Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202573

RESUMO

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Assuntos
Cromatina , Proteínas de Drosophila , Ilhas de CpG , Proteínas de Drosophila/metabolismo , Código das Histonas , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas
2.
BMC Biol ; 21(1): 80, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055747

RESUMO

BACKGROUND: Gene duplication is thought to be a central process in evolution to gain new functions. The factors that dictate gene retention following duplication as well paralog gene divergence in sequence, expression and function have been extensively studied. However, relatively little is known about the evolution of promoter regions of gene duplicates and how they influence gene duplicate divergence. Here, we focus on promoters of paralog genes, comparing their similarity in sequence, in the sets of transcription factors (TFs) that bind them, and in their overall promoter architecture. RESULTS: We observe that promoters of recent duplications display higher sequence similarity between them and that sequence similarity rapidly declines between promoters of more ancient paralogs. In contrast, similarity in cis-regulation, as measured by the set of TFs that bind promoters of both paralogs, does not simply decrease with time from duplication and is instead related to promoter architecture-paralogs with CpG Islands (CGIs) in their promoters share a greater fraction of TFs, while CGI-less paralogs are more divergent in their TF binding set. Focusing on recent duplication events and partitioning them by their duplication mechanism enables us to uncover promoter properties associated with gene retention, as well as to characterize the evolution of promoters of newly born genes: In recent retrotransposition-mediated duplications, we observe asymmetry in cis-regulation of paralog pairs: Retrocopy genes are lowly expressed and their promoters are bound by fewer TFs and are depleted of CGIs, in comparison with the original gene copy. Furthermore, looking at recent segmental duplication regions in primates enable us to compare successful retentions versus loss of duplicates, showing that duplicate retention is associated with fewer TFs and with CGI-less promoter architecture. CONCLUSIONS: In this work, we profiled promoters of gene duplicates and their inter-paralog divergence. We also studied how their characteristics are associated with duplication time and duplication mechanism, as well as with the fate of these duplicates. These results underline the importance of cis-regulatory mechanisms in shaping the evolution of new genes and their fate following duplication.


Assuntos
Evolução Molecular , Duplicação Gênica , Animais , Regiões Promotoras Genéticas , Fatores de Transcrição , Mamíferos/genética
3.
Am J Hum Genet ; 107(3): 487-498, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32800095

RESUMO

The aggregation and joint analysis of large numbers of exome sequences has recently made it possible to derive estimates of intolerance to loss-of-function (LoF) variation for human genes. Here, we demonstrate strong and widespread coupling between genic LoF intolerance and promoter CpG density across the human genome. Genes downstream of the most CpG-rich promoters (top 10% CpG density) have a 67.2% probability of being highly LoF intolerant, using the LOEUF metric from gnomAD. This is in contrast to 7.4% of genes downstream of the most CpG-poor (bottom 10% CpG density) promoters. Combining promoter CpG density with exonic and promoter conservation explains 33.4% of the variation in LOEUF, and the contribution of CpG density exceeds the individual contributions of exonic and promoter conservation. We leverage this to train a simple and easily interpretable predictive model that outperforms other existing predictors and allows us to classify 1,760 genes-which are currently unascertained in gnomAD-as highly LoF intolerant or not. These predictions have the potential to aid in the interpretation of novel variants in the clinical setting. Moreover, our results reveal that high CpG density is not merely a generic feature of human promoters but is preferentially encountered at the promoters of the most selectively constrained genes, calling into question the prevailing view that CpG islands are not subject to selection.


Assuntos
Ilhas de CpG/genética , Genoma Humano/genética , Mutação com Perda de Função/genética , Regiões Promotoras Genéticas/genética , Metilação de DNA/genética , Éxons/genética , Humanos , RNA Polimerase II/genética , Sítio de Iniciação de Transcrição
4.
Development ; 147(6)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184271

RESUMO

Reproductive decline in older female mice can be attributed to a failure of the uterus to decidualise in response to steroid hormones. Here, we show that normal decidualisation is associated with significant epigenetic changes. Notably, we identify a cohort of differentially methylated regions (DMRs), most of which gain DNA methylation between the early and late stages of decidualisation. These DMRs are enriched at progesterone-responsive gene loci that are essential for reproductive function. In female mice nearing the end of their reproductive lifespan, DNA methylation fidelity is lost at a number of CpG islands (CGIs) resulting in CGI hypermethylation at key decidualisation genes. Importantly, this hypermethylated state correlates with the failure of the corresponding genes to become transcriptionally upregulated during the implantation window. Thus, age-associated DNA methylation changes may underlie the decidualisation defects that are a common occurrence in older females. Alterations to the epigenome of uterine cells may therefore contribute significantly to the reproductive decline associated with advanced maternal age.


