Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 265: 119785, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464096

RESUMO

BACKGROUND: To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS: Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS: IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS: IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Camundongos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/metabolismo , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
2.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445742

RESUMO

The Cuprizone mouse model is widely used in studies on de- and remyelination. In the hands of different experimenters, the Cuprizone concentrations that lead to comparable levels of demyelination differ considerably. The reasons for this variability are unknown. In this study, we tested whether different Cuprizone formulations from different vendors and manufacturers influenced Cuprizone-induced histopathological hallmarks. We intoxicated male C57BL/6 mice with six Cuprizone powders that differed in their manufacturer, vendor, and purity. After five weeks, we analyzed the body weight changes over the course of the experiment, as well as the demyelination, astrogliosis, microgliosis and axonal damage by histological LFB-PAS staining and immunohistochemical labelling of PLP, IBA1, GFAP and APP. All Cuprizone formulations induced demyelination, astrogliosis, microgliosis, axonal damage and a moderate drop in body weight at the beginning of the intoxication period. In a cumulative evaluation of all analyses, two Cuprizone formulations performed weaker than the other formulations. In conclusion, all tested formulations did work, but the choice of Cuprizone formulation may have been responsible for the considerable variability in the experimental outcomes.


Assuntos
Cuprizona , Doenças Desmielinizantes , Masculino , Animais , Camundongos , Cuprizona/toxicidade , Gliose , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Camundongos Endogâmicos C57BL , Peso Corporal , Modelos Animais de Doenças , Bainha de Mielina/patologia
3.
Neuroimage ; 250: 118935, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35091079

RESUMO

Disruptions in oxidative metabolism may occur in multiple sclerosis and other demyelinating neurological diseases. The impact of demyelination on metabolic rate is also not understood. It is possible that mitochondrial damage may be associated with many such neurological disorders. To study oxidative metabolism with one model of demyelination, we implemented a novel multimodal imaging technique combining Near-Infrared Spectroscopy (NIRS) and MRI to cuprizone mouse model. The cuprizone model is used to study demyelination and may be associated with inhibition of mitochondrial function. Cuprizone mice showed reduced oxygen extraction fraction (-39.1%, p ≤ 0.001), increased tissue oxygenation (6.4%, p ≤ 0.001), and reduced cerebral metabolic rate of oxygen in cortical gray matter (-62.1%, p ≤ 0.001). These changes resolved after the cessation of cuprizone exposure and partial remyelination. A decrease in hemoglobin concentration (-34.4%, p ≤ 0.001), but no change in cerebral blood flow were also observed during demyelination. The oxidized state of the mitochondrial enzyme, Cytochrome C Oxidase (CCO) increased (46.3%, p ≤ 0.001) while the reduced state decreased (-34.4%, p ≤ 0.05) significantly in cuprizone mice. The total amount of CCO did not change significantly during cuprizone exposure. Total CCO did decline after recovery both in control (-23.1%, p ≤ 0.01) and cuprizone (-28.8%, p ≤ 0.001) groups which may relate to age. A reduction in the magnetization transfer ratio, indicating demyelination, was found in the cuprizone group in the cerebral cortex (-3.2%, p ≤ 0.01) and corpus callosum (-5.5%, p ≤ 0.001). In summary, we were able to detect evidence of altered CCO metabolism during cuprizone exposure, consistent with a mitochondrial defect. We observed increased oxygenation and reduced metabolic rate associated with reduced myelination in the gray and white matter. The novel multimodal imaging technique applied here shows promise for noninvasively assessing parameters associated with oxidative metabolism in both mouse models of neurological disease and for translation to study oxidative metabolism in the human brain.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Cuprizona/farmacologia , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/metabolismo , Imageamento por Ressonância Magnética/métodos , Mitocôndrias/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Animais , Hipóxia Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo , Remielinização/fisiologia , Marcadores de Spin
4.
Neuroimage ; 114: 128-35, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25871629

RESUMO

Non-invasive measures of well-known pathological hallmarks of multiple sclerosis (MS) such as demyelination, inflammation and axonal injury would serve as useful markers to monitor disease progression and evaluate potential therapies. To this end, in vivo localized proton magnetic resonance spectroscopy ((1)H-MRS) provides a powerful means to monitor metabolic changes in the brain and may be sensitive to these pathological hallmarks. In our study, we used the cuprizone mouse model to study pathological features of MS, such as inflammation, de- and remyelination, in a highly reproducible manner. C57BL/6J mice were challenged with a 0.2% cuprizone diet for 6-weeks to induce demyelination, thereafter the mice were put on a cuprizone free diet for another 6weeks to induce spontaneous remyelination. We employed in vivo (1)H-MRS to longitudinally monitor metabolic changes in the corpus callosum of cuprizone-fed mice during the demyelination (weeks 4 and 6) and spontaneous remyelination (week 12) phases. The MRS spectra were quantified with LCModel and since the total creatine (tCr) levels did not change over time or between groups, metabolite concentrations were expressed as ratios relative to tCr. After 4 and 6weeks of cuprizone treatment a significant increase in taurine/tCr and a significant reduction in total N-acetylaspartate/tCr, total choline-containing compounds/tCr and glutamate/tCr could be observed compared to mice under normal diet. At week 12, when almost full remyelination was established, no statistically significant metabolic differences were present between the control and cuprizone group. Our results suggest that these metabolic changes may represent sensitive markers for cuprizone induced demyelination, axonal injury and inflammation. To the best of our knowledge, this is the first longitudinal in vivo (1)H-MRS study that monitored biochemical changes in the corpus callosum of cuprizone fed mice.


Assuntos
Corpo Caloso/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Animais , Corpo Caloso/patologia , Cuprizona , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Bainha de Mielina/patologia
5.
Front Neurol ; 15: 1411143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040539

RESUMO

Despite significant advancements in the field, the pathophysiology of multiple sclerosis (MS) remains partially understood, with limited therapeutic options available for this debilitating condition. The precise impact of Interleukin-22 (IL-22) in the context of MS is still incompletely elucidated with some evidence suggesting its protective role. To provide a more comprehensive understanding of the role of IL-22, we investigated its effect on remyelination in a mouse model of demyelination induced by Cuprizone. Mice underwent a 6 week regimen of Cuprizone or vehicle, followed or not by intraperitoneal administration of IL-22. Behavioral assessments including tail suspension and inverted screen tests were conducted, alongside histological, histochemical, and quantitative PCR analyses. In Cuprizone-treated mice, IL-22 significantly improved motor and behavioral performance and robustly promoted remyelination in the corpus callosum. Additionally, IL-22 administration led to a significant elevation in MBP transcription in brain biopsies of treated mice. These findings collectively suggest a crucial role for IL-22 in the pathophysiology of MS, particularly in supporting the process of remyelination. These results offer potential avenues for expanding therapeutic strategies for MS treatment. Ongoing experiments aim to further unravel the underlying mechanisms of IL-22 action.

6.
Turk J Biol ; 45(5): 644-655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803461

RESUMO

Cuprizone, copper chelator, treatment of mouse is a toxic model of multiple sclerosis (MS) in which oligodendrocyte death, demyelination and remyelination can be observed. Understanding T and B cell subset as well as their cytokines involved in MS pathogenesis still requires further scrutiny to better understand immune component of MS. The study presented here, aimed to evaluate relevant cytokines, lymphocytes, and gene expressions profiles during demyelination and remyelination in the cuprizone mouse model of MS. Eighty male C57BL/6J mice fed with 0.2% cuprizone for eight weeks. Cuprizone has been removed from the diet in the following eight weeks. Cuprizone treated and control mice sacrificed biweekly, and corpus callosum of the brain was investigated by staining. Lymphocyte cells of mice analyzed by flow cytometry with CD3e, CD11b, CD19, CD80, CD86, CD4, CD25 and FOXP3 antibodies. IFN-gamma, IL-1alpha, IL-2, IL-5, IL-6, IL-10, IL-17, TNF-alpha cytokines were analyzed in plasma samples. Neuregulin 1 (Nrg1), ciliary neurotrophic factor (Cntf) and C-X-C chemokine receptor type 4 (Cxcr4) gene expressions in corpus callosum sections of the mice brain were quantified. Histochemistry analysis showed that demyelination began at the fourth week of cuprizone administration and total demyelination occurred at the twelfth week in chronic model. Remyelination occurred at the fourth week of following withdrawal of cuprizone from diet. The level of mature and activated T cells, regulatory T cells, T helper cells and mature B cells increased during demyelination and decreased when cuprizone removed from diet. Further, both type 1 and type 2 cytokines together with the proinflammatory cytokines increased. The level of oligodendrocyte maturation and survival genes showed differential gene expression in parallel to that of demyelination and remyelination. In conclusion, for the first-time, involvement of both cellular immune response and antibody response as well as oligodendrocyte maturation and survival factors having role in demyelination and remyelination of cuprizone mouse model of MS have been shown.

7.
Front Cell Neurosci ; 8: 73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24659953

RESUMO

Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa