and test sets. To choose the optimal features, Whale Optimization Algorithm (WOA) with Support Vector Machine (SVM) classifier's accuracy is employed. A Multi-Layer Perceptron (MLP) classifier is trained to perform classification with the selected features. RESULTS: Comparative experimentations of the proposed system with existing eight benchmark Machine Learning classifiers using real-time dataset demonstrates that the proposed system with 88.94% accuracy outperforms the benchmark classifier's results. Statistical analysis namely, Friedman test, Mann Whitney U test and Kendall's Rank Correlation Coefficient Test has been performed which indicates that the proposed method has a significant impact on the novel dataset considered. CONCLUSION: The MLP classifier's accuracy without feature selection yielded 80.40%, whereas with feature selection using WOA, it yielded 88.94%.


Assuntos
COVID-19 , Máquina de Vetores de Suporte , Humanos , Animais , COVID-19/diagnóstico por imagem , Baleias , SARS-CoV-2 , Algoritmos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Teste para COVID-19
19.
Environ Monit Assess ; 196(2): 218, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289408

RESUMO

The composition of atmospheric deposition is a measure of air quality, an important aspect of the health of the ecosystem. Consequently, continuous monitoring of atmospheric deposition is crucial to obtain remedial measures to avoid undesirable aspects that would affect living things. In this context, the objective of this study was to determine the rainwater quality at selected locations in Kandy and Peradeniya area of Sri Lanka, namely, Kandy, Polgolla, and University of Peradeniya (UOP), and to identify possible correlations between quality parameters through statistical means. Forty (40) rainwater samples from the UOP site and seven (07) samples each from the Kandy and Polgolla sites were collected from 18 May 2020 to 28 April 2021. The volume-weighted average (VWA) pH values of UOP, Kandy, and Polgolla sites were determined to be 7.44, 7.19, and 7.19, respectively, and moreover, acid rain (pH < 5.6) occurrences were not detected during the sampling period. The VWA values of rainfall, conductivity, salinity, TDS, and hardness at the UOP site were 40.12 mm, 51.93 µS cm-1, 0.0300 ppt, 26.59 mg L-1, and 13.55 mg L-1, respectively. The corresponding values of the Kandy site were 16.52 mm, 64.04 µS cm-1, 0.0361 ppt, 30.80 mg L-1, and 19.49 mg L-1, respectively; and those of the Polgolla site were 33.10 mm, 53.90 µS cm-1, 0.0310 ppt, 25.76 mg L-1, and 19.31 mg L-1, respectively. The VWA values of conductivity, salinity, and TDS were the highest at the Kandy site. Further, the VWA values of hardness at Kandy and Polgolla sites were approximately equal, probably due to the spring of Ca2+ and Mg2+ particulates from the dolomite quarry located in Digana area. The most prominent anion was identified as Cl- in bulk deposition at all three sites, while NO3- showed the lowest concentration of all sites. Moreover, very strong significant positive correlations were identified between conductivity-TDS, conductivity-salinity, conductivity-hardness, TDS-hardness, TDS-salinity, salinity-hardness, SO42--Cl-, and NO3--Cl- according to the relevant Pearson correlation coefficients. It is thus concluded that the pollutants come from the same sources, either natural or anthropogenic.


Assuntos
Chuva Ácida , Ecossistema , Sri Lanka , Monitoramento Ambiental , Poeira
20.
Biol Sport ; 41(2): 155-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524829

RESUMO

The main aim of this study is to use comprehensive statistical analyses to evaluate measurement reliability of selected variables that characterize postural stability. The study examined twenty-nine healthy non-athlete students. The examinations were performed twice, with a one-week interval. The Microgate GYKO inertial sensor system was used to evaluate the reliability of variables that characterize postural stability. The relative reliability of the repeated test was evaluated using the intraclass correlation coefficient (ICC) with 95% confidence interval (95% CI). Next, the standard error of measurement (SEM) and minimal detectable change (MDC) were computed. Relative reliability of the repeated test for all analysed variables of ICC ranged from 0.31 to 0.75. For four variables, ICC values were ca. 0.7, i.e., they can be considered as good. For four other variables, ICC ranged from 0.41 to 0.54, with these values considered fair. Satisfactory reproducibility of postural stability measurements using the GYKO inertial sensor system demonstrates that it can offer an inexpensive and efficient alternative to measurements that use force balance platforms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa