Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.370
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
J Infect Dis ; 229(3): 888-897, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-37721470

RESUMO

BACKGROUND: Current tuberculosis treatment regimens could be improved by adjunct host-directed therapies (HDT) targeting host responses. We investigated the antimycobacterial capacity of macrophages from patients with tuberculosis in a phase 1/2 randomized clinical trial (TBCOX2) of the cyclooxygenase-2 inhibitor etoricoxib. METHODS: Peripheral blood mononuclear cells from 15 patients with tuberculosis treated with adjunctive COX-2i and 18 controls (standard therapy) were collected on day 56 after treatment initiation. The ex vivo capacity of macrophages to control mycobacterial infection was assessed by challenge with Mycobacterium avium, using an in vitro culture model. Macrophage inflammatory responses were analyzed by gene expression signatures, and concentrations of cytokines were analyzed in supernatants by multiplex. RESULTS: Macrophages from patients receiving adjunctive COX-2i treatment had higher M. avium loads than controls after 6 days, suggesting an impaired capacity to control mycobacterial infection compared to macrophages from the control group. Macrophages from the COX-2i group had lower gene expression of TNF, IL-1B, CCL4, CXCL9, and CXCL10 and lowered production of cytokines IFN-ß and S100A8/A9 than controls. CONCLUSIONS: Our data suggest potential unfavorable effects with impaired macrophage capacity to control mycobacterial growth in patients with tuberculosis receiving COX-2i treatment. Larger clinical trials are required to analyze the safety of COX-2i as HDT in patients with tuberculosis. CLINICAL TRIALS REGISTRATION: NCT02503839.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Citocinas , Etoricoxib/farmacologia , Leucócitos Mononucleares , Macrófagos/microbiologia , Tuberculose/microbiologia
2.
J Cell Mol Med ; 28(7): e18191, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494860

RESUMO

Epigenetic modifications are involved in fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and contribute to the silencing of anti-fibrotic genes. H3K27me3, a key repressive histone mark, is catalysed by the methyltransferase enhancer of Zeste homologue 2 (EZH2), which is regulated by the post-translational modification, O-linked N-Acetylglucosamine (O-GlcNAc). In this study, we explored the effects of O-GlcNAc and EZH2 on the expression of antifibrotic genes, cyclooxygenase-2 (Cox2) and Heme Oxygenase (Homx1). The expression of Cox2 and Hmox1 was examined in primary IPF or non-IPF lung fibroblasts with or without EZH2 inhibitor EZP6438, O-GlcNAc transferase (OGT) inhibitor (OSMI-1) or O-GlcNAcase (OGA) inhibitor (thiamet G). Non-IPF cells were also subjected to TGF-ß1 with or without OGT inhibition. The reduced expression of Cox2 and Hmox1 in IPF lung fibroblasts is restored by OGT inhibition. In non-IPF fibroblasts, TGF-ß1 treatment reduces Cox2 and Hmox1 expression, which was restored by OGT inhibition. ChIP assays demonstrated that the association of H3K27me3 is reduced at the Cox2 and Hmox1 promoter regions following OGT or EZH2 inhibition. EZH2 levels and stability were decreased by reducing O-GlcNAc. Our study provided a novel mechanism of O-GlcNAc modification in regulating anti-fibrotic genes in lung fibroblasts and in the pathogenesis of IPF.


Assuntos
Histonas , Fibrose Pulmonar Idiopática , Humanos , Histonas/metabolismo , Acetilglucosamina/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Pulmão/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo
3.
Lab Invest ; 104(3): 100319, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38158123

RESUMO

Effective inhibition of macrophage activation is critical for resolving inflammation and restoring pulmonary function in patients with chronic obstructive pulmonary disease (COPD). In this study, we identified the dual-enhanced cyclooxygenase-2 (COX-2)/soluble epoxide hydrolase (sEH) as a novel regulator of macrophage activation in COPD. Both COX-2 and sEH were found to be increased in patients and mice with COPD and in macrophages exposed to cigarette smoke extract. Pharmacological reduction of the COX-2 and sEH by 4-(5-phenyl-3-{3-[3-(4-trifluoromethylphenyl)-ureido]-propyl}-pyrazol-1-yl)-benzenesulfonamide (PTUPB) effectively prevented macrophage activation, downregulated inflammation-related genes, and reduced lung injury, thereby improving respiratory function in a mouse model of COPD induced by cigarette smoke and lipopolysaccharide. Mechanistically, enhanced COX-2/sEH triggered the activation of the NACHT, LRR, and PYD domains-containing protein 3 inflammasome, leading to the cleavage of pro-IL-1ß into its active form in macrophages and amplifying inflammatory responses. These findings demonstrate that targeting COX-2/sEH-mediated macrophage activation may be a promising therapeutic strategy for COPD. Importantly, our data support the potential use of the dual COX-2 and sEH inhibitor PTUPB as a therapeutic drug for the treatment of COPD.


Assuntos
Ativação de Macrófagos , Doença Pulmonar Obstrutiva Crônica , Camundongos , Humanos , Animais , Ciclo-Oxigenase 2/metabolismo , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Inflamassomos/metabolismo
4.
Curr Issues Mol Biol ; 46(5): 4951-4967, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38785565

RESUMO

Squamous cell carcinoma (SCC) stands as the second most prevalent skin cancer in dogs, primarily attributed to UV radiation exposure. Affected areas typically include regions with sparse hair and pale or depigmented skin. The significance of spontaneous canine cutaneous SCC as a model for its human counterpart is underscored by its resemblance. This study assesses the expression of key markers-Epidermal Growth Factor Receptor (EGFR), Cyclooxygenase-2 (Cox-2), and Ki-67-in canine cutaneous SCC. Our objective is to investigate the association between their expression levels and classical clinicopathological parameters, unraveling the intricate relationships among these molecular markers. In our retrospective analysis of 37 cases, EGFR overexpression manifested in 43.2% of cases, while Cox-2 exhibited overexpression in 97.3%. The EGFR, Cox-2 overexpression, and Ki-67 proliferation indices, estimated through immunohistochemistry, displayed a significant association with the histological grade, but only EGFR labeling is associated with the presence of lymphovascular emboli. The Ki-67 labeling index expression exhibited an association with EGFR and Cox-2. These findings propose that EGFR, Cox-2, and Ki-67 hold promise as valuable markers in canine SCC. EGFR, Cox-2, and Ki-67 may serve as indicators of disease progression, offering insights into the malignancy of a lesion. The implications extend to the potential therapeutic targeting of EGFR and Cox-2 in managing canine SCC. Further exploration of these insights is warranted due to their translational relevance and the development of targeted interventions in the context of canine SCC.

5.
Curr Issues Mol Biol ; 46(1): 485-497, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38248333

RESUMO

Oral squamous cell carcinoma (OSCC) is a common and highly aggressive dog tumor known for its local invasiveness and metastatic potential. Understanding the molecular mechanisms driving the development and progression of OSCC is crucial for improving diagnostic and therapeutic strategies. Additionally, spontaneous oral squamous cell carcinomas in dogs are an excellent model for studying human counterparts. In this study, we aimed to investigate the significance of two key molecular components, Cox-2 and EGFR, in canine OSCC. We examined 34 tumor sections from various dog breeds to assess the immunoexpression of Cox-2 and EGFR. Our findings revealed that Cox-2 was highly expressed in 70.6% of cases, while EGFR overexpression was observed in 44.1%. Cox-2 overexpression showed association with histological grade of malignancy (HGM) (p = 0.006) and EGFR with vascular invasion (p = 0.006). COX-2 and EGFR concurrent expression was associated with HGM (p = 0.002), as well as with the presence of vascular invasion (p = 0.002). These data suggest that Cox-2 and EGFR could be promising biomarkers and potential therapeutic targets, opening avenues for developing novel treatment strategies for dogs affected by OSCC. Further studies are warranted to delve deeper into these findings and translate them into clinical practice.

6.
Cancer ; 130(17): 2988-2999, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682652

RESUMO

BACKGROUND: Genetic polymorphisms of molecules are known to cause individual differences in the therapeutic efficacy of anticancer drugs. However, to date, germline mutations (but not somatic mutations) for anticancer drugs have not been adequately studied. The objective of this study was to investigate the association between germline polymorphisms of gemcitabine metabolic and transporter genes with carbohydrate antigen 19-9 (CA 19-9) response (decrease ≥50% from the pretreatment level at 8 weeks) and overall survival (OS) in patients with metastatic pancreatic cancer who receive gemcitabine-based chemotherapy. METHODS: This multicenter, prospective, observational study enrolled patients with metastatic pancreatic cancer patients who were receiving gemcitabine monotherapy or gemcitabine plus nanoparticle albumin-bound paclitaxel combination chemotherapy. Thirteen polymorphisms that may be involved in gemcitabine responsiveness were genotyped, and univariate and multivariate logistic regression analyses were used to determine the association of these genotypes with CA 19-9 response and OS. The significance level was set at 5%. RESULTS: In total, 180 patients from 11 hospitals in Japan were registered, and 159 patients whose CA 19-9 response could be assessed were included in the final analysis. Patients who had a CA 19-9 response had significantly longer OS (372 vs. 241 days; p = .007). RRM1 2464A>G and RRM2 175T>G polymorphisms suggested a weak association with CA 19-9 response and OS, but it was not statistically significant. COX-2 -765G>C polymorphism did not significantly correlate with CA 19-9 response but was significantly associated with OS (hazard ratio, 2.031; p = .019). CONCLUSIONS: Genetic polymorphisms from the pharmacokinetics of gemcitabine did not indicate a significant association with efficacy, but COX-2 polymorphisms involved in tumor cell proliferation might affect OS.


Assuntos
Antígeno CA-19-9 , Desoxicitidina , Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Desoxicitidina/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/mortalidade , Feminino , Masculino , Idoso , Estudos Prospectivos , Pessoa de Meia-Idade , Antígeno CA-19-9/sangue , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ribonucleosídeo Difosfato Redutase/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Idoso de 80 Anos ou mais , Paclitaxel/uso terapêutico , Paclitaxel/administração & dosagem , Adulto , Metástase Neoplásica , Transportador Equilibrativo 1 de Nucleosídeo/genética , Resultado do Tratamento , Testes Farmacogenômicos , Genótipo
7.
Biochem Biophys Res Commun ; 695: 149411, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154262

RESUMO

Berberine, isolated from Coptis chinensis and Phellodendron amurense, can attenuate colonic injury and modulate gut microbiota disorders in ulcerative colitis (UC). However, the mechanism and causal relationship between gut microbiota and the efficacy of Berberine on UC are still unclear, which were investigated by pseudo-germ-free (PGF) mice, 16S rRNA gene analysis and transcriptome analysis in this study. The results demonstrated that Berberine improved gut microbiota disorders, colon damage, tight-junction proteins, inflammatory and anti-inflammatory cytokines in DSS-induced colitis mice with intact gut microbiota but not in PGF mice. Besides, immune-related and inflammation-related pathways were closely related to the efficacy that Berberine alleviated colitis by regulating gut microbiota. Furthermore, Berberine reduced PGE2, PLA2, COX-2, Ptges, EP2 and p-Stat3 only in colitis mice with intact gut microbiota. In summary, our study confirms that Berberine inhibits PLA2-COX-2-PGE2-EP2 pathway in UC through gut microbiota, leading to the alleviation of inflammation in colon, which further elucidates the underlying mechanism and promotes the application of Berberine in UC.


Assuntos
Berberina , Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Berberina/farmacologia , Berberina/uso terapêutico , Ciclo-Oxigenase 2 , Dinoprostona , RNA Ribossômico 16S , Inflamação/tratamento farmacológico , Fosfolipases A2 , Sulfato de Dextrana , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
8.
Small ; 20(28): e2309882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342670

RESUMO

Negative therapeutic feedback of inflammation would extensively attenuate the antitumor effect of photodynamic therapy (PDT). In this work, tumor homing chimeric peptide rhomboids (designated as NP-Mel) are fabricated to improve photodynamic performance by inhibiting PDT-upregulated cyclooxygenase-2 (COX-2). The hydrophobic photosensitizer of protoporphyrin IX (PpIX) and palmitic acid are conjugated onto the neuropilin receptors (NRPs) targeting peptide motif (CGNKRTR) to obtain tumor homing chimeric peptide (Palmitic-K(PpIX)CGNKRTR), which can encapsulate the COX-2 inhibitor of meloxicam. The well dispersed NP-Mel not only improves the drug stability and reactive oxygen species (ROS) production ability, but also increase the breast cancer targeted drug delivery to intensify the PDT effect. In vitro and in vivo studies verify that NP-Mel will decrease the secretion of prostaglandin E2 (PGE2) after PDT treatment, inducing the downregulation of IL-6 and TNF-α expressions to suppress PDT induced inflammation. Ultimately, an improved PDT performance of NP-Mel is achieved without inducing obvious systemic toxicity, which might inspire the development of sophisticated nanomedicine in consideration of the feedback induced therapeutic resistance.


Assuntos
Ciclo-Oxigenase 2 , Peptídeos , Fotoquimioterapia , Fotoquimioterapia/métodos , Ciclo-Oxigenase 2/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Animais , Humanos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Feminino , Meloxicam/farmacologia , Meloxicam/uso terapêutico , Camundongos , Protoporfirinas/química , Protoporfirinas/farmacologia , Dinoprostona/metabolismo
9.
J Transl Med ; 22(1): 870, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334140

RESUMO

BACKGROUND: Diabetic retinopathy (DR), the principal cause of acquired blindness among the working-age population, is the most frequent microvascular complication of diabetes. Although metabolic disorders are hypothesized to play a role in its pathogenesis, the underlying mechanism remains largely elusive. METHODS: To elucidate the mechanism, we initially compared metabolite profiles of vitreous fluid between 23 patients with DR and 12 non-diabetic controls using liquid chromatography/tandem mass spectrometry, identifying the distinct metabolite indoxyl sulfate (IS). Subsequently, streptozotocin (STZ)-induced diabetic and IS-injected rat models were established to examine the effects of IS on retinal microvasculature. RNA sequencing was conducted to identify potential regulatory mechanisms in IS-treated human retinal endothelial cells (HREC). Finally, target gene knockdown in HREC and treatment of IS-injected rats with inhibitors (targeting IS production or downstream regulators) were employed to elucidate the detailed mechanisms and identify therapeutic targets for DR. RESULTS: Metabolomics identified 172 significantly altered metabolites in the vitreous humor of diabetics, including the dysregulated tryptophan metabolite indoxyl sulfate (IS). IS was observed to breach the blood-retinal barrier and accumulate in the intraocular fluid of diabetic rats. Both in vivo and in vitro experiments indicated that elevated levels of IS induced endothelial apoptosis and disrupted cell junctions. RNA sequencing pinpointed prostaglandin E2 (PGE2) synthetase-cyclooxygenase 2 (COX-2) as a potential target of IS. Validation experiments demonstrated that IS enhanced COX-2 expression, which subsequently increased PGE2 secretion by promoting transcription factor EGR1 binding to COX-2 DNA following entry into cells via organic anion transporting polypeptides (OATP2B1). Furthermore, inhibition of COX-2 in vivo or silencing EGR1/OATP2B1 in HREC mitigated IS-induced microcapillary damage and the activation of COX-2/PGE2. CONCLUSION: Our study demonstrated that indoxyl sulfate (IS), a uremic toxin originating from the gut microbiota product indole, increased significantly and contributed to retinal microvascular damage in diabetic retinopathy (DR). Mechanistically, IS impaired retinal microvascular integrity by inducing the expression of COX-2 and the production of PGE2. Consequently, targeting the gut microbiota or the PGE2 pathway may offer effective therapeutic strategies for the treatment of DR.


Assuntos
Ciclo-Oxigenase 2 , Diabetes Mellitus Experimental , Retinopatia Diabética , Dinoprostona , Indicã , Microvasos , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Animais , Humanos , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Masculino , Microvasos/patologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ratos Sprague-Dawley , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Vasos Retinianos/efeitos dos fármacos , Ratos , Pessoa de Meia-Idade , Retina/patologia , Retina/metabolismo , Retina/efeitos dos fármacos , Apoptose/efeitos dos fármacos
10.
J Transl Med ; 22(1): 241, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443917

RESUMO

BACKGROUND: Tumor regression following immune checkpoint blockade (ICB) is often associated with immune-related adverse events (irAEs), marked by inflammation in non-cancerous tissues. This study was undertaken to investigate the functional relationship between anti-tumor and anti-self immunity, to facilitate irAE management while promoting anti-tumor immunity. METHODS: Multiple biopsies from tumor and inflamed tissues were collected from a patient with melanoma experiencing both tumor regression and irAEs on ICB, who underwent rapid autopsy. Immune cells infiltrating melanoma lesions and inflamed normal tissues were subjected to gene expression profiling with multiplex qRT-PCR for 122 candidate genes. Subsequently, immunohistochemistry was conducted to assess the expression of 14 candidate markers of immune cell subsets and checkpoints. TCR-beta sequencing was used to explore T cell clonal repertoires across specimens. RESULTS: While genes involved in MHC I/II antigen presentation, IFN signaling, innate immunity and immunosuppression were abundantly expressed across specimens, irAE tissues over-expressed certain genes associated with immunosuppression (CSF1R, IL10RA, IL27/EBI3, FOXP3, KLRG1, SOCS1, TGFB1), including those in the COX-2/PGE2 pathway (IL1B, PTGER1/EP1 and PTGER4/EP4). Immunohistochemistry revealed similar proportions of immunosuppressive cell subsets and checkpoint molecules across samples. TCRseq did not indicate common TCR repertoires across tumor and inflammation sites, arguing against shared antigen recognition between anti-tumor and anti-self immunity in this patient. CONCLUSIONS: This comprehensive study of a single patient with melanoma experiencing both tumor regression and irAEs on ICB explores the immune landscape across these tissues, revealing similarities between anti-tumor and anti-self immunity. Further, it highlights expression of the COX-2/PGE2 pathway, which is known to be immunosuppressive and potentially mediates ICB resistance. Ongoing clinical trials of COX-2/PGE2 pathway inhibitors targeting the major COX-2 inducer IL-1B, COX-2 itself, or the PGE2 receptors EP2 and EP4 present new opportunities to promote anti-tumor activity, but may also have the potential to enhance the severity of ICB-induced irAEs.


Assuntos
Antígenos de Grupos Sanguíneos , Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Checkpoint Imunológico , Ciclo-Oxigenase 2 , Dinoprostona , Inibidores de Ciclo-Oxigenase 2 , Inflamação , Receptores de Antígenos de Linfócitos T
11.
IUBMB Life ; 76(11): 972-986, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38873890

RESUMO

Parecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. Hoechst/propidium iodide (PI) double staining and flow cytometry were performed to evaluate apoptosis and cell cycle analysis. Wound healing and transwell assays were utilized to assess cell migration and invasion. Tube formation assay was employed to analyze angiogenesis. Protein levels were determined using western blotting, and mRNA expression levels were assessed using quantitative real-time polymerase chain reaction (PCR). A xenograft mouse model was used to confirm the antitumor effects of parecoxib on HCC tumors in vivo. Our data demonstrated that parecoxib effectively inhibited the proliferation of HCC cells in a dose- and time-dependent manner. In addition, parecoxib induced cell cycle arrest in the G2 phase and promoted apoptosis. Moreover, parecoxib hindered tumor migration and invasion by impeding the epithelial-mesenchymal transition process. Further investigation showed that parecoxib could significantly suppress angiogenesis through the inhibition of extracellular signal-regulated kinase (ERK)-vascular endothelial growth factor (VEGF) axis. Notably, treatment with the ERK activator phorbol myristate acetate upregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF and reversed the function of parecoxib in HCC cells. Besides, parecoxib displayed its antitumor efficacy in vivo. Collectively, our results suggest that parecoxib ameliorates HCC progression by regulating proliferation, cell cycle, apoptosis, migration, invasion, and angiogenesis through the ERK-VEGF/MMPs signaling pathway.


Assuntos
Apoptose , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Isoxazóis , Neoplasias Hepáticas , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Animais , Isoxazóis/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Masculino , Linhagem Celular Tumoral , Angiogênese
12.
IUBMB Life ; 76(11): 937-950, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39051847

RESUMO

In 2020, the number of deaths caused by lung cancer worldwide reached 1,796,144, making it the leading cause of cancer-related deaths. Cyclooxygenase-2/prostaglandin endoperoxide synthase 2 (COX-2/PTGS2) is overexpressed in lung cancer, which promotes tumor proliferation, invasion, angiogenesis, and resistance to apoptosis. Here, we report that the oligonucleotide drug HQi-sRNA-2 from Traditional Chinese Medicine Huangqin targeting COX-2/PTGS2 significantly inhibited proliferation, migration, and invasion and induced apoptosis in the human lung cancer cell line NCI-H460. Oral delivery of HQi-sRNA-2 bencaosomes prolonged survival, reduced tumor burden, and maintained weight in a spontaneous mouse lung cancer model. Compared with paclitaxel, HQi-sRNA-2 may be less toxic and have approximately equal efficacy in reducing tumor burden. Our previous studies reported that herbal small RNAs (sRNAs) are functional medical components. Our data suggest that sphingosine (d18:1)-HQi-sRNA-2 bencaosomes, targeting COX-2/PTGS2 and downregulating the PI3K and AKT signaling pathways, may provide novel therapeutics for lung cancer.


Assuntos
Apoptose , Proliferação de Células , Ciclo-Oxigenase 2 , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Animais , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
13.
Cytokine ; 182: 156733, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128194

RESUMO

BACKGROUND: Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE: This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS: Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS: The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION: Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.


Assuntos
Ciclo-Oxigenase 2 , Dinoprostona , Biogênese de Organelas , Sepse , Animais , Sepse/metabolismo , Sepse/tratamento farmacológico , Camundongos , Ciclo-Oxigenase 2/metabolismo , Células RAW 264.7 , Dinoprostona/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Cardiotônicos/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Cardiomiopatias/metabolismo , Cardiomiopatias/tratamento farmacológico , Modelos Animais de Doenças , Inibidores de Ciclo-Oxigenase 2/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo
14.
Exp Dermatol ; 33(1): e15000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284201

RESUMO

Cutaneous tissues is among the main target of outdoor stressors such as ozone (O3 ), particulate matter (PM), and ultraviolet radiation (UV) all involved in inducing extrinsic skin aging. Only a few reports have studied the multipollutant interaction and its effect on skin damage. In the present work, we intended to evaluate the ability of pollutants such as O3 and PM to further aggravate cutaneous UV damage. In addition, the preventive properties of a cosmeceutical formulation mixture (AOX mix) containing 15% vitamin C (L-ascorbic acid), 1% vitamin E (α-tocopherol) and 0.5% ferulic acid was also investigated. Skin explants obtained from three different subjects were exposed to 200 mJ UV light, 0.25 ppm O3 for 2 h, and 30 min of diesel engine exhaust (DEE), alone or in combination for 4 days (time point D1 and D4). The results showed a clear additive effect of O3 and DEE in combination with UV in terms of keratin 10, Desmocollin and Claudin loss. In addition, the multipollutant exposure significantly induced the inflammatory response measured as NLRP1/ASC co-localization suggesting the activation of the inflammasome machinery. Finally, the loss of Aquaporin3 was also affected by the combined outdoor stressors. Furthermore, daily topical pre-treatment with the AOX Mix significantly prevented the cutaneous changes induced by the multipollutants. In conclusion, this study is among the first to investigate the combined effects of three of the most harmful outdoor stressors on human skin and confirms that daily topical of an antioxidant application may prevent pollution-induced skin damage.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Humanos , Ácido Ascórbico/farmacologia , Raios Ultravioleta/efeitos adversos , Vitaminas , Antioxidantes/farmacologia , Material Particulado/toxicidade
15.
Brain Behav Immun ; 121: 142-154, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39043348

RESUMO

BACKGROUND: Sleep deficiencies, such as manifested in short sleep duration or insomnia symptoms, are known to increase the risk for multiple disease conditions involving immunopathology. Inflammation is hypothesized to be a mechanism through which deficient sleep acts as a risk factor for these conditions. Thus, one potential way to mitigate negative health consequences associated with deficient sleep is to target inflammation. Few interventional sleep studies investigated whether improving sleep affects inflammatory processes, but results suggest that complementary approaches may be necessary to target inflammation associated with sleep deficiencies. We investigated whether targeting inflammation through low-dose acetylsalicylic acid (ASA, i.e., aspirin) is able to blunt the inflammatory response to experimental sleep restriction. METHODS: 46 healthy participants (19F/27M, age range 19-63 years) were studied in a double-blind randomized placebo-controlled crossover trial with three protocols each consisting of a 14-day at-home monitoring phase followed by an 11-day (10-night) in-laboratory stay (sleep restriction/ASA, sleep restriction/placebo, control sleep/placebo). In the sleep restriction/ASA condition, participants took low-dose ASA (81 mg/day) daily in the evening (22:00) during the at-home phase and the subsequent in-laboratory stay. In the sleep restriction/placebo and control sleep/placebo conditions, participants took placebo daily. Each in-laboratory stay started with 2 nights with a sleep opportunity of 8 h/night (23:00-07:00) for adaptation and baseline measurements. Under the two sleep restriction conditions, participants were exposed to 5 nights of sleep restricted to a sleep opportunity of 4 h/night (03:00-07:00) followed by 3 nights of recovery sleep with a sleep opportunity of 8 h/night. Under the control sleep condition, participants had a sleep opportunity of 8 h/night throughout the in-laboratory stay. During each in-laboratory stay, participants had 3 days of intensive monitoring (at baseline, 5th day of sleep restriction/control sleep, and 2nd day of recovery sleep). Variables, including pro-inflammatory immune cell function, C-reactive protein (CRP), and actigraphy-estimated measures of sleep, were analyzed using generalized linear mixed models. RESULTS: Low-dose ASA administration reduced the interleukin (IL)-6 expression in LPS-stimulated monocytes (p<0.05 for condition*day) and reduced serum CRP levels (p<0.01 for condition) after 5 nights of sleep restriction compared to placebo administration in the sleep restriction condition. Low-dose ASA also reduced the amount of cyclooxygenase (COX)-1/COX-2 double positive cells among LPS-stimulated monocytes after 2 nights of recovery sleep following 5 nights of sleep restriction compared to placebo (p<0.05 for condition). Low-dose ASA further decreased wake after sleep onset (WASO) and increased sleep efficiency (SE) during the first 2 nights of recovery sleep (p<0.001 for condition and condition*day). Baseline comparisons revealed no differences between conditions for all of the investigated variables (p>0.05 for condition). CONCLUSION: This study shows that inflammatory responses to sleep restriction can be reduced by preemptive administration of low-dose ASA. This finding may open new therapeutic approaches to prevent or control inflammation and its consequences in those experiencing sleep deficiencies. TRIAL REGISTRATION: ClinicalTrials.gov NCT03377543.


Assuntos
Aspirina , Estudos Cross-Over , Inflamação , Privação do Sono , Humanos , Masculino , Aspirina/administração & dosagem , Aspirina/farmacologia , Adulto , Feminino , Inflamação/metabolismo , Método Duplo-Cego , Pessoa de Meia-Idade , Adulto Jovem , Sono/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise
16.
Liver Int ; 44(9): 2409-2423, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38847511

RESUMO

BACKGROUND AND AIMS: Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis. METHODS: We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury. RESULTS: After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E2 against BA toxicity. CONCLUSIONS: Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.


Assuntos
Ácidos e Sais Biliares , Colestase , Ducto Colédoco , Ciclo-Oxigenase 2 , Hepatócitos , Fígado , Camundongos Transgênicos , Animais , Humanos , Masculino , Camundongos , Apoptose , Ácidos e Sais Biliares/metabolismo , Colestase/metabolismo , Ducto Colédoco/cirurgia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Modelos Animais de Doenças , Hepatócitos/metabolismo , Ligadura , Fígado/patologia , Fígado/metabolismo , Estresse Oxidativo
17.
Prostaglandins Other Lipid Mediat ; 174: 106875, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39019102

RESUMO

The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.


Assuntos
Dinoprostona , Fígado , Transdução de Sinais , Humanos , Dinoprostona/metabolismo , Fígado/metabolismo , Animais , Receptores de Prostaglandina E/metabolismo
18.
Bioorg Med Chem Lett ; 100: 129631, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38307442

RESUMO

Chronic pain is a serious problem that affects billions of people worldwide, but current analgesic drugs limit their use in chronic pain management due to their respective side effects. As a first-line clinical drug for chronic pain, COX-2 selective inhibitors can relieve mild to moderate pain, but they also have some problems. The most prominent one is that their analgesic intensity is not enough, and they cannot well meet the treatment needs of chronic pain. Therefore, there is an urgent need to develop COX-2 inhibitors with stronger analgesic intensity. In this article, we used virtual screening method to screen out the structurally novel COX-2 inhibitor for chronic pain management, and conducted a preliminary study on its mechanism of action using molecular dynamics simulation.


Assuntos
Dor Crônica , Inibidores de Ciclo-Oxigenase 2 , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Dor Crônica/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Furanos
19.
Mol Biol Rep ; 51(1): 684, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796650

RESUMO

BACKGROUND: Indomethacin is an anti-inflammatory drug that causes ulcers on the gastric mucosa due to its use. Probiotic bacteria are live microorganisms, and it has been stated by various studies that these bacteria have antioxidant and anti-inflammatory effects. In this study, we investigated the possible protective effect of various types of probiotic bacteria (Lactobacillus rhamnosus, Lactobacillus fermentum, and Lactobacillus brevis) against acute gastric mucosal damage caused by indomethacin. METHODS: Control group - Physiological saline was administered daily for 10 days. Indo group-Physiological saline was administered daily for 10 days. Ranitidine + Indo group 5 mg/kg ranitidine dose was administered daily for 5 days. On day 11, a single dose of 100 mg/kg of indomethacin was given to the same group. Probiotic + Indo group 1 ml/kg of oral probiotic bacteria was administered daily for 10 days. On day 11, a single 100 mg/kg dose of indomethacin was given. After the application, the rats were anesthetized with ketamine xylazine, killed under appropriate conditions, the abdominal cavity was opened and the stomach tissues were removed. The obtained gastric tissues were used in the biochemical and histopathological analyses discussed below. All data were statistically evaluated by one-way ANOVA using SPSS 20.00, followed by Duncan Post hoc test. The data were expressed as mean ± SD. P < 0.05 was considered statistically significant. RESULTS: As a result, the administration of indomethacin caused gastric damage, stimulating oxidative stress, inflammation, and apoptosis. We found that the use of probiotic bacteria reduces oxidative stress (TOC), increases the activity of antioxidant enzymes (TAC), suppresses inflammation (IL-6 and Tnf-α), and inhibits apoptosis (Bax and Bcl-2) (P < 0.05). CONCLUSION: Probiotic treatment can mitigate gastric damage and apoptosis caused by indomethacin-induced gastric damage in rats. Probiotic also enhances the restoration of biochemical oxidative enzymes as it has anti-inflammatory, antioxidant, and antiapoptotic properties.


Assuntos
Apoptose , Mucosa Gástrica , Indometacina , Inflamação , Estresse Oxidativo , Probióticos , Úlcera Gástrica , Indometacina/efeitos adversos , Probióticos/farmacologia , Animais , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle , Úlcera Gástrica/patologia , Úlcera Gástrica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Mucosa Gástrica/metabolismo , Inflamação/metabolismo , Masculino , Ratos Wistar , Antioxidantes/metabolismo , Antioxidantes/farmacologia
20.
Bioorg Chem ; 152: 107727, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39167872

RESUMO

Inflammation management presents a critical challenge in modern medicine, with nonsteroidal anti-inflammatory drugs (NSAIDs) being a widely used therapeutic option. However, their efficacy is often accompanied by significant gastrointestinal adverse effects, necessitating the exploration of safer alternatives, particularly through the investigation of cyclooxygenase-2 (COX-2) inhibitors. This study endeavors to address this imperative through the synthesis and evaluation of pyrazoline-phenoxyacetic acid derivatives. Among the synthesized compounds, 6a and 6c emerged as promising candidates, demonstrating potent COX-2 inhibition with IC50 values of 0.03 µM for both and selectivity index = 365.4 and 196.9, respectively. Furthermore, these compounds exhibited efficacy in mitigating formalin-induced edema in male Wistar rats, accompanied by favorable safety profiles upon histological examination of vital organs. Comprehensive safety assessments, including evaluation of creatinine, AST, and ALT enzymatic as well as troponin T and creatine kinase-MB levels, further reinforce the promising attributes of the synthetic candidates. Molecular docking studies endorsed by molecular dynamic simulations corroborate the biological findings, elucidating significant protein-ligand interactions at COX-2 active sites indicative of therapeutic potential.


Assuntos
Anti-Inflamatórios não Esteroides , Inibidores de Ciclo-Oxigenase 2 , Ciclo-Oxigenase 2 , Edema , Ratos Wistar , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Masculino , Ciclo-Oxigenase 2/metabolismo , Edema/tratamento farmacológico , Edema/induzido quimicamente , Ratos , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Estrutura Molecular , Acetatos/química , Acetatos/farmacologia , Acetatos/síntese química , Simulação de Acoplamento Molecular , Humanos , Relação Dose-Resposta a Droga , Formaldeído , Farmacóforo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa