Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Biol Chem ; 300(4): 107208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521502

RESUMO

Transforming growth factor-ß (TGF-ß) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-ß target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-ß in liver cancer cells. In addition, TGF-ß-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-ß- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-ß- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-ß and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.


Assuntos
Carcinoma Hepatocelular , Proteína Rica em Cisteína 61 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fator de Crescimento Transformador beta , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Movimento Celular , Proteína Rica em Cisteína 61/metabolismo , Proteína Rica em Cisteína 61/genética , Mineração de Dados , Regulação Neoplásica da Expressão Gênica/genética , Via de Sinalização Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Camundongos Nus , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteína Smad2/genética , Proteína Smad3/metabolismo , Proteína Smad3/genética , Fatores de Transcrição de Domínio TEA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Regulação para Cima , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética
2.
FASEB J ; 38(15): e23859, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39082187

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly associated with insulin resistance development. Hepatic lipid accumulation and inflammation are considered the main drivers of hepatic insulin resistance in MASLD. Cysteine-rich 61 (Cyr61 also called CCN1), a novel secretory matricellular protein, is implicated in liver inflammation, and its role in MASLD is not clearly understood. Therefore, we investigated the role of Cyr61 in hepatic insulin resistance and lipid metabolism as major factors in MASLD pathogenesis. In high-fat diet (HFD)-fed C57BL/6J mice, Cyr61 was downregulated or upregulated via viral transduction. Measurements of glucose homeostasis, histological assessment of liver tissues, and gene expression and signaling pathways of lipogenesis, fatty acid oxidation, and inflammation were performed using liver samples from these mice. Cyr61 levels in HepG2 cells were reduced using RNAi-mediated gene knockdown. Inflammation and insulin resistance were evaluated using real-time polymerase chain reaction and western blotting. HFD/AAV-shCyr61 mice exhibited enhanced glucose tolerance via the protein kinase B pathway, reduced hepatic inflammation, decreased lipogenesis, and increased fatty acid oxidation. Notably, HFD/AAV-shCyr61 mice showed elevated protein expression of sirtuin 6 and phosphorylated-AMP-activated protein kinase. In vitro experiments demonstrated that inhibition of Cyr61 downregulated pro-inflammatory cytokines such as interleukin-1 beta, IL-6, and tumor necrosis factor-alpha via the nuclear factor kappa B/c-Jun N-terminal kinase pathway, and alleviated insulin resistance. Cyr61 affected hepatic inflammation, lipid metabolism, and insulin resistance. Inhibition of Cyr61 reduced inflammation, recovered insulin resistance, and altered lipid metabolism in vivo and in vitro. Therefore, Cyr61 is a potential therapeutic target in MASLD.


Assuntos
Proteína Rica em Cisteína 61 , Dieta Hiperlipídica , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Animais , Proteína Rica em Cisteína 61/metabolismo , Proteína Rica em Cisteína 61/genética , Células Hep G2 , Humanos , Camundongos , Dieta Hiperlipídica/efeitos adversos , Masculino , Fígado/metabolismo , Lipogênese
3.
Clin Immunol ; 247: 109235, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36681101

RESUMO

PURPOSE: Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS: FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS: CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-ß1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS: CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.


Assuntos
Proteína Rica em Cisteína 61 , Pólipos Nasais , Rinite , Humanos , Proliferação de Células , Doença Crônica , Ciclina D1/genética , Ciclina D1/metabolismo , Células Epiteliais/metabolismo , Mucosa Nasal/metabolismo , Pólipos Nasais/metabolismo , Rinite/metabolismo , RNA Mensageiro/metabolismo , Proteína Rica em Cisteína 61/metabolismo
4.
Funct Integr Genomics ; 23(3): 270, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553503

RESUMO

Even though circular RNAs (circRNAs), a class of non-coding endogenous RNA, play a crucial role in the progression of osteosarcoma (OS), the specific function of hsa_circ_0000028 (circUSP48) remains unclear. This study aims to elucidate the mechanism by which circUSP48 regulates OS. We employed qRT-PCR and western blot techniques to quantify circDOCK1, miR-186, and DNMT3A levels. Cell proliferation was assessed using the cell counting kit-8 (CCK-8), 5-Ethynyl-20-deoxyuridine (EdU) assay, and colony formation assay. Cell migration and invasion were evaluated through Transwell and cell scratch assays. Furthermore, we performed dual-luciferase reporter, RIP, and RNA pull-down assays to investigate the association between circUSP48, miR-365, and CYR61. In addition, an in vivo xenograft model was utilized to assess the functional role of circUSP48. High levels of circUSP48 and CYR61 were observed in OS tissues and cells, while miR-365 levels were low. Knockdown of circUSP48 suppressed the multiplication, motility, and invasion of OS cells, thereby reducing carcinoma growth. Moreover, inhibition of miR-365 reversed the OS cell-suppressive effect caused by circUSP48 knockdown through direct interaction with circUSP48. Additionally, circUSP48 upregulated the expression of CYR61 by sponging miR-365. The findings suggest that circUSP48 promotes malignant behavior in OS by regulating the expression of CYR61 through miR-365, making it a potential therapeutic target for OS.


Assuntos
Neoplasias Ósseas , Carcinoma , Proteína Rica em Cisteína 61 , MicroRNAs , Osteossarcoma , RNA Circular , Humanos , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína Rica em Cisteína 61/metabolismo , MicroRNAs/genética , Osteossarcoma/genética , RNA Circular/genética , Animais
5.
J Cell Sci ; 134(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34096606

RESUMO

About 70% of breast cancers overexpress estrogen receptor α (ERα, encoded by ESR1). Tamoxifen, a competitive inhibitor of estrogen that binds to ER, has been widely used as a treatment for ER-positive breast cancer. However, 20-30% of breast cancer is resistant to tamoxifen treatment. The mechanisms underlying tamoxifen resistance remain elusive. We found that Yes-associated protein (YAP; also known as YAP1), connective tissue growth factor (CTGF; also known as CCN2) and cysteine-rich angiogenic inducer 61 (Cyr61; also known as CCN1) are overexpressed, while ERα is downregulated in tamoxifen-resistant breast cancer. Inhibition of YAP, CTGF and Cyr61 restored ERα expression and increased sensitivity to tamoxifen. Overexpression of YAP, CTGF, and Cyr61 led to downregulation of ERα and conferred resistance to tamoxifen in ER-positive breast cancer cells. Mechanistically, CTGF and Cyr61 downregulated ERα expression at the transcriptional level by directly binding to the regulatory regions of the ERα-encoding gene, leading to increased tamoxifen resistance. Also, CTGF induced Glut3 (also known as SLC2A3) expression, leading to increased glycolysis, which enhanced cell proliferation and migration in tamoxifen-resistant cells. Together, these results demonstrate a novel role of YAP, CTGF and Cyr61 in tamoxifen resistance and provide a molecular basis for their function in tamoxifen-resistant breast cancer.


Assuntos
Neoplasias da Mama , Tamoxifeno , Proteínas Adaptadoras de Transdução de Sinal , Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Fator de Crescimento do Tecido Conjuntivo/genética , Proteína Rica em Cisteína 61 , Resistencia a Medicamentos Antineoplásicos/genética , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Tamoxifeno/farmacologia , Fatores de Transcrição , Proteínas de Sinalização YAP
6.
Biochem Biophys Res Commun ; 663: 25-31, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37116394

RESUMO

Tendon overuse injuries are common, but the processes that govern tendon response to mechanical load are not fully understood. A series of experiments of in vitro and in vivo experiments was devised to study to the relationship between mechanical stimuli and the matricellular protein Cellular Communication Network Factor 1 (CCN1) in tenocytes and tendons. First, human and murine tenocytes were subjected to cyclic uniaxial loading in order to evaluate changes in CCN1 gene expression as a response to mechanical stimuli. Then, baseline Ccn1 gene expression in different murine tendons (Achilles, patellar, forearm, and tail) was examined. Finally, changes in Ccn1 expression after in vivo unloading experiments were examined. It was found that CCN1 expression significantly increased in both human and murine tenocytes at 5 and 10% cyclical uniaxial strain, while 2.5% strain did not have any effect on CCN1 expression. At baseline, the Achilles, patellar, and forearm tendons had higher expression levels of Ccn1 as compared to tail tendons. Twenty-four hours of immobilization of the hind-limb resulted in a significant decrease in Ccn1 expression in both the Achilles and patellar tendons. In summary, CCN1 expression is up-regulated in tenocytes subjected to mechanical load and down-regulated by loss of mechanical load in tendons. These results show that CCN1 expression in tendons is at least partially regulated by mechanical stimuli.


Assuntos
Tendão do Calcâneo , Traumatismos dos Tendões , Camundongos , Humanos , Animais , Tendão do Calcâneo/metabolismo , Traumatismos dos Tendões/metabolismo , Tenócitos/metabolismo , Patela , Estresse Mecânico
7.
Cancer Sci ; 113(5): 1868-1879, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35271750

RESUMO

Pancreatic adenocarcinoma (PAAD) remains an extremely fatal malignancy with a high mortality rate worldwide. This study focuses on the roles of ubiquitin-specific peptidase 10 (USP10) and cysteine rich angiogenic inducer 61 (Cyr61) in macrophage polarization, immune escape, and metastasis of PAAD. USP10 showed a positive correlation with Yes1 associated transcriptional regulator (YAP1), which, according to the TCGA-PAAD database, is highly expressed in PAAD and indicates poor patient prognosis. USP10 knockdown increased ubiquitination and degradation of YAP1, which further decreased the programmed cell death ligand 1 (PD-L1) and Galectin-9 expression, suppressed immune escape, and reduced the proliferation and metastasis of PAAD cells in vitro and in vivo. Cyr61, a downstream factor of YAP1, was overexpressed in PAAD cells after USP10 silencing for rescue experiments. Overexpression of Cyr61 restored the PD-L1 and Galectin-9 expression in cells and triggered M2 polarization of macrophages, which enhanced the immune escape and maintained the proliferation and metastasis ability of PAAD cells. In conclusion, this work demonstrates that USP10 inhibits YAP1 ubiquitination and degradation to promote Cyr61 expression, which induces immune escape and promotes growth and metastasis of PAAD.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/patologia , Antígeno B7-H1/metabolismo , Cisteína , Enzimas Desubiquitinantes , Galectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-yes , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Neoplasias Pancreáticas
8.
Mol Med ; 28(1): 138, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418932

RESUMO

BACKGROUND: The long chain non-coding RNA HOXA11-OS was recently identified. Increasing studies have shown that HOXA11-OS has regulatory effects on genes in gastric cancer, prostate cancer, and various kidney diseases, but research on its role in systemic lupus erythematosus is still lacking. The present study aimed to investigate the role of HOXA11-OS in the regulation of podocyte autophagy in the development of lupus nephritis (LN) and its potential molecular mechanism. METHODS: mRNA and protein expression of the target gene (i.e., Cyr61) was detected by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. Mouse podocytes were induced using serum immunoglobulin G (IgG) from patients with lupus and their viability was detected using the cell counting kit-8 assay. The interaction of miR-124-3p with HOXA11-OS and Cyr61 was analyzed by double luciferase reporter gene assay. Serum autoantibody levels were detected by enzyme-linked immunosorbent assay. Pathological lesions in the kidney tissue were detected by hematoxylin-eosin and periodate-Schiff staining. The independent samples t-test was used for comparing two groups, and one-way analysis of variance for comparing multiple groups. RESULTS: HOXA11-OS was highly expressed in LN tissues, serum, and cells, and the expression of some key autophagy factors and Cyr61 was significantly increased, while miR-124-3p expression was significantly decreased. In vitro, LN-IgG inhibited podocyte activity, increased autophagy and Cyr61 expression, and aggravated podocyte injury in a time- and dose-dependent manner. As a competitive endogenous RNA of miR-124-3p, HOXA11-OS promoted the expression of Cyr61, thus enhancing the autophagy increase induced by LN-IgG and aggravating podocyte injury. Knockdown of HOXA11-OS had the opposite effect. miR-124-3p mimic or Cyr61 knockdown restored the high expression of autophagy factors and Cyr61 induced by HOXA11-OS overexpression and alleviated podocyte injury. Further in vivo experiments showed that injection of sh-HOXA11-OS adeno-associated virus downregulated HOXA11-OS and significantly alleviated renal damage in lupus mice. CONCLUSIONS: HOXA11-OS is involved in the occurrence and development of LN by regulating podocyte autophagy through miR-124-3p/Cyr61 sponging, which may provide a good potential therapeutic target for LN.


Assuntos
Nefrite Lúpica , MicroRNAs , Podócitos , RNA Longo não Codificante , Animais , Masculino , Camundongos , Autofagia , Imunoglobulina G , Nefrite Lúpica/genética , MicroRNAs/genética , Fatores de Transcrição
9.
Cell Tissue Res ; 390(2): 281-292, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35900603

RESUMO

Our study was to pinpoint the significance of histone deacetylase 5 (HDAC5) affecting the pathogenesis of preeclampsia (PE) via CD31/mammalian target of rapamycin (mTOR) axis by regulating cysteine-rich angiogenic inducer 61 (CYR61). Expression of HDAC5, CYR61, and CD31/mTOR in placental tissues of patients with PE and trophoblast cells HTR-8/SVneo cells was determined first followed by their interaction analysis. Following different transfection, the significance of HDAC5 in cell functions was assayed in relation to CYR61 and CD31/mTOR. An in vivo PE mouse model was constructed for further validation. The clinical tissue and in vitro cell experimentations discovered that HDAC5 was downregulated in placental tissues of PE patients and trophoblast cells, while CYR61, CD31, mTOR, and p-mTOR displayed upregulation. After overexpression of HDAC5, trophoblast cell functions were enhanced. HDAC5 reduced the acetylation enrichment of H3K27 to inhibit the expression of CYR61. Furthermore, CYR61 promoted the activation of CD31/mTOR axis, thereby inhibiting HTR-8/SVneo cell functions. The in vivo rat model confirmed the above alterations. Taken together, HDAC5 contributes to downregulation of CYR61 through histone deacetylation, inactivating CD31/mTOR axis, which prevents the occurrence and development of PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Ratos , Camundongos , Animais , Pré-Eclâmpsia/metabolismo , Movimento Celular/fisiologia , Placenta/metabolismo , Trofoblastos , Serina-Treonina Quinases TOR/metabolismo , Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , Proliferação de Células/fisiologia , Mamíferos/metabolismo
10.
Cancer Control ; 29: 10732748221134398, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36346167

RESUMO

OBJECTIVE: This study aimed to evaluate the expression levels of Shh, Gli1, and Cyr61 proteins in gastric cancer tissues and analyze the relationship between these three proteins and the clinicopathological factors and prognosis of patients. METHODS: This was a retrospective study. Four hundred gastric cancer tissue specimens from patients who underwent radical gastrectomy in Zhangye People's Hospital affiliated to Hexi University between February 2013 and February 2021 underwent immunohistochemical analysis. RESULTS: The positive expression rates of Shh, Gli1, and Cyr61 in gastric cancer tissues were 55.5%, 56.5%, and 64.5%, respectively. The expressions of Shh, Gli1, and Cyr61 in gastric cancer tissues were significantly correlated with tumor size, depth of invasion, and degree of differentiation (P < .05). The expression of Shh protein was positively correlated with the expression of Gli1 protein (P < .01), and the expression of Gli1 protein was positively correlated with the expression of Cyr61 protein (P < .01). Univariate and multivariate analyses showed that the expression of Shh, Gli1, and Cyr61 could predict the prognosis of patients (P < .05). Receiver operating characteristic curve analysis combined with TNM staging could better predict the three-year overall survival of patients (P < .05). CONCLUSION: Shh, Gli1, and Cyr61 proteins are significantly expressed in gastric cancer tissues and are risk factors for the prognosis of patients with gastric cancer.


Assuntos
Neoplasias Gástricas , Humanos , Proteínas Hedgehog/análise , Proteínas Hedgehog/metabolismo , Prognóstico , Estudos Retrospectivos , Neoplasias Gástricas/cirurgia , Proteína GLI1 em Dedos de Zinco
11.
J Bone Miner Metab ; 40(2): 262-274, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083555

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) may lead to irreversible joint damage. The role of histone modifications in RA has been emphasized. This study investigated the effect of histone methyltransferase EZH2 on fibroblast-like synoviocytes (FLSs) in RA. MATERIALS AND METHODS: Synovial tissues were collected from RA patients and non-RA patients (NC). RA-FLSs and NC-FLSs were isolated and identified using flow cytometry. EZH2 expression in synovial tissues and FLSs was detected using RT-qPCR and Western blot. The proliferation, migration, and invasion of RA-FLSs and NC-FLSs were measured using MTT, EdU, and Transwell assays. The binding of EZH2, H3K27me3, and miR-22-3p was analyzed using ChIP assay. The targeting relationship between miR-22-3p and CYR61 was verified using dual-luciferase assay. miR-22-3p and CYR61 expressions were detected using RT-qPCR. CYR61 and H3K27me3 levels were detected using Western blot. Functional rescue experiments were performed to verify the effect of miR-22-3p or CYR61 on RA-FLSs. RESULTS: EZH2 was highly expressed in synovial tissues and FLSs from RA patients. The proliferation, migration, and invasion ability of RA-FLSs was stronger than that of NC-FLSs. Downregulation of EZH2 repressed proliferation, migration, and invasion of RA-FLSs. EZH2 inhibited miR-22-3p expression by binding to the miR-22-3p promoter and increasing H3K27me3 methylation level, and thereby upregulated CYR61 expression. Downregulation of miR-22-3p or overexpression of CYR61 annulled the inhibitory effect of EZH2 silencing on RA-FLS proliferation, migration, and invasion. CONCLUSION: EZH2 bound to the miR-22-3p promoter and inhibited miR-22-3p expression by upregulating H3K27me3 level, thereby promoting CYR61 expression and inducing the proliferation, migration, and invasion of RA-FLSs.


Assuntos
Artrite Reumatoide , MicroRNAs , Sinoviócitos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibroblastos/metabolismo , Histona Metiltransferases/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Sinoviócitos/metabolismo
12.
Adv Exp Med Biol ; 1395: 243-248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527644

RESUMO

Extracellular acidosis is a characteristic of solid tumours, resulting from hypoxia-induced glycolytic metabolism as well as from the "Warburg effect" (aerobic glycolysis). The acidic environment has shown to affect functional tumour properties (proliferation, migration, invasion) and thus the aim of the study was to identify signalling mechanisms, mediating these pH-dependent effects. Therefore, the serum response factor (Srf) and the activation of the serum response element (SRE) by acidosis were analysed in AT-1 prostate carcinoma cells. Furthermore, the expression of downstream targets of this cascade, namely the early growth response 1 (Egr1), which seems to be involved in tumour proliferation, and the cellular communication network factor 1 (Ccn1), which both contain SRE in their promotor region were examined in two tumour cell lines. Extracellular acidification led to an upregulation of Srf and a functional activation of the SRE. Egr1 expression was increased by acidosis in AT-1 cells whereas hypoxia had a suppressive effect. In experimental tumours, in vivo Egr1 and Ccn1 were also found to be acidosis-dependent. Also, it turned out that pH regulated expression of Egr1 was followed by comparable changes of p21, which is an important regulator of the cell cycle.This study identifies the Srf-SRE signalling cascade and downstream Egr1 and Ccn1 to be acidosis-regulated in vitro and in vivo, potentially affecting tumour progression. Especially linked expression changes of Egr1 and p21 may mediate acidosis-induced effects on cell proliferation.


Assuntos
Acidose , Hipóxia , Neoplasias da Próstata , Animais , Humanos , Masculino , Acidose/genética , Acidose/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Hipóxia/genética , Hipóxia/metabolismo , Neoplasias Experimentais , Ativação Transcricional , Ratos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Elemento de Resposta Sérica/genética , Elemento de Resposta Sérica/fisiologia
13.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430640

RESUMO

The molecular mechanisms that drive the granulosa cells' (GC) differentiation into a more estrogenic phenotype during follicular divergence and establishment of follicle dominance have not been completely elucidated. The main Hippo signaling effector, YAP, has, however, emerged as a potential key player to explain such complex processes. Studies using rat and bovine GC demonstrate that, in conditions where the expression of the classic YAP-TEAD target gene tissue growth factor (CTGF) is augmented, CYP19A1 expression and activity and, consequently, estradiol (E2) secretion are reduced. These findings led us to hypothesize that, during ovarian follicular divergence in cattle, FSH downregulates YAP-TEAD-dependent transcriptional activity in GC to allow the future dominant follicle to exert its augmented estrogenic capacity. To address this, we performed a series of experiments employing distinct bovine models. Our in vitro and ex vivo experiments indicated that indeed FSH downregulates, in a concentration-dependent manner, mRNA levels not only for CTGF but also for the other classic YAP-TEAD transcriptional target genes ANKRD1 and CYR61 by a mechanism that involves increased YAP phosphorylation. To better elucidate the functional importance of such FSH-induced YAP activity regulation, we then cultured GC in the presence of verteporfin (VP) or peptide 17 (P17), two pharmacological inhibitors known to interfere with YAP binding to TEADs. The results showed that both VP and P17 increased CYP19A1 basal mRNA levels in a concentration-dependent manner. Most interestingly, by using GC samples obtained in vivo from dominant vs. subordinate follicles, we found that mRNA levels for CTGF, CYR61, and ANKRD1 are higher in subordinate follicles following the follicular divergence. Taken together, our novel results demonstrate that YAP transcriptional activity is regulated in bovine granulosa cells to allow the increased estrogenic capacity of the selected dominant follicle.


Assuntos
Hormônio Foliculoestimulante , Folículo Ovariano , Animais , Bovinos/genética , Bovinos/metabolismo , Feminino , Ratos , Estrona/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , RNA Mensageiro/metabolismo , Verteporfina , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas de Sinalização YAP/metabolismo
14.
EMBO J ; 36(16): 2373-2389, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28694244

RESUMO

Tumor progression alters the composition and physical properties of the extracellular matrix. Particularly, increased matrix stiffness has profound effects on tumor growth and metastasis. While endothelial cells are key players in cancer progression, the influence of tumor stiffness on the endothelium and the impact on metastasis is unknown. Through quantitative mass spectrometry, we find that the matricellular protein CCN1/CYR61 is highly regulated by stiffness in endothelial cells. We show that stiffness-induced CCN1 activates ß-catenin nuclear translocation and signaling and that this contributes to upregulate N-cadherin levels on the surface of the endothelium, in vitro This facilitates N-cadherin-dependent cancer cell-endothelium interaction. Using intravital imaging, we show that knockout of Ccn1 in endothelial cells inhibits melanoma cancer cell binding to the blood vessels, a critical step in cancer cell transit through the vasculature to metastasize. Targeting stiffness-induced changes in the vasculature, such as CCN1, is therefore a potential yet unappreciated mechanism to impair metastasis.


Assuntos
Comunicação Celular , Células Endoteliais/fisiologia , Melanócitos/fisiologia , Caderinas/análise , Linhagem Celular , Proteína Rica em Cisteína 61/análise , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , beta Catenina/análise
15.
Mol Carcinog ; 60(7): 497-507, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34004031

RESUMO

Epidermal squamous cell carcinoma (SCC) develops in response to ultraviolet light exposure and is among the most common cancers. The transglutaminase 2 cancer cell survival protein stimulates the activity of the YAP1/TEAD transcription complex to drive the expression of genes that promote aggressive epidermal SCC cell invasion, migration, and tumor formation. Therefore, we are interested in mechanisms that may inhibit these events. Vestigial-like protein-4 (VGLL4) is a transcription cofactor/tumor suppressor that inhibits several pro-cancer pathways including YAP1 signaling. Our present studies show that VGLL4 inhibits YAP1/TEAD-dependent transcription to reduce the expression of YAP1 target genes (CCND1, CYR61, and CTGF) and pro-cancer collagen genes (COL1A2 and COL3A1). We further show that loss of these YAP1 regulated genes is required for VGLL4 suppression of the cancer cell phenotype, as forced CCND1 or COL1A2 expression partially restores the aggressive cancer phenotype in VGLL4 expressing cells. Consistent with these findings, VGLL4 expression reduces tumor formation, and this is associated with reduced CCND1, CYR61, CTGF, COL1A2, and COL1A3 mRNA and protein levels, and reduced EMT marker expression. These findings indicate that VGLL4 suppresses the malignant epidermal SCC cancer phenotype by inhibiting YAP1/TEAD-dependent pro-cancer signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/patologia , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fenótipo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
16.
Clin Chem ; 67(2): 363-373, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33336248

RESUMO

BACKGROUND: Detection of asbestos-associated diseases like asbestosis or mesothelioma is still challenging. We sought to improve the diagnosis of benign asbestos-associated disease (BAAD) by detection of the protein cysteine-rich angiogenic inducer 61 (Cyr61) in human plasma. METHODS: Plasma Cyr61 was quantified using an enzyme-linked immunosorbent assay. Plasma samples from males diagnosed with BAAD, but without a malignant disease (n = 101), and malignant mesothelioma (n = 21; 15 males, 6 females), as well as nonasbestos-exposed healthy control participants (n = 150; 58 males, 92 females) were analyzed. Clinical sensitivity and specificity of Cyr61 were determined by receiver operating characteristic analysis. RESULTS: The median plasma Cyr61 concentration for healthy control participants was 0.27 ng/mL. Cytoplasmic Cyr61 in peripheral blood mononuclear cells from healthy control participants was evenly distributed, as detected by immunofluorescent staining. The increase in plasma Cyr61 concentrations in the BAAD study group was statistically significant compared to the healthy control participants (P < 0.0001). For the detection of BAAD vs male healthy control participants, clinical sensitivity was 88% and clinical specificity 95% with an area under the curve of 0.924 at maximal Youden Index. For a predefined clinical specificity of 100%, the clinical sensitivity was 76%. For male mesothelioma patients vs male healthy control participants, the clinical sensitivity at maximal Youden Index was 95% with a clinical specificity of 100% (area under the curve, 0.997) and for a predefined clinical specificity of 100%, the clinical sensitivity was 93%. CONCLUSIONS: In our study, plasma Cyr61 protein concentrations showed to be a new biomarker for asbestos-associated diseases like BAAD and mesothelioma in men, which deserves further investigation in large-scale cohort studies.


Assuntos
Asbestose/diagnóstico , Proteína Rica em Cisteína 61/sangue , Mesotelioma/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Asbestose/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Mesotelioma/sangue , Pessoa de Meia-Idade , Sensibilidade e Especificidade
17.
BMC Gastroenterol ; 21(1): 129, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743589

RESUMO

BACKGROUNDS: Cysteine-rich angiogenic inducer 61 (Cyr61) is emerging as an important regulator of tissue homeostasis and wound repair. We aim to explore the colonic mucosal expression of Cyr61 and analyze the association between Cyr61 expression and clinical course in patients with Crohn's disease (CD). METHODS: Endoscopic samples were identified from 83 CD patients with and 372 controls by searching pathological reports. Among them, age- and sex- matched 43 of each group by a propensity score were selected to compare Cyr61 expression by immunohistochemistry (IHC). IHC scores for Cyr61 expression of CD patients were divided into tertiles to evaluate the association with clinical course. We also measured the level of mRNA for Cyr 61 and proinflammatory genes in inflamed and noninflamed colonic mucosal lesions from CD patients. RESULTS: The mean IHC scores for Cyr61 expression was higher in CD patients (86.5) than in controls (46.1, P < 0.001). In CD patients, the mean IHC scores for Cyr61 expression (68.3) was lower in patients with clinical recurrence than in patients without recurrence (92.2, P = 0.01). Cyr61 mRNA levels in inflamed mucosa were twofold higher than those in non-inflamed lesion (P > 0.05) and the mRNA levels of IL-6 and TLR-4 in inflamed mucosa were significantly higher than those in non-inflamed mucosa in CD patients (all P < 0.05). When CD patients were stratified into tertile groups according to IHC scores for Cyr61 expression, clinical recurrence rates tended to be lower in patients with high Cyr61 expression (P for trend = 0.02). Compared with tertile 1 of Cyr61 expression, tertile 3 of Cyr 61 expression was associated with reduced risk of clinical recurrence (OR 0.43, 95% CI 0.20-0.92) after adjustment for age, sex and CD activity index at the time of colonoscopy in CD patients (P = 0.03). CONCLUSIONS: Cyr61 mucosal expression in CD patients was inversely associated with clinical course. Future study need to be considered to evaluate whether Cyr 61 may play a role in activating inflammatory responses and contributing to wound healing and tissue repair in patients with CD.


Assuntos
Doença de Crohn , Colonoscopia , Doença de Crohn/genética , Humanos , Imuno-Histoquímica , Mucosa Intestinal , RNA Mensageiro
18.
J Pathol ; 252(2): 114-124, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32613636

RESUMO

We previously identified that the expression of chitinase-3-like protein 1 (CHI3L1) was upregulated during thyroid cancer progression. Here, we investigated the prognostic significance of CHI3L1 expression in thyroid neoplasms and examined the potential oncogenic roles. CHI3L1 immunochemical staining was performed on tissue microarrays of benign and malignant thyroid tumours. Compared with normal thyroid tissue and benign thyroid lesions that had low or no detectable CHI3L1 expression, CHI3L1 was overexpressed in both differentiated and undifferentiated thyroid cancer. High CHI3L1 expression was associated with extrathyroidal extension, lymph node metastasis, and shorter recurrence-free survival in differentiated thyroid cancer. The biological roles of CHI3L1 were further investigated by gain- and loss-of-function assays. CHI3L1 silencing suppressed clonogenicity, migration, invasion, anoikis resistance, and angiogenesis in thyroid cancer cells, although exogenous CHI3L1 treatment promoted these malignant phenotypes. Cysteine-rich angiogenic inducer 61 (CYR61) was identified as a downstream target of CHI3L1 by RNA-seq analysis. CYR61 silencing or treatment reversed the alterations induced by CHI3L1 modulation. Our results demonstrate that CHI3L1 is overexpressed in thyroid cancer and is associated with an increased risk of disease recurrence. Additionally, CYR61 may participate in CHI3L1-mediated tumour progression. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteína 1 Semelhante à Quitinase-3/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias da Glândula Tireoide/patologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Glândula Tireoide/metabolismo
19.
J Pathol ; 252(4): 343-345, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32930397

RESUMO

Our understanding of the oncogenic drivers involved in thyroid cancers continues to expand. In a recent issue of this journal, Cheng et al explore the role of chitinase-3-like protein 1 (CHI3L1) in the development of thyroid cancer and its recurrence. They show increased levels of CHI3L1 in papillary and anaplastic thyroid malignancies (PTC and ATC, respectively) but baseline expression of the protein in benign thyroid pathologies. These were most pronounced in PTCs with BRAF mutations. High levels of CHI3L1 were shown to be associated with a higher likelihood of extrathyroidal extension and lymph node metastasis, more advanced TNM stage, a higher frequency of harboring a BRAFV600E mutation, and a higher risk of disease recurrence. Pathologic features, including clonogenicity, migratory, invasive and angiogenic properties, were reduced in a CHI3L1-knockdown thyroid cancer cell line. The cysteine-rich angiogenic inducer 61 (CYR61) pathway was identified as a potential mediator of CHI3L1 pathogenesis, but a full mechanistic pathway was not delineated. Findings regarding CHI3L1-associated pathogenicity are in line with published data available for a number of other cancers. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Papilar , Quitinases , Neoplasias da Glândula Tireoide , Proteína 1 Semelhante à Quitinase-3 , Humanos , Mutação , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas B-raf/genética , Reino Unido
20.
Tohoku J Exp Med ; 255(2): 171-181, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34707022

RESUMO

Circular RNAs (circRNAs) exert a significant regulatory function on tumor progression. This work intends to probe into the biological function and regulatory mechanism of circRNA_0103552 (circ_0103552) in breast cancer carcinogenesis. In this study, circ_0103552, microRNA-515-5p (miR-515-5p), and cysteine-rich angiogenic inducer 61 (CYR61) mRNA expressions in breast cancer cells and tissues were determined by quantitative real-time polymerase chain reaction, followed by cell counting kit 8 and Transwell experiments to examine the multiplication, migration, and invasion of breast cancer cells. Circular RNA Interactome database and StarBase database were searched, and dual-luciferase reporter gene experiments were applied to verify the targeting relationship between circ_0103552 and miR-515-5p, and between miR-515-5p and CYR61, and Western blot was adopted to the regulatory function of circ_0103552 and miR-515-5p on CYR61 protein expression. Circ_0103552 expression was found to be remarkably up-modulated in breast cancer tissues and cells, and circ_0103552 overexpression facilitated the multiplication, migration, and invasion of breast cancer cells, while knocking down circ_0103552 induced the opposite effects. Mechanistically, circ_0103552 could sponge miR-515-5p and restrained its expression in breast cancer cells. MiR-515-5p could counteract the functions of circ_0103552 in breast cancer cells. Additionally, CYR61 was revealed to be a downstream target of miR-515-5p in breast cancer cells. In summary, this study shows that circ_0103552 up-modulates CYR61 expression by targeting miR-515-5p and thus facilitates the multiplication, migration, and invasion of breast cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Proliferação de Células/genética , Cisteína , Proteína Rica em Cisteína 61/genética , Feminino , Humanos , MicroRNAs/genética , RNA Circular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa