Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 33(34)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552261

RESUMO

The CsSnBr3photodetectors are fabricated by thermal evaporation and 75 °Cin situannealing, and the effect ofin situannealing on the morphology, structure, exciton dynamics and photoresponse of thermally evaporated CsSnBr3films are investigated. Especially, temperature dependent steady-state photoluminescence (PL) and transient PL decaying have been analyzed in details for understanding the exciton dynamics. Meanwhile, effect of annealing on the activation energy for trap sites (Ea), exciton binding energy (Eb), activation energy for interfacial trapped carriers (ΔE), trap densities and carriers mobilities are studied and the annealed (A-CsSnBr3) reveals obviously lowerEband trap density together with notably higher carrier mobility than those of the unannealed (UA-CsSnBr3). Temperature dependence of the integrated PL intensity can be ascribed to the combining effect of the exciton dissociation, exciton quenching through trap sites and thermal activation of trapped carriers. The temperature dependent transient PL decaying analysis indicates that the PL decaying mechanism at low and high temperature is totally different from that in intermediate temperature range, in which combing effect of free exciton and localized state exciton decaying prevail. The beneficial effects of thein situannealing on the photoresponse performance of the CsSnBr3films can be demonstrated by the remarkable enhancement of the optimal responsivity (R) afterin situannealing which increases from less than 1 A W-1to 1350 A W-1as well as dramatically improved noise equivalent power, specific detectivityD* and Gain (G).

2.
Nanotechnology ; 33(34)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584638

RESUMO

All-inorganic lead-free perovskite CsSnBr3, has been proved good stability and optoelectronic properties in theory and experiment. However, the interfacial electronic properties of metal/CsSnBr3are still unclear in electronic devices. Herein, we systematically investigate the interfacial properties of metal electrodes (Al, Ag and Au) and CsSnBr3with different atomic terminals (SnBr2-T and CsBr-T) through the first-principles calculation. SnBr2-T and CsBr-T have various contact types and Schottky barriers due to their different interaction strengths with metals. In particular, the moderate interlayer coupling strength with Al leads to the ultra-low Schottky barrier and tunneling barrier, which makes Al possess the best contact performance among the studied metals. Furthermore, the external electric field can be effective in regulating the Schottky barrier and realizing the Ohmic contact. These findings provide useful guidance for the design of perovskite-based nanoelectronic devices with high performance.

3.
ACS Appl Mater Interfaces ; 15(25): 30409-30416, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37307190

RESUMO

Tin-based perovskites are becoming promising alternatives to lead-based perovskites with eco-friendly merit and tantalizing photophysical properties. Unfortunately, the lack of facile, low-cost synthesis approaches associated with extremely poor stability greatly restrict their practical applications. Herein, a facile room-temperature "coprecipitation" method utilizing ethanol (EtOH) solvent and salicylic acid (SA) additive is proposed for synthesizing highly stable cubic phase CsSnBr3 perovskite. Experimental results show that ethanol solvent and SA additive can not only effectively prevent the oxidation of Sn2+ during the synthesis processes but also stabilize the as-synthesized CsSnBr3 perovskite. These are mainly ascribed to the protection effect of ethanol and SA, which are attached on the surface of CsSnBr3 perovskite by coordinating with Br- and Sn2+ ions, respectively. As a result, CsSnBr3 perovskite can be obtained in open air and exhibits exceptional oxygen resistibility under moist air conditions (temperature: 24.2-25.8 °C; relative humidity: 63-78%). Absorption remains unchanged and photoluminescence (PL) intensity is vastly maintained (∼69%) after storage for 10 days, better than bulk CsSnBr3 perovskite film synthesized by spin-coating method whose PL intensity is decreased to 43% after storage for 12 h. This work represents a step toward stable tin-based perovskite by a facile and low-cost strategy.

4.
ACS Nano ; 15(12): 19613-19620, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34784180

RESUMO

Thermal photoluminescence (PL) quenching is fundamentally important for perovskite optoelectronic applications. Herein, we investigated PL characteristics of CsSnBr3 microsquares and micropyramids synthesized by chemical vapor deposition (CVD) and their PL quenching behavior at high temperature. These microstructures have favorable PL performances in ambient atmosphere. Under two-photon excitation, we observed whispering gallery modes (WGMs) in microsquares and amplified spontaneous emission (ASE) in micropyramids. Reversible PL losses due to thermal effect were observed for both samples. Monotonic blue shifts in PL emission upon temperature increase suggest a band gap widening associated with an emphanisis effect. Temperature-dependent spectral line width analysis reveals that a line width broadening is attributed to the dominant electron-longitudinal optical phonon interaction. The estimated activation energy of thermally assisted nonradiative recombination for CsSnBr3 microsquares and micropyramids is over 310 meV by the Arrhenius equation, which is higher than CsPbBr3. These results prove that CsSnBr3 exhibits better thermal stability than Pb-based perovskites.

5.
ACS Appl Mater Interfaces ; 12(10): 12353-12361, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045207

RESUMO

We report on the chemical and electronic structure of cesium tin bromide (CsSnBr3) and how it is impacted by the addition of 20 mol % tin fluoride (SnF2) to the precursor solution, using both surface-sensitive lab-based soft X-ray photoelectron spectroscopy (XPS) and near-surface bulk-sensitive synchrotron-based hard XPS (HAXPES). To determine the reproducibility and reliability of conclusions, several (nominally identically prepared) sample sets were investigated. The effects of deposition reproducibility, handling, and transport are found to cause significant changes in the measured properties of the films. Variations in the HAXPES-derived compositions between individual sample sets were observed, but in general, they confirm that the addition of 20 mol % SnF2 improves coverage of the titanium dioxide substrate by CsSnBr3 and decreases the oxidation of SnII to SnIV while also suppressing formation of secondary Br and Cs species. Furthermore, the (surface) composition is found to be Cs-deficient and Sn-rich compared to the nominal stoichiometry. The valence band (VB) shows a SnF2-induced redistribution of Sn 5s-derived density of states, reflecting the changing SnII/SnIV ratio. Notwithstanding some variability in the data, we conclude that SnF2 addition decreases the energy difference between the VB maximum of CsSnBr3 and the Fermi level, which we explain by defect chemistry considerations.

6.
ACS Appl Mater Interfaces ; 12(23): 26153-26160, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32419464

RESUMO

Currently, colloidal quantum dots (CQDs)-based photodetectors are widely investigated due to their low cost and easy integration with optoelectronic devices. The requirements for a high-performance photodetector are a low dark current and a high photocurrent. Normally, photodetectors with a low dark current also possess a low photocurrent, or photodetectors with reduced dark current possess a reduced photocurrent, resulting in low detectivity. In this paper, a solution to suppress dark current and maintain a high photocurrent, i.e., use of poly(methyl methacrylate) doped with Au nanoparticles (NPs) (i.e., PMMA:Au) as an interlayer for enhanced-performance tandem photodetectors, is presented. Our experimental data showed that the dark current through the tandem photodetector ITO/PEDOT:PSS/PbS:CsSnBr3/ZnO/PMMA:Au/CuSeN/PbS:CsSnBr3/ZnO/Ag is suppressed significantly; meanwhile, a high photocurrent is maintained after a PMMA:Au interlayer has been inserted between two subdetectors. The inserted PMMA:Au interlayer acts as storage nodes for electrons, reducing the dark current through the device; meanwhile, the photocurrent can be enhanced under illumination. As a result, the specific detectivity of the tandem photodetector with 35 nm PMMA:Au interlayer was enhanced significantly from 5.01 × 1012 to 2.7 × 1015 Jones under 300 µW/cm2 532 nm illumination at a low voltage of -1 V as compared to the device without a PMMA:Au interlayer. Further, the physical mechanism of enhanced performance is discussed in detail.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa