RESUMO
Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.
RESUMO
In recent years, there has been a substantial surge in the investigation of transition-metal dichalcogenides such as MoS2 as a promising electrochemical catalyst. Inspired by denitrification enzymes such as nitrate reductase and nitrite reductase, the electrochemical nitrate reduction catalyzed by MoS2 with varying local atomic structures is reported. It is demonstrated that the hydrothermally synthesized MoS2 containing sulfur vacancies behaves as promising catalysts for electrochemical denitrification. With copper doping at less than 9% atomic ratio, the selectivity of denitrification to dinitrogen in the products can be effectively improved. X-ray absorption characterizations suggest that two sulfur vacancies are associated with one copper dopant in the MoS2 skeleton. DFT calculation confirms that copper dopants replace three adjacent Mo atoms to form a trigonal defect-enriched region, introducing an exposed Mo reaction center that coordinates with Cu atom to increase N2 selectivity. Apart from the higher activity and selectivity, the Cu-doped MoS2 also demonstrates remarkably improved tolerance toward oxygen poisoning at high oxygen concentration. Finally, Cu-doped MoS2 based catalysts exhibit very low specific energy consumption during the electrochemical denitrification process, paving the way for potential scale-up operations.
RESUMO
Layered double hydroxides (LDHs), promising bifunctional electrocatalysts for overall water splitting, are hindered by their poor conductivity and sluggish electrochemical reaction kinetics. Herein, a hierarchical Cu-doped NiCo LDH/NiCo alloy heterostructure with rich oxygen vacancies by electronic modulation is tactfully designed. It extraordinarily effectively drives both the oxygen evolution reaction (151 mV@10 mA cm-2) and the hydrogen evolution reaction (73 mV@10 mA cm-2) in an alkaline medium. As bifunctional electrodes for overall water splitting, a low cell voltage of 1.51 V at 10 mA cm-2 and remarkable long-term stability for 100 h are achieved. The experimental and theoretical results reveal that Cu doping and NiCo alloy recombination can improve the conductivity and reaction kinetics of NiCo LDH with surface charge redistribution and reduced Gibbs free energy barriers. This work provides a new inspiration for further design and construction of nonprecious metal-based bifunctional electrocatalysts based on electronic structure modulation strategies.
RESUMO
The electrochemical CâN coupling of carbon dioxide (CO2) and nitrate(NO3 -) is an alternative strategy to the traditional high-energy industrial pathway for urea synthesis, which urgently requires the design of efficient catalysts to achieve high yield and Faraday efficiency (FE). Here, amorphous low-content copper-doped cobalt metallene boride (a-Cu0.1CoBx metallene) is designed for urea synthesis via electrochemical CâN coupling. The a-Cu0.1CoBx metallene can drive electrocatalytic CâN coupling of CO2 and NO3 - for urea synthesis in CO2-saturated 0.1 m KNO3 electrolyte, with 27.7% of FE and 312 µg h-1 mg-1 cat. of yield at -0.5 V, as well as superior cycling stability. The in situ Fourier transform infrared and theoretical calculations reveal that electronic effect between Cu, Co, and B causes Cu and Co as dual active sites to promote the adsorption of reactants. Furthermore, the introduced trace Cu reduces the reaction energy barrier of the CâN coupling to facilitate urea synthesis. This work provides a promising route for the optimization of Co-based metallene for the electrosynthesis of urea through CâN coupling.
RESUMO
In this study, the VO2@5%Cu-VMOF/graphite felt (GF) is prepared as an electro-Fenton cathode via hydrothermal process and low-temperature carbonization for efficient antibiotics degradation. The VO2@5%Cu-VMOF/GF cathode exhibit great ciprofloxacin (CIP) degradation performance over the pH range of 2.1-7.2, and CIP removal reached 98.1% within 60 min at a pH of 3.4, with corresponding total organic carbon (TOC) removal of 68.7%. The cathode also showed desired catalytic performance toward various antibiotics decomposition. The great catalytic activity of the VO2@5%Cu-VMOF/GF cathode is attributed to lattice strain induced by Cu doping, and the elimination of the overpotential difference between the optimal oxygen reduction potential (OP ORR) and optimal metal reduction potential (OP MRR). Density Function Theory (DFT) calculations showed that Cu doping facilitated electrons accumulation around V atoms, and thus increased the content of low-valence metals in the cathode material. Four possible degradation pathways for CIP are proposed and intermediate toxicity is evaluated. This work advances the design and application of MOF derivatives as electro-Fenton cathodic materials for emerging contaminants degradation.
RESUMO
Amorphous photocatalysts are characterized by numerous grain boundaries and abundant unsaturated sites, which enhance reaction efficiency from both kinetic and thermodynamic perspectives. However, amorphization strategies have rarely been used for photocatalytic CO2 reduction. Doping copper onto a metal-organic framework (MOF) surface can regulate the electronic structure of photocatalysts, promote electron transfer from the MOF to Cu, and improve the separation efficiency of electron-hole pairs. In this study, an amorphous photocatalyst MOFw-p/Cu containing highly dispersed Cu (0, I, II) sites was designed and synthesized by introducing a regulator and inâ situ copper species during the nucleation process of MOF (UiO-66-NH2). Various characterizations confirmed that the Cu species were anchored to the organometallic skeleton of the surface amorphization MOF structure. The synergistic effect of Cu doping and surface amorphization in MOFw-p/Cu can significantly enhance the CO and CH4 yields while promoting the formation of the multicarbon product C2H4. The approach holds promise for developing novel, highly efficient MOFs as photocatalysts for CO2 photoreduction, enabling the production of high-value-added C2 products.
RESUMO
In this study, we investigated the effects of Cu doping on the performance of CoFeSiB amorphous microwires as the core of a fluxgate magnetometer. The noise performance of fluxgate sensors primarily depends on the crystal structure of constituent materials. CoFeSiB amorphous microwires with varying Cu doping ratios were prepared using melt-extraction technology. The microstructure of microwire configurations was observed using transmission electron microscopy, and the growth of nanocrystalline was examined. Additionally, the magnetic performance of the microwire and the noise of the magnetic fluxgate sensors were tested to establish the relationship between Cu-doped CoFeSiB amorphous wires and sensor noise performance. The results indicated that Cu doping triggers a positive mixing enthalpy and the reduced difference in the atomic radius that enhances the degree of nanocrystalline formation within the system; differential scanning calorimetry analysis indicates that this is due to Cu doping reducing the glass formation capacity of the system. In addition, Cu doping affects the soft magnetic properties of amorphous microwires, with 1% low-doping samples exhibiting better soft magnetic properties. This phenomenon is likely the result of the interaction between nanocrystalline organization and magnetic domains. Furthermore, a Cu doping ratio of 1% yields the best noise performance, aligning with the trend observed in the material's magnetic properties. Therefore, to reduce the noise of the CoFeSiB amorphous wire sensor, the primary goal should be to reduce microscopic defects in amorphous alloys and enhance soft magnetic properties. Cu doping is a superior preparation method which facilitates control over preparation conditions, ensuring the formation of stable amorphous wires with consistent performance.
RESUMO
To meet the demands for high-temperature performance and lightweight materials in aerospace engineering, the Au-Ni solder is often utilized for joining dissimilar materials, such as Ti3Al-based alloys and Ni-based high-temperature alloys. However, the interaction between Ti and Ni can lead to the formation of brittle phases, like Ti2Ni, TiNi, and TiNi3, which diminish the mechanical properties of the joint and increase the risk of crack formation during the welding process. Cu doping has been shown to enhance the mechanical properties and high-temperature stability of the Au-Ni brazed joint's central area. Due to the difficulty in accurately controlling the solid solution content of Cu in the Au-Ni alloy, along with the high cost of Au, traditional experimental trial-and-error methods are insufficient for the development of Au-based solders. In this study, first principles calculations based on density functional theory were employed to analyze the effect of Cu content on the stability of the Au-2.0Ni-xCu (x = 0, 0.25, 0.5, 0.75, 1.0, 1.25 wt%) alloy phase structure. The thermal properties of the alloy were determined using Gibbs software fitting. The results indicate that the Au-2.0Ni-0.25Cu alloy exhibits the highest plastic toughness (B/G = 5.601, ν = 0.416, Cauchy pressure = 73.676 GPa) and a hardness of 1.17 GPa, which is 80% higher than that of Au-2.0Ni. This alloy balances excellent strength and plastic toughness, meeting the mechanical performance requirements of brazed joints. The constant pressure specific heat capacity (Cp) of the Au-2.0Ni-xCu alloy is higher than that of Au-2.0Ni and increases with Cu content. At 1000 K, the Cp of the Au-2.0Ni-0.25Cu alloy is 35.606 J·mol-1·K-1, which is 5.88% higher than that of Au-2.0Ni. The higher Cp contributes to enhanced high-temperature stability. Moreover, the linear expansion coefficient (CTE) of the Au-2.0Ni-0.25Cu alloy at 1000 K is 8.76 × 10-5·K-1, only 0.68% higher than Au-2.0Ni. The lower CTE helps to reduce the risk of solder damage caused by thermal stress. Therefore, the Au-2.0Ni-0.25Cu alloy is more suitable for brazing applications in high-temperature environments due to its excellent mechanical properties and thermal stability. This study provides a theoretical basis for the performance optimization and engineering application of the Au-2.0Ni-xCu alloy as a gold-based solder.
RESUMO
The direct coupling of nitrate ions and carbon dioxide for urea synthesis presents an appealing alternative to the Bosch-Meiser process in industry. The simultaneous activation of carbon dioxide and nitrate, however, as well as efficient C-N coupling on single active site, poses significant challenges. Here, we propose a novel metal/hydroxide heterostructure strategy based on synthesizing an Ag-CuNi(OH)2 composite to cascade carbon dioxide and nitrate reduction reactions for urea electrosynthesis. The strongly coupled metal/hydroxide heterostructure interface integrates two distinct sites for carbon dioxide and nitrate activation, and facilitates the coupling of *CO (on silver, where * denotes an active site) and *NH2 (on hydroxide) for urea formation. Moreover, the strongly coupled interface optimizes the water splitting process and facilitates the supply of active hydrogen atoms, thereby expediting the deoxyreduction processes essential for urea formation. Consequently, our Ag-CuNi(OH)2 composite delivers a high urea yield rate of 25.6â mmol gcat. -1 h-1 and high urea Faradaic efficiency of 46.1 %, as well as excellent cycling stability. This work provides new insights into the design of dual-site catalysts for C-N coupling, considering their role on the interface.
RESUMO
Electrocatalytic carbonylation of CO and CH3OH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd0 and Pd4+ surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted Pd3Cu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0â V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.
RESUMO
TiNb2 O7 , as a promising alternative of Li4 Ti5 O12 , exhibits giant potential as low-temperature anode due to its higher theoretical capacity and comparable structural stability. However, the sluggish electronic conductivity still remains a challenge. Herein, bulk modification of Cu+ doping in porous TiNb2 O7 microsphere is proposed via a simple one-step solvothermal method with subsequent calcination treatment. The results show that the electronic conductivity is improved effectively due to the reduced band gap after doping, while enhanced lithium-ion diffusion is achieved benefiting from the increased interplanar spacing. Therefore, the optimal sample of Cu0.06 Ti0.94 Nb2 O7 exhibits a high reversible capacity of 244.4 mA h g-1 at 100 mA g-1 after 100 cycles, superior rate capability, and long-term cycling stability at 1000 mA g-1 at room temperature. Particularly, it can also display good performance in a wide temperature range from 25 to -30 °C, including a reversible capacity of 76.6 mA h g-1 at -20 °C after 200 cycles at 200 mA g-1 . Moreover, Cu0.06 Ti0.94 Nb2 O7 //LiFePO4 full cell can deliver a high reversible capacity of 177.5 mA h g-1 at 100 mA g-1 . The excellent electrochemical properties at both ambient and low-temperatures demonstrate the great potential of Cu+ -doped TiNb2 O7 in energy-storage applications.
RESUMO
O3-type Fe/Mn-based layered oxide cathode materials with abundant reserves have a promising prospect in sodium-ion batteries. However, the electrochemical reversibility of most O3-type Fe/Mn-based oxide cathode materials is still not high enough. Herein, the effect of different Cu contents on the electrochemical properties of O3-NaFe0.50 Mn0.50 O2 materials is systematically investigated. The as-prepared NaFe0.30 Mn0.50 Cu0.20 O2 cathode achieves the synergistic optimization of the interface and bulk phase. It shows superior electrochemical performance, with an initial discharge specific capacity of 114â mAh g-1 at 0.1â C, a capacity retention rate of 94 % after 100â cycles at 0.5â C, and excellent chemical stability in air and water. In addition, the sodium ion full battery based on NaFe0.30 Mn0.50 Cu0.20 O2 cathode and hard carbon anode has a capacity retention rate of 81 % after 100â cycles. This research provides a useful approach for the preparation of low-cost and high-performance O3-type layered cathode materials.
RESUMO
Treatment of organic wastewater is still a difficult problem to solve. In this paper, Cu-doped SnSe powder was synthesized by a convenient and efficient hydrothermal method. Meanwhile, the degradation effect of different doping concentrations of SnSe on methylene blue was investigated. It was found that at low doping concentrations, the degradation effect on methylene blue was not obvious because Cu was dissolved in the lattice of the SnSe matrix at low concentrations. As the doping concentration increased, SnSe changed from a layered structure to a nanocluster structure with reduced particle size, and a mixed phase of SnSe and Cu2SnSe4 appeared. In fact, the degradation effect on methylene blue was significantly enhanced, and we found that the catalytic degradation effect on methylene blue was best at a doping concentration of 10 wt.%.
RESUMO
Defect engineering and heteroatom doping can significantly enhance the activity of zinc-aluminum layered double hydroxides (ZnAl-LDHs) in photocatalytic CO2 reduction to fuel. However, the in-depth understanding of the associated intrinsic mechanisms is limited. Herein, we systematically investigated Zn vacancies (VZn), oxygen vacancies (VO), and Cu doping on the geometry and electronic structure of ZnAl-LDH using density functional theory (DFT). We also revealed the related reaction mechanism. The results reveal the concerted roles of VO, VZn, and doped-Cu facilitate the formation of the unsaturated metal complexes (Znδ+-VO and Cuδ+-VO). They can localize the charge density distribution, function as new active centers, and form the intermediate band. Simultaneously, the intermediate band of functionalized ZnAl-LDHs narrows the band gap and lowers the band edge location. Therefore, it can broaden the absorption range of light and improve the selectivity of CO. Additionally, the unsaturated metal complex lowers the Gibbs free energy barrier for effective CO2 activation by bringing the d-band center level closer to the Fermi level. The work provided guidance for developing LDH photocatalysts with high activity and selectivity.
RESUMO
In this study, Cu-doped ZnO was prepared via the facile one-pot solvothermal approach. The structure and composition of the synthesized samples were characterized by XRD (X-ray diffraction), TEM (transmission electron microscopy), and XPS (X-ray photoelectron spectroscopy) analyses, revealing that the synthesized samples consisted of Cu-doped ZnO nanoparticles. Ultraviolet-visible (UV-vis) spectroscopy analysis showed that Cu-doping significantly improves the visible light absorption properties of ZnO. The photocatalytic capacity of the synthesized samples was tested via the disinfection of Escherichia coli, with the Cu-ZnO presenting enhanced disinfection compared to pure ZnO. Of the synthesized materials, 7% Cu-ZnO exhibited the best photocatalytic performance, for which the size was ~9 nm. The photocurrent density of the 7% Cu-ZnO samples was also significantly higher than that of pure ZnO. The antifungal activity for 7% Cu-ZnO was also tested on the pathogenic fungi of Fusarium graminearum. The macroconidia of F. graminearum was treated with 7% Cu-ZnO photocatalyst for 5 h, resulting in a three order of magnitude reduction at a concentration of 105 CFU/mL. Fluorescence staining tests were used to verify the survival of macroconidia before and after photocatalytic treatment. ICP-MS was used to confirm that Cu-ZnO met national standards for cu ion precipitation, indicating that Cu-ZnO are environmentally friendly materials.
Assuntos
Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Desinfecção , Fungos , Escherichia coli , CatáliseRESUMO
Developing highly efficient and non-precious materials for Zn-air batteries (ZABs) and supercapacitors (SCs) are still crucial and challenging. Herein, electronic reconfiguration and introducing conductive carbon-based materials are simultaneously conducted to enhance the ZABs and SCs performance of Co2P. We develop a simple and efficient electrospinning technology followed by carbonization process to synthesize embedding Co2P nanoparticles in Cu doping carbon nanofibers (Cu-Co2P/CNFs). As a result, the 7% Cu-Co2P/CNFs presents high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity (half-wave potential of 0.792 V for ORR, an overpotential of 360 mV for OER). The ZABs exhibit a power density of 230 mW cm-2and excellent discharge-charge stability of 80 h. In addition, the 7% Cu-Co2P/CNFs show the specific capacitance of 558 F g-1at 1 A g-1. Moreover, the 7% Cu-Co2P/CNFs//CNFs asymmetric supercapacitor was assembled applying 7% Cu-Co2P/CNFs electrode and pure CNFs, which exhibits a high energy density (25.9 Wh kg-1), exceptional power density (217.5 kW kg-1) and excellent cycle stability (96.6% retention after 10 000 cycles). This work may provide an effective way to prepared Co2P based materials for ZABs and SCs applications.
RESUMO
Copper-doped antimony selenide (Cu-doped Sb2Se3) thin films were deposited as absorber layers in photovoltaic solar cells using the low-temperature pulsed electron deposition (LT-PED) technique, starting from Sb2Se3 targets where part of the Sb was replaced with Cu. From a crystalline point of view, the best results were achieved for thin films with about Sb1.75Cu0.25Se3 composition. In order to compare the results with those previously obtained on undoped thin films, Cu-doped Sb2Se3 films were deposited both on Mo- and Fluorine-doped Tin Oxide (FTO) substrates, which have different influences on the film crystallization and grain orientation. From the current-voltage analysis it was determined that the introduction of Cu in the Sb2Se3 absorber enhanced the open circuit voltage (VOC) up to remarkable values higher than 500 mV, while the free carrier density became two orders of magnitude higher than in pure Sb2Se3-based solar cells.
RESUMO
The heterogeneous Fenton-like catalyst (Mg,Cu,Ni)(Fe,Al)2O4 was synthesized via a coprecipitation method using laterite nickel ore leaching solution as raw material. The effects of CuCl2·2H2O addition and calcination temperature on the microstructures and degradation properties of the obtained products were investigated. Results showed that higher calcination temperature could promote the migration of Cu2+ ions from CuO to the spinel ferrite lattice and occupied octahedral sites. The degradation efficiencies (η) of various types of low-concentration dyes and tetracycline were higher than 95%, which was mainly due to the accelerated generation of OH radicals by the synergistic effect of Fe3+ and Cu2+ ions in octahedral sites of the formed (Mg,Cu,Ni)(Fe,Al)2O4. Moreover, after five consecutive degradation cycles, the η of RhB was still close to 100%, TOC removal efficiency was maintained around 40% and the concentrations of metallic ions in degraded solutions were all lower than the national effluent discharge standard (GB8978-1996), confirming the as-obtained (Mg,Cu,Ni)(Fe,Al)2O4 was an eco-friendly heterogeneous Fenton-like catalyst with excellent stability and reusability. This study may provide an effective reference for large scale preparing efficient heterogeneous Fenton-like catalysts from natural minerals in treating the wastewater contaminated by refractory organics.
Assuntos
Ferro , Níquel , Catálise , Peróxido de Hidrogênio , Águas ResiduáriasRESUMO
Copper-doped zinc oxide nanoparticles (NPs) CuxZn1-xO (x = 0, 0.01, 0.02, 0.03, and 0.04) were synthesized via a sol-gel process and used as an active electrode material to fabricate a non-enzymatic electrochemical sensor for the detection of glucose. Their structure, composition, and chemical properties were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) and Raman spectroscopies, and zeta potential measurements. The electrochemical characterization of the sensors was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Cu doping was shown to improve the electrocatalytic activity for the oxidation of glucose, which resulted from the accelerated electron transfer and greatly improved electrochemical conductivity. The experimental conditions for the detection of glucose were optimized: a linear dependence between the glucose concentration and current intensity was established in the range from 1 nM to 100 µM with a limit of detection of 0.7 nM. The proposed sensor exhibited high selectivity for glucose in the presence of various interfering species. The developed sensor was also successfully tested for the detection of glucose in human serum samples.
Assuntos
Técnicas Biossensoriais/métodos , Glicemia/análise , Cobre/química , Técnicas Eletroquímicas/métodos , Eletrodos , Nanopartículas/química , Óxido de Zinco/química , Humanos , OxirreduçãoRESUMO
Transition metal ion-doped quantum dots (QDs) exhibit unique optical and photophysical properties that offer significant advantages over undoped QDs, such as larger Stokes shift to avoid self-absorption/energy transfer, longer excited-state lifetimes, wider spectral window, and improved chemical and thermal stability. Among the doped QDs emitters, Cu is widely introduced into the doped QDs as novel, efficient, stable, and tunable optical materials that span a wide spectrum from blue to near-infrared (NIR) light. Their unique physical and chemical characteristics enable the use of Cu-doped QDs as NIR labels for bioanalysis and bioimaging. In this review, we discuss doping mechanisms and optical properties of Cu-doped QDs that are capable of NIR emission. Applications of Cu-doped QDs in in vitro biosensing and in in vivo bioimaging are highlighted. Moreover, a prospect of the future of Cu-doped QDs for bioanalysis and bioimaging are also summarized.