RESUMO
Opiliones (harvestmen) have come to be regarded as an abundant source of model groups for study of historical biogeography, due to their ancient age, poor dispersal capability, and high fidelity to biogeographic terranes. One of the least understood harvestman groups is the Paleotropical Assamiidae, one of the more diverse families of Opiliones. Due to a labyrinthine taxonomy, poorly established generic and subfamilial boundaries, and the lack of taxonomic keys for the group, few efforts have been undertaken to decipher relationships within this arachnid lineage. Neither the monophyly of the family, nor its exact placement in the harvestman phylogeny, have been established. Here, we assessed the internal phylogeny of Assamiidae using a ten-locus Sanger dataset, sampling key lineages putatively ascribed to this family for five of the ten markers. Our analyses recovered Assamiidae as a monophyletic group, in a clade with the primarily Afrotropical Pyramidopidae and the southeast Asian Beloniscidae. Internal relationships of assamiids disfavored the systematic validity of subfamilies, with biogeography reflecting much better phylogenetic structure than the existing higher-level taxonomy. To assess whether the Asian assamiids came to occupy Indo-Pacific terranes via rafting on the Indian subcontinent, we performed divergence dating to infer the age of the family. Our results show that Indo-Pacific clades are ancient, originating well before the Cretaceous and therefore predate a vicariant mechanism commonly encountered for Paleotropical taxa.
Assuntos
Aracnídeos , Animais , Filogenia , Aracnídeos/genética , Sudeste AsiáticoRESUMO
Insect colour is extremely diverse and produced by a large number of pigmentary and nanostructural mechanisms. Considerable research has been dedicated to these optical mechanisms, with most of it focused on chromatic colours, such as blues and greens, and less on achromatic colours like white and gold. Moreover, studies on the evolution of these colours are less common and largely limited to inferences from extant organisms, in part because of the limited amount and types of available fossil material. Here, we directly compare nanostructure and colour of extant and amber-preserved (approx. 15 and 99 Myr old, respectively) gold-coloured representatives of micromoths (Lepidoptera: Micropterigidae) and springtails (Collembola: Tomoceridae). Using electron microscopy, microspectrophotometry and finite domain time difference optical modelling, we show that golden coloration in the extant micromoth is produced by nanometre-scale crossribs that function as zero-order diffraction gratings and in the springtail by a diffraction grating without crossribs. Surprisingly, nanostructure and thus predicted colour of the amber-preserved specimens were nearly identical to those of their extant counterparts. Removal of amber enabled direct colour measurement of the fossil micromoth and further revealed that its colour matched both that of the extant specimen and the predicted colour, providing further support for our optical models. Our data thus clearly show an early origin and striking conservation of scale nanostructures and golden coloration, suggesting strong selection pressure either on the colour itself or on the mechanisms that produce the colour. Furthermore, we show the thus-far untapped potential for the use of amber-preserved specimens in studies on the evolution of organismal coloration.