Assuntos
Envelhecimento/genética , Implantação do Embrião/genética , Epigênese Genética/fisiologia , Reprodução/fisiologia , Animais , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA/fisiologia , Decídua/fisiologia , Embrião de Mamíferos , Feminino , Masculino , Idade Materna , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Reprodução/genética
5.
Mol Biol (Mosk) ; 57(4): 647-664, 2023.
Artigo em Russo | MEDLINE | ID: mdl-37528784

RESUMO

The status of DNA methylation in the human genome changes during the pathogenesis of common diseases and acts as a predictor of life expectancy. Therefore, it is of interest to investigate the methylation level of regulatory regions of genes responsible for general biological processes that are potentially significant for the development of age-associated diseases. Among them there are genes encoding proteins of DNA repair system, which are characterized by pleiotropic effects. Here, results of the targeted methylation analysis of two regions of the human genome (the promoter of the MLH1 gene and the enhancer near the ATM gene) in different tissues of patients with carotid atherosclerosis are present. Analysis of the methylation profiles of studied genes in various tissues of the same individuals demonstrated marked differences between leukocytes and tissues of the vascular wall. Differences in methylation levels between normal and atherosclerotic tissues of the carotid arteries were revealed only for two studied CpG sites (chr11:108089866 and chr11:108090020, GRCh37/hg19 assembly) in the ATM gene. Based on this, we can assume the involvement of ATM in the development of atherosclerosis. "Overload" of the studied regions with transcription factor binding sites (according to ReMapp2022 data) indicate that the tissue-specific nature of methylation of the regulatory regions of the MLH1 and ATM may be associated with expression levels of these genes in a particular tissue. It has been shown that inter-individual differences in the methylation levels of CpG sites are associated with sufficiently distant nucleotide substitutions.


Assuntos
Aterosclerose , Doenças das Artérias Carótidas , Humanos , Ilhas de CpG/genética , Sequências Reguladoras de Ácido Nucleico/genética , Metilação de DNA , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças das Artérias Carótidas/genética , Reparo do DNA/genética
6.
Expert Rev Mol Med ; 25: e11, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36380484

RESUMO

Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Hepatite B , Neoplasias Hepáticas , Humanos , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Metilação de DNA , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , DNA Viral/genética , DNA Viral/metabolismo , Hepatite B/genética , DNA Circular/genética
7.
Cancer Cell Int ; 22(1): 310, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221112

RESUMO

BACKGROUND: Gene silence via methylation of the CpG islands is cancer's most common epigenetic modification. Given the highly significant role of NIS in thyroid cancer (TC) differentiation, this cross-sectional study aimed to investigate the DNA methylation pattern in seven CpG islands (CpG1-7 including +846, +918, +929, +947, +953, +955, and +963, respectively) of the NIS promoter in patients diagnosed with papillary (PTC), follicular (FTC), and multinodular goiter (MNG). Additionally, a systematic review of the literature was conducted to compare our results with studies concerning methylation of the NIS gene promoter. METHODS: Thyroid specimens from 64 patients met the eligibility criteria, consisting of 28 PTC, 9 FTC, and 27 benign MNG cases. The mRNA of NIS was tested by qRT-PCR. The bisulfite sequencing PCR (BSP) technique was performed to evaluate the promoter methylation pattern of the NIS gene. Sequencing results were received in chromatograph, FASTA, SEQ, and pdf formats and were analyzed using Chromas. The methylation percentage at each position and for each sample was calculated by mC/(mC+C) formula for all examined CpGs; following that, the methylation percentage was also calculated at each CpG site. Besides, a literature search was conducted without restricting publication dates. Nine studies met the eligibility criteria after removing duplicates, unrelated articles, and reviews. RESULTS: NIS mRNA levels decreased in tumoral tissues of PTC (P = 0.04) and FTC (P = 0.03) patients compared to their matched non-tumoral ones. The methylation of NIS promoter was not common in PTC samples, but it was frequent in FTC (P < 0.05). Significant differences were observed in the methylation levels in the 4th(+ 947), 6th(+ 955), and 7th(+ 963) CpGs sites in the forward strand of NIS promoter between FTC and MNG tissues (76.34 ± 3.12 vs 40.43 ± 8.42, P = 0.004, 69.63 ± 3.03 vs 23.29 ± 6.84, P = 0.001 and 50.33 ± 5.65 vs 24 ± 6.89, P = 0.030, respectively). There was no significant correlation between the expression and methylation status of NIS in PTC and FTC tissues. CONCLUSION: Perturbation in NIS promoter's methylation individually may have a potential utility in differentiating MNG and FTC tissues. The absence of a distinct methylation pattern implies the importance of other epigenetic processes, which may alter the production of NIS mRNA. In addition, according to the reversibility of DNA methylation, it is anticipated that the design of particular targeted demethylation medicines will lead to a novel cancer therapeutic strategy.

8.
Pediatr Allergy Immunol ; 33(6): e13812, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35754135

RESUMO

BACKGROUND: Genetic areas of FOXP3 TSDR, human leukocyte antigen-G (HLA-G) upstream of CpG island 96, CpG41 and CpG73 islands of the HLA-DRB1 and HLA-DQB1 genes respectively, previously documented to display immune-modulatory properties, were subjected to epigenetic/genetic analysis to assess their influence in IgE-mediated food allergy (FA) development in children. METHODS: Sixty-four orally challenged and IgE-tested food allergic subjects together with 44 controls were recruited. Targeted pyrosequencing analysis to detect DNA methylation status and genetic variations was utilized and experimental results obtained were analyzed by a statistical software platform and correlated to clinical data. Also, transcription factor (TF) binding sites in study areas were unmasked by the JASPAR prediction database. RESULTS: Parents' smoking was significantly correlated with aberrant methylation patterns, regardless of food allergic or control status. HLA-G promoter region showed a trend for hypomethylation in food allergic subjects, with one of the CG sites displaying significantly decreased methylation values. Rs1233333, residing within the HLA-G promoter region preserved a protective role toward DNA methylation. Variable methylation patterns were recorded for CpG41 of the HLA-DRB1 gene and hypermethylation of the region was significantly correlated with the presence of single nucleotide polymorphisms (SNPs). TFs' recognition sites, located in studied genetic areas and exerting pivotal regulatory biological roles, are potentially affected by divergent DNA methylation status. CONCLUSIONS: We propose that HLA-G expression is triggered by food-derived allergens, providing a TregFoxP3-/HLA-G+ subpopulation generation to promote direct immune tolerance. Furthermore, clear evidence is provided for the underlying co-operation of genetic polymorphisms with epigenetic events, mainly at the CpG41 island of the HLA-DRB1 gene, which needs an extended investigation and elucidation.


Assuntos
Hipersensibilidade Alimentar , Antígenos HLA-G , Criança , Metilação de DNA , Epigênese Genética , Hipersensibilidade Alimentar/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/metabolismo , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Humanos , Imunoglobulina E/metabolismo , Polimorfismo de Nucleotídeo Único
9.
Mol Biol Rep ; 49(10): 10051-10064, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35633417

RESUMO

Investigation of gene-environment cross talk through epigenetic modifications led to better understanding of the number of complex diseases. Clinical heterogeneity and differential treatment response often contributed by the epigenetic signatures which could be personal. DNA methylation at CpG islands presents a critical nuclear process as a result of gene-environment interactions. These CpG islands are frequently present near the promoter sequence of genes and get differentially methylated under specific environmental conditions. Technical advancements facilitate in high throughput screening of differentially methylated CpG islands. Recent epigenetic studies unraveled several CD susceptibility genes expressed in peripheral blood lymphocytes (PBLs), duodenal mucosa, lamina and epithelial cells that are influenced by differentially methylated CpG islands. Here we highlighted these susceptibility genes; classify these genes based on cellular functions and tissue of expression. We further discussed how these genes interacts with each other to influence critical pathways like NF-κB signaling pathway, IL-17 signaling cascade, RIG-I like receptor signaling pathway, NOD-like receptor pathways among several others. This review also shed light on how gut microbiota may lead to the differential methylation of CpG islands of CD susceptibility genes. Large scale epigenetic studies followed by estimation of heritability of these CpG methylation and polygenic risk score estimation of these genes would prioritize potentially druggable targets for better therapeutics. In vivo studies are warranted to unravel further cellular responses to CpG methylation.


Assuntos
Doença Celíaca , Interleucina-17 , Doença Celíaca/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Humanos , Interleucina-17/genética , NF-kappa B/genética , Proteínas NLR/genética
10.
Methods ; 187: 3-12, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32640317

RESUMO

Methylation of CpG dinucleotides plays a crucial role in the regulation of gene expression and therefore in the development of different pathologies. Aberrant methylation has been associated to the majority of the diseases, including cancer, neurodegenerative, cardiovascular and autoimmune disorders. Analysis of DNA methylation patterns is crucial to understand the underlying molecular mechanism of these diseases. Moreover, DNA methylation patterns could be used as biomarker for clinical management, such as diagnosis, prognosis and treatment response. Nowadays, a variety of high throughput methods for DNA methylation have been developed to analyze the methylation status of a high number of CpGs at once or even the whole genome. However, identification of specific methylation patterns at specific loci is essential for validation and also as a tool for diagnosis. In this review, we describe the most commonly used approaches to evaluate specific DNA methylation. There are three main groups of techniques that allow the identification of specific regions that are differentially methylated: bisulfite conversion-based methods, restriction enzyme-based approaches, and affinity enrichment-based assays. In the first group, specific restriction enzymes recognize and cleave unmethylated DNA, leaving methylated sequences intact. Bisulfite conversion methods are the most popular approach to distinguish methylated and unmethylated DNA. Unmethylated cytosines are deaminated to uracil by sodium bisulfite treatment, while the methyl cytosines remain unconverted. In the last group, proteins with methylation binding domains or antibodies against methyl cytosines are used to recognize methylated DNA. In this review, we provide the theoretical basis and the framework of each technique as well as the analysis of their strength and the weaknesses.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Envelhecimento/genética , Ilhas de CpG/genética , Neoplasias/genética , Obesidade/genética , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos
11.
Adv Exp Med Biol ; 1360: 55-67, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505162

RESUMO

Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.


Assuntos
Proteínas de Ciclo Celular , Desmetilação do DNA , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Reparo do DNA/genética
12.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742916

RESUMO

Cytosine methylation within the 5'-C-phosphate-G-3' sequence of nucleotides (called CpG methylation) is a well-known epigenetic modification of genomic DNA that plays an important role in gene expression and development. CpG methylation is likely to be altered in the CpG islands. CpG islands are rich in cytosine, forming a structure called the i-motif via cytosine-cytosine hydrogen bonding. However, little is known about the effect of CpG methylation on the i-motif. In this study, The CpG methylation-induced structural changes on the i-motif was examined by thermal stability, circular dichroism (CD) spectroscopy, and native-polyacrylamide gel electrophoresis (Native-PAGE) evaluation of five i-motif-forming DNAs from four cancer-related genes (VEGF, C-KIT, BCL2, and HRAS). This research shows that CpG methylation increased the transitional pH of several i-motif-forming DNAs and their thermal stability. When examining the effect of CpG methylation on the i-motif in the presence of opposite G4-forming DNAs, CpG methylation influenced the proportion of G4 and i-motif formation. This study showed that CpG methylation altered the stability and structure of the i-motif in CpG islands.


Assuntos
Citosina , Quadruplex G , Ilhas de CpG , Citosina/metabolismo , DNA/química , Metilação de DNA , Epigênese Genética
13.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054943

RESUMO

While about half of the population experience persistent pain associated with tissue damages during their lifetime, current symptom-based approaches often fail to reduce such pain to a satisfactory level. To provide better patient care, mechanism-based analgesic approaches must be developed, which necessitates a comprehensive understanding of the nociceptive mechanism leading to tissue injury-associated persistent pain. Epigenetic events leading the altered transcription in the nervous system are pivotal in the maintenance of pain in tissue injury. However, the mechanisms through which those events contribute to the persistence of pain are not fully understood. This review provides a summary and critical evaluation of two epigenetic mechanisms, DNA methylation and non-coding RNA expression, on transcriptional modulation in nociceptive pathways during the development of tissue injury-associated pain. We assess the pre-clinical data and their translational implication and evaluate the potential of controlling DNA methylation and non-coding RNA expression as novel analgesic approaches and/or biomarkers of persistent pain.


Assuntos
Dor Crônica/etiologia , Metilação de DNA , Epigênese Genética , RNA não Traduzido , Ferimentos e Lesões/complicações , Adaptação Biológica , Biomarcadores , Dor Crônica/diagnóstico , Dor Crônica/metabolismo , Dor Crônica/terapia , Ilhas de CpG , Diagnóstico Diferencial , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos
14.
Mol Biol (Mosk) ; 56(6): 1072-1082, 2022.
Artigo em Russo | MEDLINE | ID: mdl-36475490

RESUMO

Methylation of the CpG islands of gene promoter regions is the most common epigenetic modification involved in the regulation of gene expression. A number of studies have shown that ionizing radiation can cause both hyper- and hypomethylation of DNA. Aberrant methylation affects cellular processes and can lead to the development of various pathological states. In the literature, there are few studies on the methylation status of human DNA a long time after radiation exposure. Here, the methylation level of CpG islands of the promoter regions of apoptosis genes (BCL2, ATM, MDM2, CDKN1A, STAT3, and NFKB1), and also its influence on apoptosis of peripheral blood lymphocytes in chronically exposed persons were studied. Residents of the South Ural region who were chronically exposed to radiation (after discharges of radioactive wastes into the Techa river by the "Mayak Production Association" in 1949-1956) were included in the study. It was established that the proportion of individuals with hypermethylated BCL2 gene promoter among the exposed people was statistically significantly higher than in the control group. The percentage of methylation of the ATM gene promoter weakly positively correlated with dose and age characteristics. Differences in the frequency of lymphocyte apoptosis in exposed individuals with a hypo- or hypermethylated ATM gene promoter were also established. The data indicate that, in the long-term, after chronic low intensity radiation exposure at low and medium doses, epigenetic modifications of the genome occur, which are manifested as changes in methylation of promoter regions of BCL2 and ATM genes.


Assuntos
Apoptose , Linfócitos , Humanos , Apoptose/genética , DNA , Proteínas Proto-Oncogênicas c-bcl-2/genética
15.
EMBO J ; 36(23): 3421-3434, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29074627

RESUMO

DNA methylation is a prevalent epigenetic modification involved in transcriptional regulation and essential for mammalian development. While the genome-wide distribution of this mark has been studied to great detail, the mechanisms responsible for its correct deposition, as well as the cause for its aberrant localization in cancers, have not been fully elucidated. Here, we have compared the activity of individual DNMT3A isoforms in mouse embryonic stem and neuronal progenitor cells and report that these isoforms differ in their genomic binding and DNA methylation activity at regulatory sites. We identify that the longer isoform DNMT3A1 preferentially localizes to the methylated shores of bivalent CpG island promoters in a tissue-specific manner. The isoform-specific targeting of DNMT3A1 coincides with elevated hydroxymethylcytosine (5-hmC) deposition, suggesting an involvement of this isoform in mediating turnover of DNA methylation at these sites. Through genetic deletion and rescue experiments, we demonstrate that this isoform-specific recruitment plays a role in de novo DNA methylation at CpG island shores, with potential implications on H3K27me3-mediated regulation of developmental genes.


Assuntos
Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Animais , Sítios de Ligação , Diferenciação Celular , Linhagem Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo
16.
Biochem Soc Trans ; 49(3): 1109-1119, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156435

RESUMO

In vertebrates, cytosine-guanine (CpG) dinucleotides are predominantly methylated, with ∼80% of all CpG sites containing 5-methylcytosine (5mC), a repressive mark associated with long-term gene silencing. The exceptions to such a globally hypermethylated state are CpG-rich DNA sequences called CpG islands (CGIs), which are mostly hypomethylated relative to the bulk genome. CGIs overlap promoters from the earliest vertebrates to humans, indicating a concerted evolutionary drive compatible with CGI retention. CGIs are characterised by DNA sequence features that include DNA hypomethylation, elevated CpG and GC content and the presence of transcription factor binding sites. These sequence characteristics are congruous with the recruitment of transcription factors and chromatin modifying enzymes, and transcriptional activation in general. CGIs colocalize with sites of transcriptional initiation in hypermethylated vertebrate genomes, however, a growing body of evidence indicates that CGIs might exert their gene regulatory function in other genomic contexts. In this review, we discuss the diverse regulatory features of CGIs, their functional readout, and the evolutionary implications associated with CGI retention in vertebrates and possibly in invertebrates.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Regulação da Expressão Gênica , Genoma/genética , Regiões Promotoras Genéticas/genética , Animais , Sítios de Ligação/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , Fatores de Transcrição/metabolismo
17.
BMC Bioinformatics ; 21(1): 115, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32183713

RESUMO

BACKGROUND: In vertebrate genomes, CpG sites can be clustered into CpG islands, and the amount of methylation in a CpG island can change due to gene regulation processes. Thus, single regulatory events can simultaneously change the methylation states of many CpG sites within a CpG island. This should be taken into account when quantifying the amount of change in methylation, for example in form of a branch length in a phylogeny of cell types. RESULTS: We propose a probabilistic model (the IWE-SSE model) of methylation dynamics that accounts for simultaneous methylation changes in multiple CpG sites belonging to the same CpG island. We further propose a Markov-chain Monte-Carlo (MCMC) method to fit this model to methylation data from cell type phylogenies and apply this method to available data from murine haematopoietic cells and from human cell lines. Combined with simulation studies, these analyses show that accounting for CpG island wide methylation changes has a strong effect on the inferred branch lengths and leads to a significantly better model fit for the methylation data from murine haematopoietic cells and human cell lines. CONCLUSION: The MCMC based parameter estimation method for the IWE-SSE model in combination with our MCMC based inference method allows to quantify the amount of methylation changes at single CpG sites as well as on entire CpG islands. Accounting for changes affecting entire islands can lead to more accurate branch length estimation in the presence of simultaneous methylation change.


Assuntos
Ilhas de CpG , Metilação de DNA , Modelos Estatísticos , Animais , Células Sanguíneas/metabolismo , Regulação da Expressão Gênica , Humanos , Cadeias de Markov , Camundongos , Método de Monte Carlo , Filogenia
18.
BMC Cancer ; 20(1): 290, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252665

RESUMO

BACKGROUND: Identifying molecular differences between primary and metastatic colorectal cancers-now possible with the aid of omics technologies-can improve our understanding of the biological mechanisms of cancer progression and facilitate the discovery of novel treatments for late-stage cancer. We compared the DNA methylomes of primary colorectal cancers (CRCs) and CRC metastases to the liver. Laser microdissection was used to obtain epithelial tissue (10 to 25 × 106 µm2) from sections of fresh-frozen samples of primary CRCs (n = 6), CRC liver metastases (n = 12), and normal colon mucosa (n = 3). DNA extracted from tissues was enriched for methylated sequences with a methylCpG binding domain (MBD) polypeptide-based protocol and subjected to deep sequencing. The performance of this protocol was compared with that of targeted enrichment for bisulfite sequencing used in a previous study of ours. RESULTS: MBD enrichment captured a total of 322,551 genomic regions (249.5 Mb or ~ 7.8% of the human genome), which included over seven million CpG sites. A few of these regions were differentially methylated at an expected false discovery rate (FDR) of 5% in neoplastic tissues (primaries: 0.67%, i.e., 2155 regions containing 279,441 CpG sites; liver metastases: 1%, i.e., 3223 regions containing 312,723 CpG sites) as compared with normal mucosa samples. Most of the differentially methylated regions (DMRs; 94% in primaries; 70% in metastases) were hypermethylated, and almost 80% of these (1882 of 2396) were present in both lesion types. At 5% FDR, no DMRs were detected in liver metastases vs. primary CRC. However, short regions of low-magnitude hypomethylation were frequent in metastases but rare in primaries. Hypermethylated DMRs were far more abundant in sequences classified as intragenic, gene-regulatory, or CpG shelves-shores-island segments, whereas hypomethylated DMRs were equally represented in extragenic (mainly, open-sea) and intragenic (mainly, gene bodies) sequences of the genome. Compared with targeted enrichment, MBD capture provided a better picture of the extension of CRC-associated DNA hypermethylation but was less powerful for identifying hypomethylation. CONCLUSIONS: Our findings demonstrate that the hypermethylation phenotype in CRC liver metastases remains similar to that of the primary tumor, whereas CRC-associated DNA hypomethylation probably undergoes further progression after the cancer cells have migrated to the liver.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Epigenoma , Neoplasias Hepáticas/secundário , Neoplasias Colorretais/metabolismo , Epigênese Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Microdissecção e Captura a Laser/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fenótipo , Regiões Promotoras Genéticas
19.
Virus Genes ; 56(3): 339-346, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32239368

RESUMO

Increasing evidence suggests that DNA methylation has key roles in the replication of retroviruses, including lentiviruses, and pathogenesis of diseases. However, the precise characteristics of CpG islands are not known for many retroviruses. In this study, we compared the distribution of CpG islands among strains of equine infectious anemia virus (EIAV), a lentivirus in the family Retroviridae and a model for HIV research. We identified CpG islands in 32 full-length EIAV genomic sequences obtained from the GenBank database using MethPrimer. Only one CpG island, from 100 to 120 bp, was identified in the genomes of EIAV strains DV10, DLV3-A, and DLV5-10 from China, V26 and V70 from Japan, and IRE H3, IRE F2, IRE F3, and IRE F4 from Ireland. Importantly, the CpG island was located within the Rev gene, which is required for the expression of viral cis-acting elements and the production of new virions. These results suggest that the distribution, length, and genetic properties of CpG islands differ among EIAV strains. Future research should focus on the biological significance of this CpG island within rev to improve our understanding of the precise roles of CpG islands in epigenetic regulation in the species.


Assuntos
Ilhas de CpG , Metilação de DNA , Epigênese Genética , Anemia Infecciosa Equina/virologia , Vírus da Anemia Infecciosa Equina/genética , Animais , Genes Virais , Genoma Viral , Genômica/métodos , Cavalos , Mutação , Filogenia , Análise de Sequência de DNA
20.
Proc Natl Acad Sci U S A ; 114(10): E1885-E1894, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223506

RESUMO

CpG, 5'-C-phosphate-G-3', islands (CGIs) have long been known for their association with enhancers, silencers, and promoters, and for their epigenetic signatures. They are maintained in embryonic stem cells (ESCs) in a poised but inactive state via the formation of bivalent chromatin containing both active and repressive marks. CGIs also occur within coding sequences, where their functional role has remained obscure. Intragenic CGIs (iCGIs) are largely absent from housekeeping genes, but they are found in all genes associated with organ development and cell lineage control. In this paper, we investigated the epigenetic status of iCGIs and found that they too reside in bivalent chromatin in ESCs. Cell type-specific DNA methylation of iCGIs in differentiated cells was linked to the loss of both the H3K4me3 and H3K27me3 marks, and disruption of physical interaction with promoter regions, resulting in transcriptional activation of key regulators of differentiation such as PAXs, HOXs, and WNTs. The differential epigenetic modification of iCGIs appears to be mediated by cell type-specific transcription factors distinct from those bound by promoter, and these transcription factors may be involved in the hypermethylation of iCGIs upon cell differentiation. iCGIs thus play a key role in the cell type-specific regulation of transcription.


Assuntos
Diferenciação Celular/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética/genética , Linhagem da Célula/genética , Cromatina/genética , Células-Tronco Embrionárias/citologia , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Humanos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa