RESUMO
Steroid receptor coactivator 2 (SRC-2) is a coactivator that regulates nuclear receptor activity. We previously reported that SRC-2 protein is degraded through the action of cAMP-dependent protein kinase A (PKA) and cAMP response element binding protein (CREB). In the study presented here, we aimed to identify proteins that interact with and thereby regulate SRC-2. We isolated cyclin C (CCNC) as an interacting partner with the SRC-2 degradation domain aa 347-758 in a yeast two-hybrid assay and confirmed direct interaction in an in vitro assay. The protein level of SRC-2 was increased with CCNC overexpression in COS-1 cells and decreased with CCNC silencing in COS-1 and MCF-7 cells. In a pulse-chase assay, we further show that silencing of CCNC resulted in a different SRC-2 degradation pattern during the first 6 h after the pulse. Finally, we provide evidence that CCNC regulates expression of cell cycle genes upregulated by SRC-2. In conclusion, our results suggest that CCNC temporarily protects SRC-2 against degradation and this event is involved in the transcriptional regulation of SRC-2 cell cycle target genes.
Assuntos
Ciclo Celular/fisiologia , Ciclina C/biossíntese , Coativador 2 de Receptor Nuclear/metabolismo , Proteólise , Transcrição Gênica/fisiologia , Regulação para Cima/fisiologia , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclina C/genética , Humanos , Coativador 2 de Receptor Nuclear/genética , Estrutura Terciária de ProteínaRESUMO
BACKGROUND: Historically, there is a lack of structured assessment and intervention protocols to support care of children with developmental delays and/or disabilities (DDDs) in rural child and youth care centres (CYCCs) across South Africa. AIM: This study aimed to design an assessment and intervention protocol for holistic management of children in such centres, based on the opinions and input from CYCC staff and experts in the community. METHODS: Data was collected in two stages, the first consisted of qualitative focus groups with CYCC staff using a semi-structured interview schedule and the second was qualitative individual interviews with experts in developmental health such as paediatricians and occupational therapists (OTs) using an interview schedule. RESULTS: The results enabled the design of a preliminary Ecosystemic Assessment and Intervention Protocol (ECO-AIP) for children with DDDs in CYCCs that could be implemented on trial basis in further research. CONCLUSIONS: Information relating to the identification, and care and support of children with DDDs in rural CYCCs was obtained to enable the design of the ECO-AIP. This algorithmic protocol will guide a multi-disciplinary CYCC team to identify DDDs and to assist children to reach their milestones.
Assuntos
Família , População Rural , Adolescente , Criança , Grupos Focais , Humanos , África do SulRESUMO
BACKGROUND: CDK8/CycC complex has kinase activity towards the carboxyterminal domain of RNA polymerase II, and contributes to the regulation of transcription via association with the mediator complex. Different human malignancies, mainly colorectal and gastric cancers, were produced as a result of overexpression of CDK8/CycC in the mediator complex. Therefore, CDK8/CycC complex represents as a cancer oncogene and it has become a potential target for developing CDK8/CycC modulators. METHODS: A series of nine 4-phenylaminoquinoline scaffold-based compounds 5a-i was synthesized, and biologically evaluated as potential CDK8/CycC complex inhibitors. RESULTS: The scaffold substituent effects on the intrinsic inhibitory activity toward CDK8/CycC complex are addressed trying to present a novel outlook of CDK8/CycC Complex inhibitors with 4-phenylaminoquinoline scaffold in cancer therapy. The secondary benzenesulfonamide analogues proved to be the most potent compounds in suppressing CDK8/CycC enzyme, whereas, their primary benzenesulfonamide analogues showed inferior activity. Moreover, the benzene reversed sulfonamide analogues were totally inactive. DISCUSSION: The titled scaffold showed promising inhibitory activity data and there is a crucial role of un/substituted sulfonamido group for CDK8/CycC complex inhibitory activity. Compound 5d showed submicromolar potency against CDK8/CycC (IC50 = 0.639 µM) and it can be used for further investigations and to design another larger library of phenylaminoquinoline scaffold-based analogues in order to establish detailed SARs.
RESUMO
The Mediator, a conserved multisubunit protein complex in eukaryotic organisms, regulates gene expression by bridging sequence-specific DNA-binding transcription factors to the general RNA polymerase II machinery. In yeast, Mediator complex is organized in three core modules (head, middle and tail) and a separable 'CDK8 submodule' consisting of four subunits including Cyclin-dependent kinase CDK8 (CDK8), Cyclin C (CycC), MED12, and MED13. The 3-D structure of human CDK8-CycC complex has been recently experimentally determined. To take advantage of this structure and the improved theoretical calculation methods, we have performed molecular dynamic simulations to study dynamics of CDK8 and two CDK8 point mutations (D173A and D189N), which have been identified in human cancers, with and without full length of the A-loop, as well as the binding between CDK8 and CycC. We found that CDK8 structure gradually loses two helical structures during the 50-ns molecular dynamic simulation, likely due to the presence of the full-length A-loop. In addition, our studies showed the hydrogen bond occupation of the CDK8 A-loop increases during the first 20-ns MD simulation and stays stable during the later 30-ns MD simulation. Four residues in the A-loop of CDK8 have high hydrogen bond occupation, while the rest residues have low or no hydrogen bond occupation. The hydrogen bond dynamic study of the A-loop residues exhibits three types of changes: increasing, decreasing, and stable. Furthermore, the 3-D structures of CDK8 point mutations D173A, D189N, T196A and T196D have been built by molecular modeling and further investigated by 50-ns molecular dynamic simulations. D173A has the highest average potential energy, while T196D has the lowest average potential energy, indicating that T196D is the most stable structure. Finally, we calculated theoretical binding energy of CDK8 and CycC by MM/PBSA and MM/GBSA methods, and the negative values obtained from both methods demonstrate stability of CDK8-CycC complex. Taken together, these analyses will improve our understanding of the exact functions of CDK8 and the interaction with its partner CycC.