RESUMO
Nanosatellites of CubeSat type due to, i.a., minimized costs of space missions, as well as the potential large application area, have become a significant part of the space economy sector recently. The opportunity to apply miniaturized microsystem (MEMS) tools in satellite space missions further accelerates both the space and the MEMS markets, which in the coming years are considered to become inseparable. As a response to the aforementioned perspectives, this paper presents a microfluidic mixer system for biological research to be conducted onboard CubeSat nanosatellites. As a high complexity of the space systems is not desired due to the need for failure-free and remotely controlled operation, the principal concept of the work was to design an entirely passive micromixer, based on lab-on-chip technologies. For the first time, the microfluidic mixer that uses inertial force generated by rocket engines during launch to the orbit is proposed to provide an appropriate mixing of liquid samples. Such a solution not only saves the space occupied by standard pumping systems, but also reduces the energy requirements, ultimately minimizing the number of battery modules and the whole CubeSat size. The structures of the microfluidic mixers were fabricated entirely out of biocompatible resins using MultiJet 3D printing technology. To verify the functionality of the passive mixing system, optical detection consisting of the array of blue LEDs and phototransistors was applied successfully. The performance of the device was tested utilizing an experimental rocket, as a part of the Spaceport America Cup 2023 competition.
Assuntos
Dispositivos Lab-On-A-Chip , Voo Espacial/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Desenho de EquipamentoRESUMO
Thanks to advancements in silicon photomultiplier sensors (SiPMs) and system-on-chip (SoC) technology, our INFN Roma1 group developed ArduSiPM in 2012, the first all-in-one scintillator particle detector in the literature. It used a custom Arduino Due shield to process fast signals, utilizing the Microchip Sam3X8E SoC's internal peripherals to control and acquire SiPM signals. The availability of radiation-tolerant SoCs, combined with the goal of reducing system space and weight, led to the development of an innovative second-generation board, a better-performing device called Cosmo ArduSiPM, suitable for space missions. The architecture of the new detector is based on the Microchip SAMV71 300 MHz, 32-bit ARM® Cortex®-M7 (Microchip Technology Inc., Chandler, AZ, USA). While the analog front-end is essentially identical to the ArduSiPM, it utilizes components with the smallest possible package. The board fits in a CubeSat module. Thanks to the compact design, the board has two independent channels, with a total weight of only 40 grams within a CubeSat form factor. The ArduSiPM architecture is based on a single microcontroller and fast discrete analog electronics. It benefits from the continued development of SoCs related to the IoT (Internet of Things) market. Compared with a system with a custom ASIC, this architecture based on software and SoC capabilities offers considerable advantages in terms of cost and development time. The ability to incorporate new commercial SoCs, continuously emerging from advancements in the aerospace and automotive industries, provides the system with a robust foundation for sustained growth over the years. A detailed characterization of the hardware and the system's response to different photon fluxes is presented in this article. Additionally, coupling the device with a scintillator was tested at the end of this article as a preliminary trial for future measurements, showing potential for further enhancement of the detector's capabilities.
RESUMO
CubeSats have emerged as cost-effective platforms for biological research in low Earth orbit (LEO). However, they have traditionally been limited to optical absorbance sensors for studying microbial growth. This work has made improvements to the sensing capabilities of these small satellites by incorporating electrochemical ion-selective pH and pNa sensors with optical absorbance sensors to enrich biological experimentation and greatly expand the capabilities of these payloads. We have designed, built, and tested a multi-modal multi-array electrochemical-optical sensor module and its ancillary systems, including a fluidic card and an on-board payload computer with custom firmware. Laboratory tests showed that the module could endure high flow rates (1 mL/min) without leakage, and the 27-well, 81-electrode sensor card accurately detected pH (71.0 mV/pH), sodium ion concentration (75.2 mV/pNa), and absorbance (0.067 AU), with the sensors demonstrating precise linear responses (R2 ≈ 0.99) in various test solutions. The successful development and integration of this technology conclude that CubeSat bio-payloads are now poised for more complex and detailed investigations of biological phenomena in space, marking a significant enhancement of small-satellite research capabilities.
Assuntos
Cultura , Projetos de Pesquisa , Eletrodos , Pesquisa Empírica , FezesRESUMO
Space technology for small satellites has made significant progress in the academic and industrial fields, and an alternative focused on educational institutions is the CubeSat standard, created to promote various scientific projects of space exploration. In this context, a fundamental module of any satellite is the telemetry subsystem, which controls the communication with the Earth through electronic circuits dedicated to remote communication; also, the measurement and power supply modules are integrated into a CubeSat. Its construction costs range from USD 2500 to 55,000, with suppliers from Europe and the United States. This motivates the development of the present project, aimed at an academic-experimental CubeSat-1U prototype, to limit this technological dependence, focusing on the measurement generated by the acceleration sensors, angular velocity, magnetic fields, barometric pressure, temperature and ultraviolet light intensity, and the energization of each of them. For this, the main objective of the research is to identify the four basic subsystems of the CubeSat-1U: (a) energization subsystem, (b) sensing subsystem, (c) transmission and reception subsystem, and (d) control subsystem. To describe in detail the construction of (a) and (b), a set of diagrams is performed, defining their operation and its interaction. To explain the subsystem's construction, the components selection and integration are presented. As a result, the electrical measurements generated by the power system, the output of the sensors in laboratory conditions, and images of the developed circuits are presented, having as a contribution to the methodology of design, integration, and development of the four subsystems, the feasibility of construction and its implementation in an academic satellite.
RESUMO
Greenhouse gases absorb the Earth's thermal radiation and partially return it to the Earth's surface. When accumulated in the atmosphere, greenhouse gases lead to an increase in the average global air temperature and, as a result, climate change. In this paper, an approach to measuring CO2 and CH4 concentrations using Fourier transform infrared spectroscopy (FTIR) is proposed. An FTIR spectrometer mockup, operating in the wavelength range from 1.0 to 1.7 µm with a spectral resolution of 10 cm-1, is described. The results of CO2 and CH4 observations throughout a day in urban conditions are presented. A low-resolution FTIR spectrometer for the 16U CubeSat spacecraft is described. The FTIR spectrometer has a 2.0-2.4 µm spectral range for CO2 and CH4 bands, a 0.75-0.80 µm range for reference O2 bands, an input field of view of 10-2 rad and a spectral resolution of 2 cm-1. The capabilities of the 16U CubeSat spacecraft for remote sensing of greenhouse gas emissions using a developed FTIR spectrometer are discussed. The design of a 16U CubeSat spacecraft equipped with a compact, low-resolution FTIR spectrometer is presented.
RESUMO
This article presents a multi-band right-hand circularly polarized antenna designed for the Cube Satellite (CubeSat). Based on a quadrifilar structure, the antenna provides circular polarization radiation suitable for satellite communication. Moreover, the antenna is designed and fabricated using two 1.6 mm thickness FR4-Epoxy boards connected by metal pins. In order to improve the robustness, a ceramic spacer is placed in the centerboard, and four screws are added at the corners to fix the antenna to the CubeSat structure. These additional parts reduce antenna damage caused by vibrations in the launch vehicle lift-off stage. The proposal has a dimension of 77 × 77 × 10 mm3 and covers the LoRa frequency bands at 868 MHz, 915 MHz, and 923 MHz. According to the measurements in the anechoic chamber, antenna gains with the values of 2.3 dBic and 1.1 dBic are obtained for the 870 MHz and 920 MHz, respectively. Finally, the antenna is integrated into a 3U CubeSat that was launched by a Soyuz launch vehicle in September 2020. The terrestrial-to-space communication link was measured, and the antenna performance was confirmed in a real-life scenario.
Assuntos
Cerâmica , Comunicação , Resinas Epóxi , Mãos , Fixadores InternosRESUMO
In the context of Kalman filters, the predicted error covariance matrix Pk+1 and measurement noise covariance matrix R are used to represent the uncertainty of state variables and measurement noise, respectively. However, in real-world situations, these matrices may vary with time due to measurement faults. To address this issue in CubeSat attitude estimation, an adaptive extended Kalman filter has been proposed that can dynamically estimate the predicted error covariance matrix and measurement noise covariance matrix using an expectation-maximization approach. Simulation experiments have shown that this algorithm outperforms existing methods in terms of attitude estimation accuracy, particularly in sunlit and shadowed phases of the orbit, with the same filtering parameters and initial conditions.
RESUMO
CubeSats require accurate determination of their orientation relative to the Sun, Earth, and other celestial bodies to operate successfully and collect scientific data. This paper presents an orientation system based on solar and magnetic sensors that offers a cost-effective and reliable solution for CubeSat navigation. Solar sensors analyze the illumination on each face to measure the satellite's orientation relative to the Sun, while magnetic sensors determine the Earth's magnetic field vector in the satellite's reference frame. By combining the measured data with the known ephemeris of the satellite, the satellite-Sun vector and the magnetic field orientation can be reconstructed. The orientation is expressed using quaternions, representing the rotation from the internal reference system of the satellite to the selected reference system. The proposed system demonstrates the ability to accurately determine the orientation of a CubeSat using only two sensors, making it suitable for installations where more complex and expensive instruments are impractical. Additionally, the paper presents a mathematical model of a low-cost CubeSat orientation system and a hardware implementation of the sensor. The technology, using solar and magnetic sensors, provides a reliable and affordable solution for CubeSat navigation, supporting the increasing sophistication of miniature payloads and enabling accurate satellite positioning in space missions.
RESUMO
This study introduces a prototype end-to-end Simulator software tool for simulating two-dimensional satellite multispectral imagery for a variety of satellite instrument models in aquatic environments. Using case studies, the impact of variable sensor configurations on the performance of value-added products for challenging applications, such as coral reefs and cyanobacterial algal blooms, is assessed. This demonstrates how decisions regarding satellite sensor design, driven by cost constraints, directly influence the quality of value-added remote sensing products. Furthermore, the Simulator is used to identify situations where retrieval algorithms require further parameterization before application to unsimulated satellite data, where error sources cannot always be identified or isolated. The application of the Simulator can verify whether a given instrument design meets the performance requirements of end-users before build and launch, critically allowing for the justification of the cost and specifications for planned and future sensors. It is hoped that the Simulator will enable engineers and scientists to understand important design trade-offs in phase 0/A studies easily, quickly, reliably, and accurately in future Earth observation satellites and systems.
RESUMO
When managing a constellation of nanosatellites, one may leverage this structure to improve the mission's quality-of-service (QoS) by optimally distributing the tasks during an orbit. In this sense, this research proposes an offline energy-aware task scheduling problem formulation regarding the specifics of constellations, by considering whether the tasks are individual, collective, or stimulated to be redundant. By providing such an optimization framework, the idea of estimating an offline task schedule can serve as a baseline for the constellation design phase. For example, given a particular orbit, from the simulation of an irradiance model, the engineer can estimate how the mission value is affected by the inclusion or exclusion of individuals objects. The proposed model, given in the form of a multi-objective mixed-integer linear programming model, is illustrated in this work for several illustrative scenarios considering different sets of tasks and constellations. We also perform an analysis of the Pareto-optimal frontier of the problem, identifying the feasible trade-off points between constellation and individual tasks. This information can be useful to the decision-maker (mission operator) when planning the behavior in orbit.
Assuntos
Algoritmos , Simulação por Computador , Humanos , Fenômenos FísicosRESUMO
The 3Cat-4 mission aims at demonstrating the capabilities of a CubeSat to perform Earth Observation (EO) by integrating a combined GNSS-R and Microwave Radiometer payload into a 1-Unit CubeSat. One of the greatest challenges is the design of an antenna that respects the 1-Unit CubeSat envelope while operating at the different frequency bands: Global Positioning System (GPS) L1 and Galileo E1 band (1575 MHz), GPS L2 band (1227 MHz), and the microwave radiometry band (1400-1427 MHz). Moreover, it requires between 8 and 12 dB of directivity depending on the band whilst providing at least 10 dB of front-to-back lobe ratio in L1 and L2 GPS bands. After a trade-off analysis on the type of antenna that could be used, a helix antenna was found to be the most suitable option to comply with the requirements, since it can be stowed during launch and deployed once in orbit. This article presents the antenna design from a radiation performance point of view starting with a theoretical analysis, then presenting the numerical simulations, the measurements in an Engineering Model (EM), and finally the final design and performance of the Flight Model (FM).
RESUMO
One of the main features of CubeSats is represented by their extreme versatility, e.g., maintaining the same overall structure for different purposes. This requires high technological flexibility achievable in a cost-effective way while maintaining compact sizes. In this contribution, a microwave receiver specifically designed for CubeSat applications is proposed. Due to the wide input operating bandwidth, i.e., 2 GHz-18 GHz, it can be exploited for different purposes, e.g., satellite communication, radars, and electronic warfare systems. This is beneficial for CubeSat systems, whereby the possibility to share the same front-end circuit for different purposes is a key feature in reducing the overall size and weight. The downconverter was designed to minimize the spurious contributions at low frequency by taking advantage, at the same time, of commercial off-the-shelf components due to their cost-effectiveness. The idea behind this work is to add flexibility to the CubeSat communication systems in order to be reusable in different contexts. This feature enables new applications but also provides the largest bandwidth if required from the ground system. An accurate experimental characterization was performed to validate the downconverter performance with the aim of allowing easy system integration for the new frontier of CubeSat technologies. This paves the way for the most effective implementation of the Internet of Things (IoT), machine-to-machine (M2M) communications, and smart-everything services.
Assuntos
Micro-Ondas , Comunicações Via Satélite , Eletrônica , InternetRESUMO
A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated.
Assuntos
Tecnologia , Tecnologia sem FioRESUMO
Floods are recognized as the costliest type of natural hazard both worldwide and in the United States, with projected increases in frequency and magnitude in the absence of effective adaptation strategies. In the fall of 2018, Hurricane Florence made landfall in southeastern North Carolina, USA, bringing record rainfall and resulting in widespread inundation that impacted many areas outside of the federally designated Special Flood Hazard Area (SFHA). Much of this flooding was from inland pluvial inundation, which is an understudied component of coastal risk and vulnerability assessments primarily due to the scarcity of infrastructure data and historically lower flooding recurrence rates. This has resulted in severe damages in areas that residents and local officials considered at low risk from flooding. Using nearly-coincident high-spatial, high-temporal resolution CubeSat satellite imagery, we quantified the areal extent of post-Hurricane Florence floodwater within and beyond the 100-year floodplain (SFHA) and the proportion of residential structures exposed to flooding within an eight-county study area. We propose a novel approach to estimate flood risk resulting from this singular event (termed an actualized risk index) when compared to a published empirical model of vulnerability. We show that 24.3% of detected floodwater was outside the 100-year floodplain, 43.4% of exposed residential structures are outside the 100-year floodplain, and communities of highest vulnerability are not only along the coast but also inland along the Cape Fear, Northeast Cape Fear, Trenton, and Neuse Rivers. This suggests that the SFHA may not adequately show the spatial distribution of pluvial flood risk in riverine areas, and that misunderstanding of this risk has led to a pattern of development in which houses have a higher than expected risk of flooding. Moreover, this additional flood risk may disproportionately affect lower-income residents of these largely rural areas. These results have important implications in light of recent policy guidance in southeastern USA states that mandate that predictive coastal vulnerability assessments to sea level rise be conducted relative to 100-year SFHA zones.
Assuntos
Tempestades Ciclônicas , Inundações , Previsões , North Carolina , Rios , Imagens de SatélitesRESUMO
The Gamma-ray Module, GMOD, is a miniaturised novel gamma-ray detector which will be the primary scientific payload on the Educational Irish Research Satellite (EIRSAT-1) 2U CubeSat mission. GMOD comprises a compact (25 mm × 25 mm × 40 mm) cerium bromide scintillator coupled to a tiled array of 4 × 4 silicon photomultipliers, with front-end readout provided by the IDE3380 SIPHRA. This paper presents the detailed GMOD design and the accommodation of the instrument within the restrictive CubeSat form factor. The electronic and mechanical interfaces are compatible with many off-the-shelf CubeSat systems and structures. The energy response of the GMOD engineering qualification model has been determined using radioactive sources, and an energy resolution of 5.4% at 662 keV has been measured. EIRSAT-1 will perform on-board processing of GMOD data. Trigger results, including light-curves and spectra, will be incorporated into the spacecraft beacon and transmitted continuously. Inexpensive hardware can be used to decode the beacon signal, making the data accessible to a wide community. GMOD will have scientific capability for the detection of gamma-ray bursts, in addition to the educational and technology demonstration goals of the EIRSAT-1 mission. The detailed design and measurements to date demonstrate the capability of GMOD in low Earth orbit, the scalability of the design for larger CubeSats and as an element of future large gamma-ray missions.
RESUMO
Near infrared (NIR) remote sensing has applications in vegetation analysis as well as geological investigations. For extra-terrestrial applications, this is particularly relevant to Moon, Mars and asteroid exploration, where minerals exhibiting spectral phenomenology between 600 and 800 nm have been identified. Recent progress in the availability of processors and sensors has created the possibility of development of low-cost instruments able to return useful scientific results. In this work, two Raspberry Pi camera types and a panchromatic astronomy camera were trialed within a pushbroom sensor to determine their utility in measuring and processing the spectrum in reflectance. Algorithmic classification of all 15 test materials exhibiting spectral phenomenology between 600 and 800 nm was easily performed. Calibration against a spectrometer considers the effects of the sensor, inherent image processing pipeline and compression. It was found that even the color Raspberry Pi cameras that are popular with STEM applications were able to record and distinguish between most minerals and, contrary to expectations, exploited the infra-red secondary transmissions in the Bayer filter to gain a wider spectral range. Such a camera without a Bayer filter can markedly improve spectral sensitivity but may not be necessary.
Assuntos
Geologia , Minerais , Minerais/análiseRESUMO
In this work, the use of a calibration satellite (L2-CalSat) flying in formation with a Cosmic Microwave Background (CMB) polarization mission in an orbit located at the second Lagrange point, is proposed. The new generation of CMB telescopes are expected to reach unprecedented levels of sensitivity to allow a very precise measurement of the B-mode of polarization, the curl-like polarization component expected from gravitational waves coming from Starobinski inflationary models. Due to the CMB polarized signal weakness, the instruments must be subjected to very precise calibration processes before and after launching. Celestial sources are often used as external references for calibration after launch, but these sources are not perfectly characterized. As a baseline option, L2-CalSat is based on the CubeSat standard and serves as a perfectly known source of a reference signal to reduce polarization measurements uncertainty. A preliminary design of L2-CalSat is described and, according to the scanning strategy followed by the telescope, the influence of the relative position between the spacecrafts in the calibration process is studied. This new calibration element will have a huge impact on the performance of CMB space missions, providing a significant improvement in the measurements accuracy without requiring new and costly technological developments.
RESUMO
Ultraviolet and infrared sensors at high quantum efficiency on-board a small satellite (UVSQ-SAT) is a CubeSat dedicated to the observation of the Earth and the Sun. This satellite has been in orbit since January 2021. It measures the Earth's outgoing shortwave and longwave radiations. The satellite does not have an active pointing system. To improve the accuracy of the Earth's radiative measurements and to resolve spatio-temporal fluctuations as much as possible, it is necessary to have a good knowledge of the attitude of the UVSQ-SAT CubeSat. The attitude determination of small satellites remains a challenge, and UVSQ-SAT represents a real and unique example to date for testing and validating different methods to improve the in-orbit attitude determination of a CubeSat. This paper presents the flight results of the UVSQ-SAT's attitude determination. The Tri-Axial Attitude Determination (TRIAD) method was used, which represents one of the simplest solutions to the spacecraft attitude determination problem. Another method based on the Multiplicative Extended Kalman Filter (MEKF) was used to improve the results obtained with the TRIAD method. In sunlight, the CubeSat attitude is determined at an accuracy better than 3° (at one σ) for both methods. During eclipses, the accuracy of the TRIAD method is 14°, while it reaches 10° (at one σ) for the recursive MEKF method. Many future satellites could benefit from these studies in order to validate methods and configurations before launch.
Assuntos
Planeta Terra , Astronave , Ondas de Rádio , Luz SolarRESUMO
In recent years, we have seen significant improvements in the digital sun sensor (DSS) design enabled by advanced micro-systems fabrication and optical sensing technologies. In this paper, we propose a simple single-slit DSS concept with improved accuracy using sub-pixel interpolation. In considering the DSS design, we focused on several characteristics of the sun sensor, including field-of-view, sensor accuracy, complexity, and computational requirements. First, the optimal mask design was determined based on the simple geometry of the slit size, mask height and pixel width. Then, a two-step pixel read-out algorithm was implemented for sub-pixel level interpolation to determine the illumination ratio using 1-, 2-, 4- and 8-bit readouts. Lastly, the improved DSS was integrated with typical CubeSat, commercial-grade attitude sensors suite and a simple TRIAD method to determine the attitude of a CubeSat in LEO. Compared to standard 1-bit read-out mode (0.32 deg RMSE), 8-bit DSS achieves better than 0.01 deg RMSE. In a CubeSat scenario, improvements in attitude knowledge and control accuracy are marginal when using TRIAD, due to the significantly lower accuracy in other CubeSat-scale sensors (magnetometer, for example).
RESUMO
This paper reports the experimental results of a test campaign performed on the radio-frequency (RF) receiver prototype operating at a 2025-2110 MHz frequency range, designed and fabricated for CubeSat applications. The prototype has been tested through a board-level test approach for the verification of the functional requirements and a component-level one for specific characterization measures. The tests have shown the following results: a -115--70 dBm sensitivity range, 390 MHz intermediate frequency, a 0 dBm output power level with ±1 dB error, a 2.34 dB noise figure, and a 4.86 W power absorption. Such results have been largely achieved implementing an automatic gain control system by cascading two Commercial Off-The-Shelf (COTS) amplifiers. Moreover, an innovative technique based on RF test points has been successfully experimented and validated to measure the S-parameters of a custom low-pass filter integrated on the receiver, showing the possibility of even characterizing the single COTS components exposed to radiation through a unique board-level test setup. The technique may have a great impact on the cost reduction of electronic boards for space applications, since it would avoid using expensive evaluation boards for each COTS component that needs a radiation test.