Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 151(4): 520-533, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31357232

RESUMO

Protein degradation is a crucial regulatory process in maintaining cellular proteostasis. The selective degradation of intracellular proteins controls diverse cellular and biochemical processes in all kingdoms of life. Targeted protein degradation is implicated in controlling the levels of regulatory proteins as well as eliminating misfolded and any otherwise abnormal proteins. Deregulation of protein degradation is concomitant with the progression of various neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. Thus, methods of measuring metabolic half-lives of proteins greatly influence our understanding of the diverse functions of proteins in mammalian cells including neuronal cells. Historically, protein degradation rates have been studied via exploiting methods that estimate overall protein degradation or focus on few individual proteins. Notably, with the recent technical advances and developments in proteomic and imaging techniques, it is now possible to measure degradation rates of a large repertoire of defined proteins and analyze the degradation profile in a detailed spatio-temporal manner, with the aim of determining proteome-wide protein stabilities upon different physiological conditions. Herein, we discuss some of the classical and novel methods for determining protein degradation rates highlighting the crucial role of some state of art approaches in deciphering the global impact of dynamic nature of targeted degradation of cellular proteins. This article is part of the Special Issue "Proteomics".


Assuntos
Células/metabolismo , Proteólise , Proteômica/métodos , Proteostase , Animais , Humanos , Mamíferos/metabolismo
2.
Biochem Biophys Res Commun ; 511(3): 631-636, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30826064

RESUMO

Reduced expression of the Y14 gene is a cause of Thrombocytopenia-absent radius (TAR) syndrome. This gene contains a conserved RNA recognition motif (RRM) in the central region and nuclear localization/export sequences (NLS/NES) in the N-terminal. Y14 and Magoh proteins form tight heterodimers and are the core of exon junction complexes (EJCs), which mediate various processes of mRNA metabolism after transcription. In this report, we found that protein expression levels of exogenously expressed Magoh L136R and Y14 L118R (leucine-to-arginine substitution at amino acid residue 136 and 118 respectively, that results in the formation of the complex being lost) are lower than their wild-types. This reduction is likely caused by protein levels, as no difference in mRNA levels was detected. Meanwhile, a cycloheximide chase assay determined that the degradation rates of Magoh L136R and Y14 L118R were faster than their wild-types. Both Y14 L118R and Magoh L136R lost the ability to form heterodimers with corresponding wild-type proteins. However, Y14 L118R is able to still localize in the nucleus which causes the stability of Y14 L118R to be higher than Magoh L136R. These results reveal that the stability of Magoh and Y14 is not only dependent on the heterodimer structure, but also dependent on nuclear localization.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Núcleo Celular/genética , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Humanos , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Mutação Puntual , Multimerização Proteica , Estabilidade Proteica , Proteólise , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Rádio (Anatomia)/metabolismo , Trombocitopenia/genética , Trombocitopenia/metabolismo , Deformidades Congênitas das Extremidades Superiores/genética , Deformidades Congênitas das Extremidades Superiores/metabolismo
3.
Methods Mol Biol ; 2591: 237-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36350552

RESUMO

A significant hurdle to understanding the functions of deubiquitinases (DUBs) is the identification of their in vivo substrates. Substrate identification can be difficult for two reasons. First, many proteins that are degraded by the ubiquitin-proteasome system are expressed at relatively low levels in the cell, and second, redundancy between DUBs complicates loss of function screening approaches. Here, we describe a systematic overexpression approach that takes advantage of genome-wide resources available in S. cerevisiae to overcome these challenges and identify DUB substrates in cells.


Assuntos
Saccharomyces cerevisiae , Ubiquitina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas Desubiquitinantes/genética , Enzimas Desubiquitinantes/metabolismo
4.
Bio Protoc ; 11(22): e4225, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34909446

RESUMO

In this protocol, we describe the analysis of protein stability over time, using synthesis shutoff. As an example, we express HA-tagged yeast mitofusin Fzo1 in Saccharomyces cerevisiae and inhibit translation via cycloheximide (CHX). Proteasomal inhibition with MG132 is performed, as an optional step, before the addition of CHX. Proteins are extracted via trichloroacetic acid (TCA) precipitation and subsequently separated via SDS-PAGE. Immunoblotting and antibody-decoration are performed to detect Fzo1 using HA-specific antibodies. We have adapted the method of blocking protein translation with cycloheximide to analyze the stability of high molecular weight proteins, including post-translational modifications and their impact on protein turnover.

5.
SLAS Discov ; 26(4): 570-578, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33402011

RESUMO

We have developed a novel reporter assay that leverages SNAP-epitope tag/near-infrared (NIR) imaging technology to monitor G protein-coupled receptor (GPCR) degradation in human cell lines. N-terminal SNAP-tagged GPCRs were subcloned and expressed in human embryonic kidney (HEK) 293 cells and then subjected to 24 h of cycloheximide (CHX)-chase degradation assays to quantify receptor degradation half-lives (t1/2) using LICOR NIR imaging-polyacrylamide gel electrophoresis (PAGE) analysis. Thus far, we have used this method to quantify t1/2 for all nine adrenergic (ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, ADRB2, ADRB3), five somatostatin (SSTR1, SSTR2, SSTR3, SSTR4, SSTR5), four chemokine (CXCR1, CXCR2, CXCR3, CXCR5), and three 5-HT2 (5HT2A, 5HT2B, 5HT2C) receptor subtypes. SNAP-GPCR-CHX degradation t1/2 values ranged from 0.52 h (ADRA1D) to 5.5 h (SSTR3). On the contrary, both the SNAP-tag alone and SNAP-tagged and endogenous ß-actin were resistant to degradation with CHX treatment. Treatment with the proteasome inhibitor bortezomib produced significant but variable increases in SNAP-GPCR protein expression levels, indicating that SNAP-GPCR degradation primarily occurs through the proteasome. Remarkably, endogenous ß2-adrenergic receptor/ADRB2 dynamic mass redistribution functional responses to norepinephrine were significantly decreased following CHX treatment, with a time course equivalent to that observed with the SNAP-ADRB2 degradation assay. We subsequently adapted this assay into a 96-well glass-bottom plate format to facilitate high-throughput GPCR degradation screening. t1/2 values quantified for the α1-adrenergic receptor subtypes (ADRA1A, ADRA1B, ADR1D) using the 96-well-plate format correlated with t1/2 values quantified using NIR-PAGE imaging analysis. In summary, this novel assay permits precise quantitative analysis of GPCR degradation in human cells and can be readily adapted to quantify degradation for any membrane protein of interest.


Assuntos
Ensaios de Triagem em Larga Escala , Receptor 5-HT2A de Serotonina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Interleucina-8A/metabolismo , Receptores de Somatostatina/metabolismo , Proteínas Recombinantes de Fusão/química , Bortezomib/farmacologia , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Células HEK293 , Meia-Vida , Humanos , Imagem Molecular/métodos , Norepinefrina/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteólise/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/genética , Receptores Adrenérgicos alfa 1/genética , Receptores de Interleucina-8A/genética , Receptores de Somatostatina/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Methods Cell Biol ; 118: 85-103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24295302

RESUMO

Protein trafficking within the secretory pathway of mammalian cells is amenable to analysis by biochemical methods. This can be achieved by monitoring posttranslational modifications that occur naturally within the secretory pathway, or by measuring the delivery of cargo to the cell surface or extracellular medium. These approaches can be combined with additional manipulations such as specific temperature blocks that permit analysis of distinct trafficking steps. Biochemical analysis is advantageous in that it permits both a sensitive and quantitative measure of trafficking along the pathway. The methods discussed in this chapter permit the analysis of trafficking of both endogenous cargo proteins and ectopically expressed model cargos, which can be followed using either Western blotting or metabolic pulse-chase approaches. These methods are relatively straightforward and suitable for use in most modern cell biology laboratories. In addition to the well-established methods that we describe here in detail, we also refer to the development of more recent tailored approaches that add further to the arsenal of tools that can be used to assess trafficking in the secretory pathway.


Assuntos
Via Secretória , Adenoviridae/genética , Animais , Biotinilação , Western Blotting , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Células HeLa , Células Hep G2 , Humanos , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem , Transdução Genética , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa